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Abstract This paper investigates the use of stratified sampling as a variance reduction technique for

approximating integrals over large dimensional spaces. The accuracy of this method critically depends

on the choice of the space partition, the strata, which should be ideally fitted to the subsets where the

functions to integrate is nearly constant, and on the allocation of the number of samples within each strata.

When the dimension is large and the function to integrate is complex, finding such partitions and allocating

the sample is a highly non-trivial problem. In this work, we investigate a novel method to improve the

efficiency of the estimator ”on the fly”, by jointly sampling and adapting the strata and the allocation

within the strata. The accuracy of estimators when this method is used is examined in detail, in the so-

called asymptotic regime (i.e. when both the number of samples and the number of strata are large). We

illustrate the use of the method for the computation of the price of path-dependent options in models with

both constant and stochastic volatility. The use of this adaptive technique yields variance reduction by

factors sometimes larger than 1000 compared to classical Monte Carlo estimators.
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CMAP, École Polytechnique,
Route de Saclay, 91128 Palaiseau Cedex
Tel.: +33 (0)1 69 33 45 67
E-mail: etore@cmap.polytechnique.fr

G. Fort and E. Moulines
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1 Introduction

A number of problems in statistics, operation research and mathematical finance boils down to the evalu-

ation of the expectation (or higher order moments) of a random variable φ(Y ), known to be a complicated

real valued function of a vector Y = (Y1, . . . , Yd) of independent random variables. In our applications, we

will mainly focus on simulations driven by a sequence of independent standard normal random variables, in

situations where the dimension d is very large. We have in particular in mind the computations of moments

of functionals of diffusion processes; the dimension d can be very large if the mapping φ is path-dependent

(φ a general functional defined on the space of continuous function) and the solutions of the diffusion

process cannot be explicitly computed and simulated (i.e. should be approximated using for example the

Euler or an higher-order model discretization scheme). Such problems arise in particular in computational

finance for the pricing of path-dependent options, either when the number of underlying assets is large, or

when additional source of randomness is present such as in stochastic volatility models, which in general

preclude the existence of explicit solutions for the multi-dimensional diffusions modeling the price of the

asset.

Since the distribution of φ(Y ) is most often impossible to obtain in closed analytic form, then a

classical approach is to resort to Monte Carlo integration. In its most elementary form, a random sample

of points Y1, . . . , Yd is drawn from R
d, φ is evaluated at each of these points and the moments of interest

are estimated from these values. Intuitively, rather than calculate φ at independently sampled points, it

seems to be a better option to dissect R
d into mutually exclusive subsets (or strata) and ensure that φ

is evaluated for a prescribed and appropriate number of points in each stratum. This is referred to as

stratified sampling. Good reviews of the method include Glasserman (2004) (with an emphasis on finance

applications), Asmussen and Glynn (2007), Rubinstein and Kroese (2008).

The main purpose of this paper is to discuss a way of dissecting the space into strata and sampling

from the strata, adapted to the case where Y is a (typically large-dimensional) standard Gaussian vector.

We also address the accuracy of estimators when this method of sampling is used, and give conditions

upon which the variance reduction is most effective.

Determining an efficient dissection in a large dimensional space is a highly non-trivial problem. We shall

consider a computationally inexpensive way to overcome this difficulty, which uses a kind of dimensionality

reduction. This method makes use of one or more orthogonal directions, to induce a dissection of R
d with the

right property. These directions and the associated allocation are learnt adaptively, while the simulations are

performed. The advantage of the adaptive method, similar to those introduced for importance sampling by

Rubinstein and Kroese (2004) is that information is collected as the simulations are done, and computations

of means and variance of φ(Y ) in strata are used to update the choice of these strata and of the allocation.

We investigate in some details the asymptotic regime i.e. where the number of simulations and the

number of the strata both go to infinity. We show that the variance of the estimator critically depends

on the relations of the strata to the regions of the space where φ is ”nearly” constant which can be fairly

complex for example when pricing path-dependent basket options or when the underlying model of the

asset is a multi-dimensional non-linear diffusion process.

The method is illustrated for pricing path-dependent options driven by high-dimensional gaussian

vectors, combining adaptive importance sampling based on a change of drift together with the suggested

adaptive stratification. The combination of these two methods, already advocated in an earlier work by

Glasserman et al (1999), is very effective; nevertheless, these examples show that, contrary to what is

suggested in this work, the asymptotical optimal drift vector is not always the most effective direction of

stratification.

The paper is organized as follows. In section 2, an introduction to the main ideas of the stratification

is presented. Section 3 addresses the behavior of the stratified estimator in the asymptotic regime (i.e.

when both the number of samples and the number of strata go to infinity). The roles of the stratification

directions, the strata in each direction of stratification and of the allocation within each strata are evi-

denced. In section 4, an algorithm is proposed to adapt the directions of stratifications and the allocation of

simulations within each stratum. In Section 5, the proposed adaptive stratification procedure is illustrated

using applications for the pricing of path-dependent options.
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2 An introduction to stratification

Suppose we want to compute an expectation of the form E [φ(Y )] where φ : R
d → R is a measurable

function and Y is a R
d-valued random variable. We assume hereafter that

E
[
φ2(Y )

]
< +∞ . (1)

In the examples we have in mind, φ is the payoff of a path-dependent option and Y = (Y1, . . . , Yd) is a

typically large-dimensional standard Gaussian vector.

Stratified sampling is a variance reduction method which produces an alternative estimator of E[φ(Y )]

having smaller variance than the crude Monte Carlo estimator. Fully stratifying a random vector is typically

infeasible in high dimension. We therefore focus on methods where the stratification is applied to a low-

dimensional projection of the random vector Y . In a simulation driven by arbitrary random vectors,

stratifying on a linear combination would typically be impractical because of the difficulty of sampling

from the distribution of the vector conditional on a given linear combination, but in the Gaussian case,

this conditional distribution is itself Gaussian which makes this approach practical.

We therefore consider a stratification variable of the form µTY where µ is an orthonormal (d × m)

matrix with m ≤ d; recall that µ is orthonormal if µTµ = Idm where Idm is the identity matrix in

dimension m and µµT is the orthonormal projector onto the range of the matrix µ. In all our examples,

m is equal to one or two. Given a partition {Si, i ∈ I} of R
m, the sample space of µT Y , the sample space

R
d of Y is divided into strata defined by

Sµ,i
def
=
{
x ∈ R

d, µT x ∈ Si

}
, i ∈ I . (2)

The strata Si need not be a connected region or might have a curve surface in full generality, but will

typically be a an hyperrectangle in all our applications. It is assumed in the sequel that the probability of

the strata {pi, i ∈ I}
pi(µ)

def
= P

(
Y ∈ Sµ,i

)
= P

(
µT Y ∈ Si

)
, (3)

are known; the dependence of the probability pi(µ) on the strata {Si, i ∈ I} is implicit. If Y is a large

dimensional standard Gaussian vector and if Si is an hyperrectangle, computing (3) is easy since in such

case µTY also is a standard Gaussian vector. Glasserman (2004, section 4.3, p. 223) (see also Section 5.1)

presents a simple algorithm to sample according to the conditional distribution of Y given µTY ∈ Si. Up

to removing some strata, we may assume without loss of generality that pi(µ) > 0, for any i ∈ I. For

the special case where all the pi(µ) are equal, i.e. pi(µ) = |I|−1, i ∈ I, we shall say that the strata are

equiprobable.

Let M be the total number of draws and Q = {qi, i ∈ I} be an allocation vector (i.e. qi ≥ 0 and∑
i∈I qi = 1) : the number Mi of samples allocated to the i-th stratum is given by

Mi
def
=

M
∑

j≤i

qj

 −

M
∑

j<i

qj

 , i ∈ I , (4)

where ⌊·⌋ denotes the lower integer part and by convention,
∑

∅ qj = 0 (it is assumed that the set of indices

I is totally ordered: e.g. if I is a cartesian product of a set of totally ordered sets indexed by an ordinal, the

order on I is the lexicographical one). If the number of points in each stratum is chosen to be proportional

to the probability of the strata, the allocation is said to be proportional. Given the strata {Si, i ∈ I} and

the allocation Q, the stratified estimator with M draws is defined by

∑

i∈I:Mi>0

pi(µ)





1

Mi

Mi∑

j=1

φ(Yi,j)



 , (5)

where for each i ∈ I, {Yi,j , j ≤ Mi} are i.i.d. random variables distributed according to the conditional

distribution of the vector Y given the strata, P
[
Y ∈ · |µTY ∈ Si

]
. In addition, the random variables

{Yi,j , j ≤Mi, i ∈ I} are independent.

The stratified estimator is an unbiased estimator of E[φ(Y )] if the Mi’s are all positive (a sufficient

condition is M ≥ {mini ρi(µ)}−1). Its variance is given by

∑

i∈I:Mi>0

M−1
i p2i (µ)σ2

i (µ) (6)
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where σ2
i (µ) is the conditional variance of the random vector φ(Y ) given µT Y ∈ Si,

σ2
i (µ)

def
= E

[
φ2(Y )

∣∣∣µTY ∈ Si

]
−
(
E
[
φ(Y ) |µT Y ∈ Si

])2
. (7)

When M goes to infinity and the number of strata is either fixed or goes to infinity slowly enough, the

variance of the stratified estimator is equivalent to

M−1
∑

i∈I:qi>0

q−1
i p2i (µ)σ2

i (µ) (8)

(see e.g. Lemma 1 in Section 6.1 for a proof of this assertion).

The two key questions that arise in every application of the stratified sampling method are (i) the

choice of the dissection of the space and (ii) for a fixed M , the determination of the number of samples Mi

to be generated in each stratum i. It is well-know (see e.g. (Fishman, 1996, Theorem4.15)) that, whatever

the choice of the strata Sµ,i is, the stratification with proportional allocation always produces a variance

reduction compared to the crude Monte Carlo. More ambitiously than just considering proportional al-

location, the optimal allocation (in the sense of variance minimization) is obtained by minimizing the

asymptotic variance (8) subject to the constraint
∑

i∈I qi = 1. The solution of this problem is given by:

q⋆
i (µ)

def
=

pi(µ) σi(µ)∑
j∈I pj(µ)σj(µ)

. (9)

Note that Eq. 6 reveals that the magnitude of variance reduction depends crucially on how widely dispersed

the strata means E
[
φ(Y ) |Y ∈ Sµ,i

]
are around the population mean E[φ(Y )].

For a given stratification matrix µ, we refer to Q⋆(µ) = {q⋆
i (µ), i ∈ I} as the optimal stratification

vector. Of course, contrary to the proportions pi(µ), the conditional expectations E
[
φ(Y ) |Y ∈ Sµ,i

]
are

unknown and so are the conditional variances σ2
i (µ). Because the stratification matrix is also unknown, an

adaptive procedure is required.

The simplest approach would be to estimate these conditional variance in a pilot run, to determine the

optimal allocation vector from these estimates, and then to use this allocation vector in a second stage to

determine the stratified estimator. Such a procedure is clearly suboptimal, since the results obtained in

the pilot step are not fully exploited. This calls for a more sophisticated procedure, in the spirit of those

used for adaptive importance sampling; see for example, Rubinstein and Kroese (2004) and Rubinstein and

Kroese (2008). In these algorithms, the estimate of conditional variance and the stratification directions

is gradually improved while computing the stratified estimator and estimating its variance. Of course, the

limiting behavior of such estimators is more complex, because of the dependence between the successive

draws and the definition of the strata themselves. Such algorithm extends the procedure by Etore and

Jourdain (2007), who proposed to adaptively learn the optimal allocation vector for a set of given strata

and derived a central limit theorem for the adaptive estimator (with the optimal asymptotic variance).

3 Asymptotic analysis of the stratification performance

We derive in this Section the asymptotic variance of the stratified estimator when both the total number

of draws M and the number of strata (possibly depending upon M) tend to +∞. The variance of the

estimator depends on the stratification matrix µ, on the partition {Si, i ∈ I} of the sample space of µT Y

and on the allocation Q.

3.1 Notations and Assumptions

For any integer k, we denote by λ the Lebesgue measure on R
k, equipped with its Borel sigma-field (the

dependence in the dimension k is implicit). For a probability density h w.r.t the Lebesgue measure on

R, we denote by H the cumulative distribution function, and H−1 the quantile function, defined as the

generalized inverse of H ,

H−1(u) = inf{x ∈ {H > 0} : H(x) ≥ u} , for any u ∈ [0, 1] ,
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where, by convention, inf ∅ = +∞. Let I be a positive integer. The choice of the strata boundaries is

parameterized by an m-uplet (g1, . . . , gm) of probability densities on R in the following sense: for all

m-uplet i = (i1, . . . , im) ∈ {1, · · · , I}m,

Si
def
=

{
(x1, . . . , xm) ∈ R

m : G−1
k

(
ik − 1

I

)
< xk ≤ G−1

k

(
ik
I

)}
. (10)

We denote by g(x1, . . . , xm) the associated joint density:

g(x1, . . . , xm)
def
=

m∏

k=1

gk(xk) . (11)

We consider allocations parameterized by a probability density χ : R
m → R+ with respect to the Lebesgue

measure by setting for all i ∈ {1, · · · , I}m

qi(χ)
def
=

∫

Si

χ dλ ;

denote by Qχ = {qi(χ) , i ∈ {1, . . . , I}m} the associated allocation. Let µ be a d×m orthonormal matrix.

We consider the stratification S(µ) =
{
Sµ,i, i ∈ {1, . . . , I}m} of the space R

d. Denote by ς2I,M (µ, g,Q) the

asymptotic variance of the stratified estimator, given by

ς2I,M (µ, g,Q)
def
=

∑

i∈{1,...,I}m:Mi>0

M−1
i p2i (µ)σ2

i (µ) , (12)

where the number of draws Mi is given by (4) and pi(µ), σ2
i (µ), the probability and the conditional variance

are given by (3), and (7), respectively. The dependence w.r.t. g and Q of Mi, pi(µ) and σ2
i (µ) is implicit.

We assume that the random variable µT Y possesses a density fµ w.r.t. the Lebesgue measure (on R
m).

We consider the functions (taking a regular version of the conditional expectation)

ψµ(x)
def
= E

[
φ (Y )

∣∣∣µTY = x
]
, and ζµ(x)

def
= E

[
φ2(Y )

∣∣∣µT Y = x
]
.

Using these notations, the asymptotic variance of the stratified estimator may be rewritten as

ς2I,M (µ, g,Qχ) =
∑

i∈{1,...,I}m:Mi>0

M−1
i

{(∫

Si

fµ dλ

)(∫

Si

ζµfµ dλ

)
−
(∫

Si

ψµfµ dλ

)2
}
.

We will investigate the limiting behavior of asymptotic variance ς2I,M (µ, g,Qχ) when the total number of

samples M and the number of strata I both tend to +∞. For that purpose, some technical conditions are

required. For ν a measure on R
n and h a real-valued measurable function on R

n, we denote by essinfν (h)

and esssupν (h) the essential infimum and supremum w.r.t. the measure ν. From now on we use the following

convention : z/0 is equal to +∞ if z > 0 and to 0 if z = 0.

A1
∫

Rm χ2 g−1 dλ < +∞ and essinfg·λ

(
χg−1

)
> 0.

A2 for h ∈ {fµ, ζµfµ, ψµfµ},
∫

Rm h2 g−1 dλ < +∞.

Under A2, λ-a.e. , g = 0 implies that fµ = 0. Finally, a reinforced integrability condition is needed

A3
∫

Rm f4
µ(ζµ − ψ2

µ)2 [χ2g]−1 dλ < +∞.

Not surprisingly, the behavior of the asymptotic variance of the stratified estimator behaves differently

if m < d or if m = d. In the first case, the leading term of the variance remains proportional to the

inverse of the number of samples and is asymptotically dominated by the variance in the subspace which is

orthogonal to the stratification subspace. In the second case, the rate of convergence is faster, but depends

on the choice of the strata in a more complex way.
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3.2 The case m < d

Our main result is the following proposition which establishes the expression of the limit as the number of

strata I goes to +∞ of the limiting variance (as the number of simulations M goes to +∞) of the stratified

estimator. Define

ς2∞(µ, χ)
def
=

∫

Rm

f2
µ(ζµ − ψ2

µ)χ−1 dλ . (13)

Proposition 1 Let m be an integer such that m < d, g1, · · · , gm be probability density functions (pdf)

w.r.t. to the Lebesgue measure of R, µ be a d×m orthonormal matrix, and χ be a pdf w.r.t. the Lebesgue

measure on R
m. Assume that g defined by (11) and χ satisfy assumptions A1-A3. Then

lim
I→+∞

lim
M→+∞

Mς2I,M (µ, g,Qχ) = ς2∞(µ, χ) .

Assume in addition one of the following conditions

(i) esssupχ·λ

(
fµχ

−1
)
< +∞ and {IM ,M ≥ 1} is an integer-valued sequence such that I−1

M +Im
MM−1 →

0 as M goes to infinity.

(ii) {IM ,M ≥ 1} is an integer-valued sequence such that I−1
M + I2m

M M−1 → 0 as M goes to infinity.

Then,

lim
M→+∞

Mς2IM ,M (µ, g,Qχ) = ς2∞(µ, χ) .

It is worthwhile to note that the limiting variance of the stratified estimator ς2∞(µ, χ) does not depend

on the densities (g1, . . . , gm) that define the strata. This might seem counter-intuitive because it means

that only the directions of stratification µ and the allocation distribution Qχ enters in the limit. The

contribution to the variance of the randomness in the directions orthogonal to the rows of µ dominates at

the first order. Therefore, it is not required to optimize the choice of the distributions g1, . . . , gm which

define the positions of the strata in each direction. In practice, this means that asymptotically, once the

stratification direction is chosen, the choice of the strata is irrelevant (which is of course not true for any

given finite sample); a convenient choice is to set gi as the distribution of the i-th component of the random

vector µTY , i ∈ {1, . . . , m}. When Y is a standard normal random vector, then the components of the

vector µTY are standard gaussian variables, and the strata are simply chosen according to the quantiles

of standard gaussian random variables (the distributions gi, i ∈ {1, . . . ,m} are in such case independent

from µ).

On the contrary, the limiting variance ς2∞(µ, χ) depends on the allocation density χ. For a given value

of the stratification directions µ, it is possible to minimize the function χ 7→ ς2∞(µ, χ). Assume that
∫

Rm fµ

√
ζµ − ψ2

µ dλ > 0. Since

∫

Rm

fµ

√
ζµ − ψ2

µ dλ = E

[√
Var

[
φ(Y )|µT Y

]]
≤
√

Var(φ(Y )),

the integral is finite by (1) and it is possible to define a density χ⋆
µ by

χ⋆
µ

def
=

fµ

√
ζµ − ψ2

µ

∫
Rm fµ

√
ζµ − ψ2

µ dλ
. (14)

Then χ⋆
µ is the minimum of χ 7→ ς2∞(µ, χ) and the minimal limiting variance is

ς2∞(µ, χ⋆
µ) =

(∫

Rm

fµ

√
ζµ − ψ2

µ dλ

)2

=

(
E

[√
Var

[
φ(Y )|µT Y

]])2

.

Provided χ⋆
µ satisfies assumptions A1-2 (note that in that case, A3 is automatically satisfied), the choice

χ = χ⋆
µ for the allocation of the drawings in the strata is asymptotically optimal.

Remark 1 An expression of the limiting variance ς2∞(µ, χ) has been obtained in (Glasserman et al, 1999,

Lemma 4.1) in the case m = 1 and for the proportional allocation rule which corresponds to χ = fµ. It

is shown by these authors that the limiting variance is E
(
Var

[
φ(Y ) |µTY

])
which is equal to ς2∞(µ, fµ)

(note that in this case the stratification density g = fµ, satisfies the assumptions A1-3 provided that

E[φ4(Y )] < ∞). Unless Var
[
φ(Y ) |µTY

]
is a.s. constant, the asymptotic variance is strictly smaller for

the optimal choice of the allocation density.
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The optimal allocation density χ⋆
µ cannot in general be computed explicitly but, as shown in the following

Proposition, can be approximated by computing the optimal allocation within each stratum.

Proposition 2 Let m < d be an integer and µ be an (d×m) orthonormal matrix. Assume that there exist

p.d.f g1, . . . , gm such that assumptions A2 is satisfied with g given by (11). Then,

lim
I→+∞

∑

i∈{1,...,I}m

∣∣∣∣q
⋆
i (µ) −

∫

Si

χ⋆
µ dλ

∣∣∣∣ = 0 ,

where Q⋆(µ)
def
= {q⋆

i (µ), i ∈ {1, . . . , I}m} is given by (9). Let {IM ,M ≥ 1} be an integer-valued sequence

such that I−1
M + Im

MM−1 → 0 as M goes to infinity. Then,

lim
M→+∞

Mς2IM ,M (µ, g,Q⋆(µ)) = ς2∞(µ, χ⋆
µ) .

The proof is given in Section 6.1. As the number of strata goes to infinity, the stratified estimator run

with the optimal allocation Q⋆(µ) has the same asymptotic variance as the stratified estimator run with

the allocation deduced from the optimal density χ⋆
µ. In practice, of course, the optimal allocation Q⋆(µ)

is unknown, but it is possible to construct an estimator of this quantity by estimating the conditional

variance of Var[φ(Y )|µTY ∈ Si] within each stratum (Etore and Jourdain, 2007).

3.3 Case m = d

We will consider the case where m = d, the number of stratified directions is equal to the dimension of

the space. Of course, the results obtained in that setting are markedly different, because this time, the

accuracy of the stratified estimator will depend crucially on the definition of the strata along each direction

(using the optimal allocation alone is no longer sufficient to reach the optimal asymptotic variance). Let

φµ(x)
def
= φ(µTx) and for k ∈ {1, . . . , d}, ∂kφµ denote the partial derivative of φµ w.r.t. its k-th coordinate.

By a slight abuse of notation, we still denote by gk the function x = (x1, . . . , xd) ∈ R
d 7→ gk(xk). When

m = d, ψµ = φµ, ζµ = φ2
µ = ψ2

µ and the limits obtained in Propositions 1 and 2 are zero. The number M

of random drawings is no longer the appropriate normalization to get a non-trivial limit for the asymptotic

variance ς2I,M . According to the following proposition, the right multiplicative factor is I2M .

Proposition 3 Assume A1. Assume in addition that esssupλ (fµ/g) < +∞ and that φ is C1 and sat-

isfies esssupλ

(∑d
k=1

|∂kφµ|
gk

)
< +∞. Finally, let {IM ,M ≥ 1} be an integer-valued sequence such that

limM→∞

(
I−1
M + Id+2

M M−1
)

= 0. Then,

lim
M→+∞

MI2M ς2IM ,M (µ, g,Qχ) = ς2∞(µ, g, χ)

where

ς2∞(µ, g, χ)
def
=

1

12

∫

Rd

f2
µ

χ

d∑

k=1

(
∂kφµ

gk

)2

dλ . (15)

Notice that under the assumptions of the proposition, ς2∞(µ, g, χ) < +∞ since dλ a.e.,

f2
µ

χ

d∑

k=1

(
∂kφµ

gk

)2

≤

(
esssupλ

(
fµ

g

)
esssupλ

(∑d
k=1

|∂kφµ|
gk

))2

essinfg.λ

(
χ
g

) g.

In the same way,
∫

Rd fµ

√
∑d

k=1

(
∂kφµ

gk

)2
dλ < +∞. If this last integral is positive, it is possible to define

a density χ⋆
µ,g by

χ⋆
µ,g

def
=

fµ

√
∑d

k=1

(
∂kφµ

gk

)2

∫
Rd fµ

√
∑d

k=1

(
∂kφµ

gk

)2
dλ

.
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Then the minimum of χ 7→ ς2∞(µ, g, χ)is attained at χ⋆
µ,g and

ς2∞(µ, g, χ⋆
µ,g) =

1

12



∫

Rd

fµ

√√√√
d∑

k=1

(
∂kφµ

gk

)2

dλ




2

.

Remark 2 When d > 1, the optimization of the stratified estimator asymptotic variance ς2∞(µ, g, χ⋆
µ,g)

w.r.t. g is not obvious, because of the restrictive choice of the stratification.

Remark 3 When d = 1, Proposition 3 continue to hold under a weakened assumption on φ, consisting

in supposing that φ is locally bounded on R with a locally integrable distribution derivative φ′ such that

esssupλ

(
|φ′|
g

)
< +∞. Moreover, one has

ς2∞(µ, g, χ) =

∫

R

(fµφ
′
µ)2

g2χ
dλ =

∫

R

(
fµ|φ′µ|
gχ

)2

χdλ

≥



∫

R

(√
fµ|φ′µ|
g

)2

gdλ




2

≥
(∫

R

√
fµ|φ′µ|dλ

)4

where both inequalities are equalities for the choice χ⋆
µ,g ∝ fµ|φ′

µ|
g and g⋆

µ ∝
√
fµ|φ′µ| which leads to

χ⋆
µ,g⋆

µ
= g⋆

µ ∝
√
fµ|φ′µ|. For this choice the allocation is uniform (qi =

∫ G−1( i
I
)

G−1( i−1
I

)
g(x)dx = 1

I ) and the

asymptotic result given in the proposition is preserved for IM = M :

lim
M→+∞

M3ς2M,M (µ, g⋆
µ,Qχ⋆

µ,g⋆
µ

) =

(∫

R

√
fµ|φ′µ|dλ

)4

.

Indeed, for this choice, there is no rounding error in the allocation of the drawings in the strata : Mi =

1 = Mqi for all i ∈ {1, · · · ,M}.

Let us compute the asymptotic variance under the optimal allocation :

Proposition 4 Assume esssupλ

(
fµ

g

)
< +∞, that φ is C1 and such that esssupλ

(∑d
k=1

|∂kφµ|
gk

)
< +∞

and {IM ,M ≥ 1} is an integer-valued sequence such that I−1
M + Id+2

M M−1 → 0. Then

lim
M→+∞

MI2M ς2IM ,M (µ, g,Q⋆(µ)) = ς2∞(µ, g, χ⋆
µ,g).

4 An adaptive stratification algorithm

As shown in the asymptotic theory presented above, under optimal allocation, it is more important to

optimize the stratification matrix µ than the strata boundaries along each stratification direction 1. Propo-

sition 1 suggests the following strategy: the “optimal” matrix µ⋆ is defined as a minimizer (which is not

necessarily unique) of the limiting variance µ 7→ ς2∞(µ, χ⋆
µ). Of course, this optimization problem does not

have a closed form expression because it is unrealistic to assume that the functions x 7→ ψµ(x), x 7→ ζµ(x)

are available.

We rather use the characterization of the optimal limiting variance of the stratified estimator given in

Proposition 2, i.e. the problem boils down to search for a minimizer µ of the variance ς2I,M (µ, g,Q⋆(µ)).

The choice of g is, as emphasized above, largely arbitrary. In our applications, Y is a d-dimensional

standard normal vector, and µT Y is a m-dimensional standard Gaussian vector. In this case, we set gi,

i = {1, . . . , I}m to be the standard Gaussian distribution so that the strata boundaries in each directions

are the quantiles of the standard normal variable (independently from the direction matrix µ). This choice

leads to equiprobable strata for the vector µTY .

Of course, the optimization of ς2I,M (µ, g,Q⋆(µ)) is a difficult task because in particular the definition

of this function involves multidimensional integrals, which cannot be computed with high accuracy. Note

1 Of course, this is an asymptotic result, but our numerical experiments suggest that optimizing the strata
boundaries along each stratification direction does not lead to a significant reduction of the variance. This is why
we concentrate on the optimization of the stratification matrix
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also that, in most situations, the optimization should be done in parallel to the main objective, namely,

the estimation of the quantity of interest E[φ(Y )], which is obtained using a stratified estimator based on

the adaptively defined directions of stratification µ (and thus on the adaptively defined strata Sµ,i, i ∈ I).

The adaptive stratification algorithm might be seen as an analog to the very popular adaptive importance

sampling; see for example Rubinstein and Kroese (2004), Arouna (2004), Kawai (2007), and Rubinstein

and Kroese (2008).

When the function to minimize is an expectation, the classical approaches to tackle this problem

are based on some forms of Monte Carlo approximations for the integrals appearing in the expression

of the objective function and its gradients. There are typically two approaches to Monte Carlo methods,

the stochastic approximation procedure and the sample average approximation method; see for example

Judistsky et al (2007) for an in-depth comparison of these procedures. None of these procedures can

be directly applied in our context, but they can be more or less directly adapted to solve our problem.

In the adaptive stratification context, these Monte Carlo estimators are based on the current fit of the

stratification matrix and of the conditional variances within each stratum, the underlying idea being that

the algorithm is able to progressively learn the optimal stratification, while the stratified estimator is

constructed.

The algorithm described here is closely related to the sample average approximation method, the main

difference with the classical approach being that, at every time a new search direction is computed, a new

Monte Carlo sample (using the current fit of the strata and of the allocation) is drawn; this is due to the

fact that we are not only willing to minimize the asymptotic variance of the stratified estimator but we

also want to compute the stratified estimator ”on the fly”.

Denote by f the density of Y w.r.t. the Lebesgue measure. Define for i ∈ {1, · · · , I}m, a function

h ∈ {f, φf, φ2f} , and an orthonormal d×m matrix µ,

νi(h, µ)
def
=

∫

Sµ,i

h dλ =

∫ m∏

k=1

1{y,G−1
k ((ik−1)/I)≤〈µk,y〉≤G−1

k (ik/I)}h dλ , (16)

where 〈x, y〉 denotes the scalar product of the vectors x and y. Using the definition of νi, the proportions

pi(µ) and the conditional variances with each stratum σ2
i (µ) respectively given by (3) and (7) may be

expressed as, when νi(f, µ) > 0,

pi(µ) = νi(f, µ) , and σ2
i (µ) =

νi(fφ
2, µ)

νi(f, µ)
−
(
νi(fφ, µ)

νi(f, µ)

)2

. (17)

When M is large and I is fixed, minimizing the asymptotic variance of the stratified estimate with optimal

allocation is equivalent to minimize V (µ) w.r.t. the stratification matrix µ where (see Lemma 1)

V (µ)
def
=

I∑

i=1

pi(µ)σi(µ) =
I∑

i=1

(
νi(f, µ)νi(fφ

2, µ) − ν2
i (fφ, µ)

)1/2
.

Assuming that the functions µ 7→ νi(h, µ) are differentiable at µ for h ∈ {f, fφ, fφ2} (which we prove

below, under appropriate technical conditions), the gradient may be expressed as

∇µ V (µ) =
I∑

i=1

∇µνi(1, µ) νi(φ
2, µ) + pi(µ) ∇µνi(φ

2, µ) − 2νi(φ, µ) ∇µνi(φ, µ)

2 pi(µ)σi(µ)
1{pi(µ)σi(µ) 6=0} . (18)

The computation of this gradient thus requires to establish the differentiability and to compute the gradi-

ents ∇µ νi(h, µ) for h ∈ {f, fφ, fφ2}. For a vector ν ∈ R
d, ν 6= 0, and z ∈ R, define λν

z , the restriction of

the Lebesgue measure on the hyperplane {y ∈ R
d, 〈ν, y〉 = z}.

Proposition 5 Let h : R
d → R be a locally bounded integrable real function and z be a real. Let gz : R

d → R

be the function

gz(ν)
def
=

∫ 1{y,〈ν,y〉≤z}h(y) dλ(y) .

Let µ ∈ R
d be a non-zero vector. Assume that h is continuous λµ

z almost everywhere and that there exists

ε > 0 such that

lim
M→+∞

sup
|ν−µ|≤ε

∫
|y|1{|y|≥M}|h(y)| dλν

z (y) = 0 . (19)

Then, the function ν 7→ gz(ν) is differentiable at µ and

∇µ gz(µ) = −
∫

y

|µ| h(y) dλ
µ
z (y) .
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It is worthwhile to note that the function ν 7→ gz(ν) is differentiable whereas the integrand ν 7→ 1{y,〈ν,y〉≤z}h(y)

is not even continuous. The situation is rather different to the classical case where the gradient is obtained

as the empirical mean of the gradient of the estimate. The expression of the gradient involves the compu-

tation of the integral with respect to a measure located on an hyperplane (a surface integral).

Corollary 1 Assume that h is a real locally bounded integrable function. Let m be an integer and z =

(z1, . . . , zm) ∈ R
m. Let gz : R

d×m → R be the function

gz(ν1, . . . , νm)
def
=

∫ m∏

k=1

1{y,〈νk,y〉≤zk}h(y) dλ(y) .

Let µ = [µ1, . . . , µm] ∈ R
d×m be a full rank matrix. Assume that h is continuous

∑m
k=1 λ

µk
z almost

everywhere and that there exists ε > 0 such that, for any k ∈ {1, . . . , m},

lim
M→+∞

sup
|ν−µk|≤ε

∫
|y|1{|y|≥M}|h(y)| dλν

z (y) = 0 . (20)

Then, gz is differentiable at µ and the differential ∇µgz is given by ∇µgz = [∇µ1gz, . . . ,∇µmgz], where

∇µigz(µ) = −
∫

y

|µi|
∏

k 6=i

1{y,〈µk,y〉≤zk}h(y) dλ
µi
zi

(y) .

For k ∈ {1, · · · , m}, (16) shows that ∇µkνi(h, µ) may be expressed as

∇µk

∫ 1{y,〈µk,y〉≤G−1
k

(ik/I)}


∏

j 6=k

1{y,G−1
j ((ij−1)/I)≤〈µj ,y〉≤G−1

j (ij/I)}h


 dλ

−∇µk

∫ 1{y,〈µk,y〉≤G−1
k ((ik−1)/I)}


∏

j 6=k

1{y,G−1
j ((ij−1)/I)≤〈µj ,y〉≤G−1

j (ij/I)}h


 dλ . (21)

The algorithm goes as follows. Denote by {γt} a sequence of stepsizes. Consider the strata {Si, i ∈
{1, · · · , I}m} given by (10) for some product density g.

1. Initialization. Choose initial stratification directions µ(0) and an initial number of draws in each

statum M (0) def
= {M (0)

i
, i ∈def

= {1, . . . , I}m} such that
∑

iM
(0)
i

= M . Compute the probabilities

pi(µ
(0)) of each stratum.

2. Iteration. At iteration t+ 1, given µ(t), M (t) and {pi(µ(t)), i ∈ {1, · · · , I}m},
(a) Compute ∇̂V (µ(t)):

(i) for i ∈ {1, · · · , I}m, draw M
(t)
i

realizations of i.i.d. random variables {Y (t)
i,k , k ≤M

(t)
i

} with

distribution P(Y ∈ ·|Y ∈ Sµ(t),i) and evaluate for h ∈ {φ, φ2}

ν̂
(t+1)
i

(h) =
pi(µ

(t))

M
(t)
i

M
(t)
i∑

k=1

h
(
Y

(t)
i,k

)

which is a Monte Carlo estimate of νi(h, µ) with µ = µ(t).

(ii) for k ∈ {1, · · · ,m}, s ∈ {G−1
k (1/I), · · · , G−1

k ((I − 1)/I)}, draw M̃
(t)
k,s realizations of i.i.d.

random variables with distribution P(Y ∈ ·|[µ(t)
k ]TY = s). Compute a Monte Carlo estimate

of ∇µνi(h, µ
(t)) for h ∈ {f, fφ, fφ2} based on (21) and Corollary 1.

(iii) deduce from these Monte Carlo approximations, a Monte Carlo estimate of ∇V (µ(t)) based

on the expression (18).

(b) Update the direction of stratification: Set µ̃ = µ(t)−γt ∇̂V (µ(t)); define µ(t+1) as the orthonor-

mal matrix found by computing the singular value decomposition of µ̃ and keeping the m left

singular vectors.

(c) Update the allocation policy:

(i) compute an estimate σ̂
(t+1)
i

of the standard deviation within stratum i

σ̂
(t+1)
i

=


 ν̂

(t+1)
i

(φ2)

pi(µ(t))
−
(
ν̂
(t+1)
i

(φ)

pi(µ(t))

)2


1/2

.
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(ii) Update the allocation vector

q
(t+1)
i

=
pi(µ

(t)) σ̂
(t+1)
i∑

j∈{1,...,I}m pj(µ(t)) σ̂
(t+1)
j

,

and the number of draws {M (t+1)
i

, i ∈ {1, . . . , I}m} by applying the formula (4) with a

total number of draws equal to M .

(d) Update the probabilities pi(µ
(t+1)), i ∈ {1, · · · , I}m.

(e) Compute an averaged stratified estimate of the quantity of interest: Estimate the Monte Carlo

variance of the stratified estimator for the current fit of the strata and the optimal allocation

[ς2](t+1) =
1

M


 ∑

i∈{1,··· ,I}m

pi(µ
(t)) σ̂

(t+1)
i




2

.

Compute the current fit of the stratified estimator by the following weighted average

E(t+1) =

(
t+1∑

τ=1

1

[ς2](τ)

)−1 t+1∑

τ=1

1

[ς2](τ)

∑

i∈{1,··· ,I}m

ν̂
(τ)
i

(φ) . (22)

There are two options to choose the stepsizes {γt, t ≥ 0}. The traditional approach consists in taking a

decreasing sequence satisfying the following conditions (see for example Pflug (1996); Kushner and Yin

(2003)) ∑

t≥0

γt = +∞ ,
∑

t≥0

γ2
t < +∞ .

If the number of simulations is fixed in advance, say equal to N , then one can use a constant stepsize

strategy, i.e. choose γt = γ for all t ∈ {1, . . . , N}. As advocated in Judistsky et al (2007), a sensible

choice in this setting is to take γt proportional to N−1/2. This is a rather crude optimization algorithm

but line-searching is computationally heavy and should therefore better be avoided in this context; the

convergence of a crude gradient proved to be quite fast in all our applications, so it is not required to resort

to computationally intensive alternatives.

Step 2(a)ii is specific to the optimization problem to solve and is not related to the stratification

sampler itself. The number of draws for the computation of the surface integral (see Corollary 1) can be

chosen independently of the allocation M (t). When the samples in steps 2(a)i and 2(a)ii can be obtained

by transforming the same set of variables (see Section 5 for such a situation), it is natural to choose

M̃ (t) = {M̃ (t)
k,s, k ∈ {1, · · · , m}, s ∈ {G−1

k (1/I), · · · , G−1
k ((I − 1)/I)}} such that

∑
k,s M̃

(t)
k,s = M .

When fµ has a product form (which is the case e.g. when Y is a standard d-dimensional Gaussian

distribution), we can set g = fµ. Then, the strata are equiprobable and pi(µ) = 1/Im for any (i, µ).

It is out of the scope of this paper to prove the convergence of this algorithm and we refer the reader

to classical treatises on this subject. The above algorithm provides, at convergence, both (i) “optimal”

directions of stratification and an estimate of the associated optimal allocation; (ii) an averaged stratified

estimate E . By omitting the step 2e, the algorithm might be seen as a mean for computing the stratification

directions and the associated optimal allocation, and these quantities can then be plugged in a “usual”

stratification procedure.

5 Applications in Financial Engineering

The pricing of an option under classical Black-Scholes assumptions amounts to compute the expectation

E [Ξ(Y )] for some measurable non-negative function Ξ on R
d, where Y is a standard d-multivariate Gaus-

sian variable. Examples of such situations include the pricing of Asian options or Basket options when

the underlying asset prices are described by geometric Brownian motions. The Cameron-Martin formula

implies that for any ν ∈ R
d,

E [Ξ(Y )] = E
[
Ξ(Y + ν) exp(−νTY − 0.5νT ν)

]
, (23)

Classical results on importance sampling show that the variance of the crude Monte Carlo estimate depends

on ν. In the numerical applications below, we apply the adaptive stratification procedure introduced in
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Section 4 (hereafter referred to as “AdaptStr”) with φ(y) = Ξ(y + ν⋆) exp(−νT
⋆ y − 0.5νT

⋆ ν⋆) where ν⋆ is

the solution of the optimization problem

argmax{ν∈Rd,Ξ(ν)>0}

{
lnΞ(ν) − 0.5νT ν

}
, (24)

(case ν = ν⋆), and with φ(y) = Ξ(y) (case “no drift” or “ν is the null vector”). The motivations for

this particular choice of the direction ν and procedures to solve this optimization problem are discussed

in Glasserman et al (1999).

For comparison purposes, we also run the stratification procedure proposed in Glasserman et al (1999)

(hereafter referred to as “ GHS”): we implement the algorithm which combines (i) importance sampling

with the drift ν⋆ defined as above, and (ii) stratification with direction µg defined as some eigenvector

of some Hessian matrix (see (Glasserman et al, 1999, Section 4.2)). We also run for comparison the plain

Monte Carlo estimator.

5.1 Practical implementations of the adaptive stratification procedure

The numerical results have been obtained by running Matlab codes 2 In the numerical applications below,

m = 1. We choose g = fµ so that the strata are equiprobable (pi(µ) = 1/I). We choose I = 100 strata and

M = 10 000 draws per iterations.

The drift vector ν that solves (24) is obtained by running solnp, a nonlinear optimization pro-

gram in Matlab freely available at http://www.stanford.edu/∼yyye/matlab/. The direction µ(0) is set

to the unitary constant vector (1, · · · , 1)/
√
d -except when specified-; and the initial allocation M (0)

is the proportional one. Exact sampling under the conditional distributions P(Y ∈ ·|Y ∈ Sµ(t),i) and

P(Y ∈ ·|[µ(t)]T Y = s) can be done by linear transformation of standard Gaussian vectors (see (Glasser-

man, 2004, section 4.3, p. 223)). For example, when m = 1, the procedure

(i) Draw independently V ∼ Nd(0, Id) and U ∼ U([0, 1])

(ii) Set Ũ = Φ−1(Φ(si−1) + U{Φ(si) − Φ(si−1}), where Φ is the c.d.f. of a standard Gaussian random

variable N (0, 1)

(iii) Set Z = Ũµ+ (Id − µµT )V

produces a r.v. Z with distribution P(Y ∈ ·|µT Y ∈ [si−1, si]) (by convention Φ(−∞) = 1 − Φ(+∞) = 0);

and the procedure

(i) Draw V ∼ Nd(0, Id)

(ii) Set Z = sµ+ (Id − µµT )V

produces a r.v. Z with distribution P(Y ∈ ·|µT Y = s). The draws in step 2(a)i and 2(a)ii can thus be

obtained by transforming the same set of M (t) Gaussian random variables {V i
j , j ≤M

(t)
i
, i ∈ {1, · · · , I}}.

Therefore, the total number of draws by iteration is M (the estimates of νi(h, µ) and ∇µνi(h, µ) are not

independent). The criterion is optimized using a fixed stepsize steepest descent algorithm (we take γt = γ

for some γ ∈ [0.001, 0.01]).

5.2 Assessing efficiency of the adaptive stratification procedure

We compare the averaged stratified estimate EN obtained after N = 200 iterations, with the stratified

estimate obtained by running GHS, and with the crude Monte Carlo estimate. For a fair comparison, the

GHS algorithm and the Monte Carlo procedure are run with the same MN realizations of standard Gaussian

vectors (in the present case, MN = 2 106). We report in the tables below the estimates of the option prices

given by the stratification procedures (column “Price”) and the estimates of the variance of the estimators.

The column “GHS” is an estimate of
∑

i piσ
2
i (µg) computed with MN samples; the column “AdaptStr,

ν = ν⋆” is the limiting variance per sample of EN which is equal to

N





N∑

t=1

(
[
∑

i

pi σ̂
(t)
i

]2
)−1





−1

∼
(∑

i

pi σi(µ
(+∞))

)2

,

when the objective function is given by (23) with ν = ν⋆. For comparison purposes, we also report in

column “Monte Carlo”, an estimate of the variance of the crude Monte-Carlo estimator computed with

MN samples.

2 These codes are freely available from the url http://www.tsi.enst.fr/∼gfort/
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5.3 Asian options

Consider the pricing of an arithmetic Asian option on a single underlying asset under standard Black-

Scholes assumptions. The price of the asset is described by the stochastic differential equation

dSt

St
= r dt+ υ dWt , S0 = s0 ,

where {Wt, t ≥ 0} is a standard Brownian motion, r is the risk-free mean rate of return, υ is the volatility

and s0 is the initial value. The asset price is discretized on a regular grid 0 = t0 < t1 < · · · < td = T , with

ti
def
= iT/d. The increment of the Brownian motion on [ti−1, ti) is simulated as

√
T/dYi for i ∈ {1, · · · , d}

where Y = (Y1, · · · , Yd) ∼ Nd(0, Id). The discounted payoff of a discretely monitored arithmetic average

Asian option with strike price K is given by Ξ(Y ),

Ξ(y) = exp(−rT )


 s0
d

d∑

k=1

exp


(r − 0.5υ2)

kT

d
+ υ

√
T

d

k∑

j=1

yj


 −K




+

, y = (y1, · · · , yd) ∈ R
d ,

where for x ∈ R, x+ = max(x, 0). In the numerical applications, we take s0 = 50, r = 0.05, T = 1,

(υ,K) ∈ {(0.1, 45), (0.1, 50), (0.1, 55), (0.3, 45), (0.3, 50), (0.3, 55)} and d = 16. We run AdaptStr for N =

100 iterations, when υ = 0.1 and K = 45. On Figure 1, the optimal drift vector ν⋆, the direction µ(N)

obtained after N iterations of AdaptStr, and the direction of stratification µg are plotted.

Insert Figure 1 about here

In Figure 2 , the successive directions t 7→ µ(t), the successive estimations of the quantity of interest

t 7→ E(t) and of the variance t 7→ (
∑

i piσ̂
(t)
i

)2 are displayed. As shown on Figure 1,{µ(t), t ≥ 0} converges

to the direction µg, and the convergence takes place after about 30 iterations. We find the same pattern

for a wide range of parameter values. The choice of the stratification direction has a major impact on the

variance of the estimate E(t) as shown on Figure 1[bottom right]. Along the 100 iterations of the algorithm,

the variance decreases from 0.1862 to 0.0015. We also observed that the convergence of the algorithm and

the limiting values were independent of the initial values (µ(0),M (0)) (these results are not reported for

brevity). These initial values (and the choice of the sequence {γ(t), t ≥ 1}) only influence the number of

iterations required to converge.

Insert Figure 2 about here

AdaptStr can also be read as a procedure that computes a stratification direction and provides the asso-

ciated optimal allocation. These quantities can then be used for running a (usual) stratification procedure

with M draws and for the optimal allocation. By doing such with M = 10 000, we obtain an estimate of

the quantity E[φ(Y )] equal to 6.05 and of the variance equal to 0.0015/M . We can compare these results

to the output of GHS: this yields the same estimator of E[φ(Y )] and a larger standard deviation equal to

0.0070/M . Observe that since µ(N) = µg, the two algorithms differ from the allocations in the strata (in

GHS, an equal number of replications in each stratum is used).

We conclude this study of AdaptStr by illustrating the role of the drift vector ν (see Eq. 23). We

report on Figure 3 the limiting direction µ(N), the estimates t 7→ E(t) and the variance t 7→ (
∑

i piσ̂
(t)
i

)2

when the drift vector ν is the null vector. The limiting direction µ(N) slightly differs from µg and is close

to ν⋆. Moreover, the variance reduction is weaker: the limiting value of t 7→ (
∑

i piσ̂
(t)
i

)2 is 0.0035. The

efficiency of the adaptive stratification procedure AdaptStr is thus related to the drift vector ν in (23);

similar conclusions are reached in Glasserman et al (1999) (see also Glasserman (2004)).

Insert Figure 3 about here

We report in Table 1 the variance (per sample) of the plain Monte Carlo estimate, of GHS and of AdaptStr.

For AdaptStr, we consider the cases ν = ν⋆ and ν equal to the null vector in the formula (23).

Insert Table 1 about here
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5.4 Options with knock-out at expiration

A knock-out barrier option is a path-dependent option that expires worthless if the underlier reaches a

specified barrier level. The payoff of this option is given by

Ξ(y) = exp(−rT )


 s0
d

d∑

k=1

exp


(r − 0.5σ2)

kT

d
+ σ

√
T

d

k∑

j=1

yj


 −K




+

1ST (y)≤B ,

where K is the strike price, B is the barrier and ST (y) is the underlier price modeled as

ST (y) = s0 exp


(r − 0.5σ2)T + σ

√
T

d

d∑

j=1

yj


 .

In the numerical applications, we set s0 = 50, r = 0.05, T = 1, σ = 0.1, d = 16 and (K,B) ∈
{(50, 60), (50, 70), (50, 80), (55, 70), (55, 80)}.

On Figure 4, we plot µ(N) and µg for different values of the parameters (K,B). In this case, the optimal

importance sampling direction does not necessarily coincide with the optimal direction of stratification µg.

In the case (K,B) = (50, 60), we display in Figure 5, the successive directions t 7→ µ(t) when µ(0) is

proportional to the constant vector (1, · · · , 1), and µ(0) = µg: the limiting direction does not depend on

the initial value and this is an example where the limiting direction differs from µg.

Insert Figure 4 and Figure 5 about here

We report in Table 2 the variance (per sample) of the plain Monte Carlo estimate, of GHS and of AdaptStr.

For AdaptStr, we consider the cases ν = ν⋆ and ν equal to the null vector in the formula (23).

Insert Table 2 about here

5.5 Basket options

Consider a portfolio consisting of d assets. The portfolio contains a proportion αk of asset k, k ∈ {1, . . . , d}.
The price of each asset is described by a geometric Brownian motion (under the risk neutral probability

measure)

dS
(k)
t

S
(k)
t

= r dt+ υk dW
(k)
t

but the standard Brownian motions {W (k)
. , k ∈ {1, . . . , d}} are not necessarily independent. For any t ≥ s

and k ∈ {1, . . . , d}
lnS

(k)
t = lnS

(k)
s +

(
r − 0.5υ2

k

)
(t− s) + υk

√
t− sỸk

where Ỹ = (Ỹ1, . . . , Ỹd) ∼ Nd(0, Σ). The d × d matrix Σ is a positive semidefinite matrix with diagonal

coefficients equal to 1. Therefore, the variance of the log-return on asset k in the time interval [s, t] is

(t − s)υ2
k, and the covariance between the log-returns i, j is (t − s)υiυjΣi,j . It follows that Σi,j is the

correlation between the log-returns. The price at time 0 of a European call option with strike price K and

exercise time T is given by E[Ξ(Y )] where

Ξ(y) = exp(−rT )

(
d∑

k=1

αks
(k)
0 exp

(
(r − 0.5υ2

k)T + υk

√
T ỹk

)
−K

)

+

and ỹ =
√
Σy (

√
Σ denotes a square root of the matrix Σ i.e. solves MMT = Σ). In the numerical

applications, Σ is of the form Σi,i = 1, Σi,j = c, αk = 1/d, r = 0.05, T = 1, and d = 40. We con-

sider (c,K) ∈ {(0.1, 45), (0.1, 60), (0.5, 45), (0.5, 60), (0.9, 45), (0.9, 60)}. The initial values {sk0 , k ≤ d} are

realizations of uniform random draws in the range [20, 80]; the volatilities {υk, k ≤ d} are chosen linearly

equally spaced in the set [0.1, 0.4]. The assets are sorted so that υ1 ≤ · · · ≤ υd.

On Figure 6, we observe the limiting direction µ(N) which, here again is very close to µg. We also plot

on Figure 7 a path of t 7→ µ(t) along one run of the algorithm AdaptStr.

Insert Figure 6 and Figure 7 about here

We report in Table 3 the variance (per sample) of the plain Monte Carlo estimate, of GHS and of AdaptStr.

For AdaptStr, we consider the cases ν = ν⋆ and ν equal to the null vector in the formula (23).

Insert Table 3 about here
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5.5.1 Stochastic volatility

We now want to test our method on the pricing of an Asian option in the Heston model, which is specified

as follows

St = S0 +

∫ t

0
rSs ds+

∫ t

0

√
ξs Ss (

√
1 − ρ2dW 1

s + ρdW 2
s )

Xt =

∫ t

0
Ss ds

ξt = ξ0 + k

∫ t

0
(θ − ξs)ds+ σ

∫ t

0

√
ξs dW

2
s

where {W 1
t , t ≥ 0} and {W 2

t , t ≥ 0} are two independent Brownian motions, r is the risk free mean rate

of return, σ > 0 is the volatility, k ≥ 0 the mean reversion rate, θ ≥ 0 the long run average volatility, and

ρ ∈ [−1, 1] a correlation rate. The processes {St, t ≥ 0} and {ξt, t ≥ 0} are respectively the stock process

and the volatility process, and {Xt, t ≥ 0} is the integral of the stock price.

The stock and the volatility are driven by SDEs correlated with correlation rate ρ. Indeed by construc-

tion
{√

1 − ρ2W 1
t + ρW 2

t , t ≥ 0
}

is a Brownian motion with
〈√

1 − ρ2W 1 + ρW 2,W 2
〉

t
= ρt. The

price of an Asian Call option at time 0 with strike price K is

E
[
exp(−rT ) (XT −K)+

]
. (25)

An Exact simulation method for the Heston model has recently been proposed in Broadie and Kaya (2006).

However, it is computationally intensive especially for pathwise options, and practical numerical schemes

for the Heston model are still a very active research field. In our tests we have chosen to use a variation of

a scheme introduced in Ninomya and Victoir (2008) and refined in Alfonsi (2008). The weak error of this

scheme is potentially of order two. We will not describe this scheme in full details, but will focus on the

case where σ < 4kθ. Define

ψk(t) =
1 − e−kt

k
, k 6= 0 and ψ0(t) = t,

and

ϕ(ξ, t, y) = e−
kt
2

(√
(kθ − σ2

4
)ψk(

t

2
) + e−

kt
2 ξ +

σ

2
y

)2

+ (kθ − σ2

4
)ψk(

t

2
).

Consider a regular time grid 0 = t0 < t1 < · · · < td = T , with ti = iT/d and put ∆t = T/d. At time ti the

scheme is in the state
(
Ŝi, X̂i, ξ̂i

)
. The next state

(
Ŝi+1, X̂i+1, ξ̂i+1

)
is computed by applying:

1. Draw Bi+1 ∼ U([0, 1])

2. Draw independently Yi+1 and Yd+i+1 of law N (0, 1) (independently from Bi+1)

3. (a) If Bi+1 < 0.5

i. Compute Ŝi+1/2 = Ŝi exp

(√
(1 − ρ2)ξ̂i∆tYi+1

)

ii. Compute ∆ξ̂i+1 = ϕ(ξ̂i,∆t,
√
∆tYd+i+1) − ξ̂i

iii. Compute X̂i+1/2 = X̂i + 0.5Ŝi+1/2∆t.

iv. Compute Ŝi+1 = Ŝi+1/2 exp[(r − ρkθ/σ)∆t+ ρ∆ξ̂i+1/σ + (ρk/σ − 0.5)(ξ̂i + 0.5∆ξ̂i+1)∆t]

v. Compute X̂i+1 = X̂i+1/2 + 0.5Ŝi+1∆t

vi. Compute ξ̂i+1 = ξ̂i +∆ξ̂i+1

(b) If Bi+1 > 0.5

i. Compute ∆ξ̂i+1 = ϕ(ξ̂i,∆t,
√
∆tYd+i+1) − ξ̂i

ii. Compute X̂i+1/2 = X̂i + 0.5Ŝi∆t

iii. Compute Ŝi+1/2 = Ŝi exp[(r − ρkθ/σ)∆t+ ρ∆ξ̂i+1/σ + (ρk/σ − 0.5)(ξ̂i + 0.5∆ξ̂i+1)∆t]

iv. Compute X̂i+1 = X̂i+1/2 + 0.5Ŝi+1/2∆t

v. Compute ξ̂i+1 = ξ̂i +∆ξ̂i+1

vi. Compute Ŝi+1 = Ŝi+1/2 exp

(√
(1 − ρ2)ξ̂i+1∆tYi+1

)
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At each time step i the random variables Bi+1, Yi+1 and Yi+1+d are drawn independently from the past.

The price (25) can be approximated by E[exp(−rT )
(
X̂d −K

)
+

]. With the scheme described above we

have, in the case σ < 4kθ,

E

[
exp(−rT )

(
X̂d −K

)
+

]
= E [Ξ(Y,B)] ,

with Y = (Y1, . . . , Yd, Yd+1, . . . , Y2d) ∼ N2d(0, Id), and B = (B1, . . . , Bd) being a vector of independent

random variables with law U([0, 1]). The vector Y represents the increments of the two Brownian motions

W 1 and W 2.

In the case σ > 4kθ, the scheme is more complicated and we have,

E

[
exp(−rT )

(
X̂d −K

)
+

]
= E [Ξ(Y,B)] ,

with Y ∼ N2d(0, Id), and B ∼ U([0, 1]2d), Y and B being again independent.

We want now to use our algorithm for the estimation of E [Ξ(Y,B)], stratifying only the gaussian

vector Y . Our procedure is very easy to adapt to this situation. We consider the case m = 1. As Y and B

are independent, it is easy to sample under the law P( (Y,B) ∈ ·|[µ(t)]T Y = s), with µ(t) ∈ R
2d. For the

computation of the gradient, set µ = (µ1, · · · , µ2d), and denote by fY,B(y, b) the density of (Y,B). Using

the proof of Proposition 5, we can write

∂µ

(∫ 1{y,〈µ,y〉≤z}φ(y, b)fY,B(y, b) dλ(y, b)

)
= −

∫ 1{y,〈µ,y〉=z}
y

|µ| φ(y, b)fY,B(y, b) dλ(y, b),

under mild assumptions on the function φ. This allows the computation of an estimated gradient ∇̂V (µ(t)) ∈
R

2d to update at each time step the current direction µ(t) ∈ R
2d.

Note that, as in the case σ < 4kθ the vector B is only here to draw Bernoulli variables, we could

artificially use standard normal variables to draw these Bernoulli samples (testing positivity). We thus

would have to estimate E [Ξ(Y )] with Y ∼ N3d(0, Id) and could stratify the whole vector Y . This is not

the case for σ > 4kθ. We could also think to stratify the hypercube [0, 1]d (or [0, 1]2d). This was not done

in the presented tests.

In the following tests we do not do any previous importance sampling; ν is the null vector in (23).

Indeed the additive randomness introduced by B somehow complicates the setting.

We choose m = 1, I = 50 and N = 40. The total amount of drawings done till the end of iteration

N is M N = 100 000. The parameters of the model are fixed to S0 = 100, r = 0.1, T = 1.0 and σ = 0.2.

On Figure 8 we plot the evolution of the cost function t 7→ (
∑

i piσ̂
(t)
i ), for K = 100, θ = 0.01, k = 2 and

ρ = 0.5. The discretization step of the scheme is d = 100, and the initial volatility ξ0 = 0.01. The initial

direction was arbitrary set to µ(0) = (−1, 0, . . . , 0).

Insert Figure 8 about here

We plot on Figure 9[left] the components of µ(N) with respect to the component index i. Note that on this

example the correlation was positive and the two parts of µ(N), each one corresponding to the increments

of respectively W 1 and W 2 are similar. Note that if we take ρ = −0.5 (keeping the other parameters

unchanged) the algorithm converge to µ(N), whose components are displayed on Figure 9[right]. This time

there is a difference of sign between the components of the first and second half of the vector.

In this example the variance is divided by 25 compared to initial direction, and by 20 compared to

plain Monte Carlo. We can wonder on the effect of the moneyness and the volatility of the model on the

reduction variance. The results are shown in Table 4. The variance ratio indicated in Table 4 has been

computed by dividing an estimation of the variance per sample of the plain Monte Carlo estimator by

(
∑

i piσ̂i
(N))2. We observed indeed that the empirical variance of the estimator EN based on the output of

300 independent runs of our procedure, is close to (
∑

i piσ̂i
(N))2/(MN). In general the achieved variance

reduction is larger when the option is out of the money.

Insert Figure 9 about here

Insert Table 4 about here
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5.6 Conclusions

The results show that AdaptStr and GHS provide similar variance reduction when compared to the crude

Monte Carlo procedure. In many applications, µ(∞) ∼ µg; in these cases, in the long time behavior,

AdaptStr - applied with ν = ν⋆ in (23) - and GHS may be seen as stratification procedures for the estimate

of the same target quantity, with the same direction of stratification µg but different allocations (resp. the

optimal one, and the proportional one).

In complex applications, the optimization problem (24) is not easy to solve and the GHS procedure can

not be applied. In that case, the procedure AdaptStr can be implemented with ν equal to the null vector

in (23). This yields to a significant variance reduction when compared to plain Monte Carlo.

AdaptStr is thus an efficient stratification procedure, that learns “on the fly” the direction of stratifi-

cation and the optimal allocation. It can be combined with importance sampling (choice of ν in (23)) and

the direction ν⋆ that solves (24) is an efficient drift vector. Even when the stratification procedure is not

combined with importance sampling, AdaptStr still strongly reduces the variance w.r.t. the crude Monte

Carlo procedure.

6 Proofs

6.1 Proofs of Sections 3

In the sequel, we denote Im
def
= {1, . . . , I}m.

6.2 Proofs of Section 3

Lemma 1 Let m < d, µ be a d × m orthonormal matrix, p.d.f. densities g1, · · · , gm on R and χ be a

density on R
m. Let g be given by (11) and {Si, i ∈ Im} be the strata given by (2) and define

piσi
def
=

√(∫

Si

fµ dλ

)(∫

Si

ζµfµ dλ

)
−
(∫

Si

ψµfµ dλ

)2

.

(i) Let ǫ > 0. For any M > ǫ−1,

sup
Q:infi∈Im qi≥ǫ

∣∣∣∣∣∣
Mς2I,M (µ, g,Q) −

∑

i∈Im

q−1
i p2i σ

2
i

∣∣∣∣∣∣
≤ 1

Mǫ(ǫ−M−1)
Var[φ(Y )] .

(ii) Assume that essinfg·λ

(
χg−1

)
> 0 and esssupχ·λ

(
fµχ

−1
)
< +∞. Let ǫ > 0. For any (I,M) such

that MI−m essinfg·λ

(
χg−1

)
≥ 1 + ǫ

∣∣∣∣∣∣
Mς2I,M (µ, g,Qχ) −

∑

i∈Im

[qi(χ)]−1 p2i σ
2
i

∣∣∣∣∣∣

≤ (1 + ǫ−1)Var[φ(Y )]

essinfg·λ (χg−1)

Im

M

(
esssup

χ·λ

(
fµ

χ

)
∧ Im

essinfg·λ (χg−1)

)
.

(iii) For any positive integers M, I and real ǫ > 1,

∣∣∣∣∣∣
Mς2I,M (µ, g,Q⋆(µ)) −

∑

i∈Im

(
q⋆
i [S(µ)]

)−1
p2i σ

2
i

∣∣∣∣∣∣
≤ Var[φ(Y )]

(
(1 + ǫ)

Im

M
+

1

ǫ − 1

)
,

where Q⋆[S(µ) = {q⋆
i [S(µ)], i ∈ Im} is the optimal allocation defined by (9).
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Proof It is easily shown that M ς2I,M (µ, g,Qχ) =
∑

i∈Im:Mi>0MM−1
i
p2i σ

2
i . By definition of Mi (see Eq.

4), Mi = 0 when qi = 0 and Mi ≥ 1 when qi ≥M−1. One may have Mi = 1 when qi ∈ (0,M−1) but then

MM−1
i

≤ q−1
i

. Hence,

∣∣∣∣∣∣
M ς2I,M (µ, g,Qχ) −

∑

i∈Im:qi>0

p2i σ
2
i

qi

∣∣∣∣∣∣
≤

∑

i∈Im,qi≥1/M

∣∣∣∣
Mqi −Mi

Mi

∣∣∣∣
p2i σ

2
i

qi
+

∑

i∈Im:0<qi<1/M

p2i σ
2
i

qi
(26)

(i) Since qi ≥ ǫ > M−1, the second term in the rhs of (26) is null and since by (4), Mqi−1 < Mi < Mqi+1,

the first term is upper bounded by

M−1

(
sup

i∈Im:qi≥M−1

piq
−1
i

) ∑

i∈Im,qi≥1/M

(qi −M−1)−1 piσ
2
i

which yields the desired result upon noting that piq
−1
i

≤ q−1
i

≤ ǫ−1 and
∑

i piσ
2
i ≤ Var[φ(Y )].

(ii) Under the stated assumptions, qi(χ) =
∫
Si
χdλ ≥ essinfg·λ

(
χg−1

)
I−m. Hence Mqi ≥ 1 + ǫ

which implies that the second term in the rhs of (26) is null. This also implies that

qi −M−1 ≥
(

1 − 1

1 + ǫ

)
essinf

g·λ

(
χg−1

)
I−m

To conclude the proof,

pi
qi(χ)

=

∫
Si
fµ dλ

∫
Si
χ dλ

≤ esssup
χ·λ

(
fµ

χ

)
∧ 1

qi(χ)
≤ esssup

χ·λ

(
fµ

χ

)
∧ Im

essinfg·λ (χg−1)
.

(iii) Note that by convention, p2i σ
2
i /q

⋆
i [S(µ)] = 0 when q⋆

i [S(µ)] = 0. By definition of the optimal

allocation (see Eq. 9),

(
q⋆
i [S(µ)]

)−1
p2i σ

2
i ≤ q⋆

i [S(µ)]


∑

j

pjσj




2

≤ q⋆
i [S(µ)] Var[φ(Y )] .

The second term in the rhs of (26) is upper bounded by ImM−1 Var[φ(Y )]. For the first term,

[Var[φ(Y )]]−1
∑

i∈In,q⋆
i
[S(µ)]≥1/M

∣∣∣∣
Mqi −Mi

Mi

∣∣∣∣
p2i σ

2
i

q⋆
i
[S(µ)]

≤
∑

i∈Im,1/M≤q⋆
i
[S(µ)]≤ǫ/M

∣∣∣∣
Mqi −Mi

Mi

∣∣∣∣ q
⋆
i [S(µ)] +

∑

i∈Im,q⋆
i
[S(µ)]≥ǫ/M

∣∣∣∣
Mqi −Mi

Mi

∣∣∣∣ q
⋆
i [S(µ)] .

For all i such that q⋆
i [S(µ)] ≥ 1/M , M−1

i
|Mqi −Mi| ≤ 1 which implies that

∑

i∈Im,1/M≤q⋆
i
[S(µ)]≤ǫ/M

∣∣∣∣
Mqi −Mi

Mi

∣∣∣∣ q
⋆
i [S(µ)] ≤ ǫIm

M
.

For all i such that q⋆
i [S(µ)] ≥ ǫ/M , M−1

i
|Mqi −Mi| ≤ M−1

i
≤ (Mq⋆

i [S(µ)] − 1)−1 ≤ (ǫ − 1)−1 which

implies that
∑

i∈Im,q⋆
i
[S(µ)]≥ǫ/M

∣∣∣∣
Mqi −Mi

Mi

∣∣∣∣ q
⋆
i [S(µ)] ≤ (ǫ− 1)−1 .

Proof of Proposition 1 To prove the Proposition 1, we need the two following Lemmas. Define

G−1(x1, . . . , xm)
def
= (G−1

1 (x1), . . . , G
−1
m (xm)) , (27)

where Gk is the c.d.f. associated to the density gk on R. The first is a standard change of variables formula

(see for example, (Dudley, 2002, Theorem 4.1.11)).



19

Lemma 2 Let h : R
m → R be a measurable function. Assume that h is nonnegative or is such that∫

Rm |h|1{g>0} dλ < +∞. Then, for all 0 ≤ vk ≤ wk ≤ 1, k ∈ {1, . . . , I}
∫
∏

m
k=1[G

−1
k

(vk),G−1
k

(wk)]
h1{g>0} dλ =

∫
∏

m
k=1[vk,wk]

h

g
◦G−1 dλ . (28)

The second technical Lemma is our key approximation result.

Lemma 3 Let h, γ : R
m → R be functions such that

∫
Rm

(
h2 + γ2

)
g−1 dλ < +∞. Define for i ∈ Im,

Ri[h, γ]
def
=

∫

Si

hγg−1 dλ− Im
(∫

Si

h dλ

)(∫

Si

γ dλ

)
. (29)

Then limI→+∞
∑

i∈Im
|Ri[h, γ]| = 0.

Proof By polarization, it is enough to prove the result when γ = h with
∫

Rm h2g−1 dλ < +∞. This

integrability condition ensures that λ-a.e. , g = 0 implies h = 0 and by (28), one has

Ri[h, h] =

∫
∏

m
k=1[(ik−1)/I,ik/I]

h2

g2
◦G−1 dλ− Im

(∫
∏

m
k=1[(ik−1)/I,ik/I]

h

g
◦G−1 dλ

)2

,

where the right-hand-side is non-negative by Cauchy-Schwarz inequality. Set h̃(u)
def
= h

g (G−1(u)) if u ∈
(0, 1)m and 0 otherwise. By (28) and the integrability assumption made on h, the function h̃ is square

integrable on R
m. Using the definition of h̃ for the first equality and symmetry for the second one, one has

∑

i∈Im

Ri[h, h] = Im
∑

i∈Im

∫

J 2
i

h̃(u){h̃(u) − h̃(v)}dudv =
Im

2

∑

i∈Im

∫

J 2
i

{h̃(u) − h̃(v)}2 dudv

=
Im

2

∑

i∈Im

∫

Ji

∫

Ji−uk

{h̃(u) − h̃(u+w)}2 dudw ≤ 1

2

∫

[0,1]m

∫

[−1,1]m
(h̃(u) − h̃(u+ z/I))2 dudz .

where we have set, for i ∈ {1, . . . ,m}, Ji =
∏m

k=1[(ik − 1)/I, ik/I ]. By continuity of the translations in

L2(Rm, du) and the dominated convergence Theorem, one obtains that the right-hand-side converges to 0

as I → ∞.

We now proceed to the proof of Proposition 1. Under A1, it holds that

qi(χ) ≥
(

essinf
g·λ

(
χg−1

)) ∫

Si

g dλ = I−m essinf
g·λ

(
χg−1

)
. (30)

Hence, by Lemma 1(i), to prove the first assertion, it is enough to check that limI→+∞
∑

i∈{1,...,I}m
p2
i

σ2
i

qi(χ)
=

ς2∞(µ, χ). By definition of Ri (see Eq. (29)),

p2i σ
2
i

qi(χ)
=

(∫
Si
fµ dλ

)(∫
Si

[ζµfµ] dλ
)
−
(∫

Si
[ψµfµ] dλ

)2

∫
Si
χ dλ

=

∫
Si
f2
µ(ζµ − ψ2

µ)g−1 dλ−Ri[fµ, ζµfµ] +Ri[ψµfµ, ψµfµ]

Im
∫
Si
χ dλ

,

and

ς2∞(µ, χ) =

∫
Si
f2
µ(ζµ − ψ2

µ)g−1 dλ−Ri[χ, f
2
µ(ζµ − ψ2

µ)χ−1]

Im
∫
Si
χ dλ

.

Therefore

∑

i∈Im

p2i σ
2
i

qi(χ)
− ς2∞(µ, χ) =

∑

i∈Im

Ri[χ, f
2
µ(ζµ − ψ2

µ)χ−1] +Ri[ψµfµ, ψµfµ] −Ri[fµ, ζµfµ]

Im
∫
Si
χ dλ

,

and one easily concludes with (30) and Lemma 3 (which applies under A2 and A3). The second assertion

is a consequence of Lemma 1(ii).
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Proof of Proposition 2 For ease of notations, in this proof, the dependence upon µ and the strata {Si, i ∈

Im is omitted. We denote piσi
def
=

√(∫
Si
fµ dλ

)(∫
Si
ζµfµ dλ

)
−
(∫

Si
ψµfµ dλ

)2
. Since for a, b ≥ 0,

|√a−
√
b| ≤

√
|a− b|, one has

∑

i∈Im

∣∣∣∣piσi −
∫

Si

[
fµ

√
ζµ − ψ2

µ

]
dλ

∣∣∣∣

≤
∑

i∈Im

∣∣∣∣
∫

Si

fµ dλ

∫

Si

ζµfµ dλ−
(∫

Si

ψµfµ dλ

)2

−
( ∫

Si

[
fµ

√
ζµ − ψ2

µ

]
dλ

)2∣∣∣∣
1/2

=
∑

i∈Im

√
1

Im

∣∣∣∣−Ri[fµ, ζµfµ] +Ri[ψµfµ, ψµfµ] +Ri[fµ

√
ζµ − ψ2

µ, fµ

√
ζµ − ψ2

µ]

∣∣∣∣

≤


 ∑

i∈{1,...,I}m

∣∣∣∣−Ri[fµ, ζµfµ] +Ri[ψµfµ, ψµfµ] +Ri[fµ

√
ζµ − ψ2

µ, fµ

√
ζµ − ψ2

µ]

∣∣∣∣




1/2

.

Under A2,
∫
f2
µ(ζµ − ψ2

µ)g−1 dλ < +∞, and by Lemma 3, the right-hand-side converges to 0 as I → +∞.

Therefore,

lim
I→+∞

∑

i∈Im

∣∣∣∣piσi −
∫

Si

[
fµ

√
ζµ − ψ2

µ

]
dλ

∣∣∣∣ = 0 . (31)

We write

(∫ [
fµ

√
ζµ − ψ2

µ

]
dλ

) ∑

i∈Im

∣∣qi(χ⋆
µ) − q⋆

i [S(µ)]
∣∣

≤
∑

i∈Im

q⋆
i [S(µ)]

∣∣∣∣∣∣
∑

j∈Im

pjσj −
∫ [

fµ

√
ζµ − ψ2

µ

]
dλ

∣∣∣∣∣∣
+
∑

i∈Im

∣∣∣∣piσi −
∫

Si

[
fµ

√
ζµ − ψ2

µ

]
dλ

∣∣∣∣ .

By Eq.(31), the rhs tend to zero as I → +∞. The second assertion is a consequence of Lemma 1(iii) applied

with ǫ =
√
M/Im and of Eq. (31) upon noting that

∣∣∣∣
∑

i∈Im

piσi −
∫

Rm

[
fµ

√
ζµ − ψ2

µ

]
dλ

∣∣∣∣ ≤
∑

i∈Im

∣∣∣∣piσi −
∫

Si

[
fµ

√
ζµ − ψ2

µ

]
dλ

∣∣∣∣ .

Proof of Proposition 3 Since esssupχ.λ

(
fµχ

−1
)

≤ esssupλ

(
fµg

−1
)
/ essinfg.λ

(
χg−1

)
< +∞, Lemma

1(ii) ensures that it is enough to check that

lim
I→+∞

I2
∑

i∈{1,...,I}d

p2i (ξ)σ
2
i (ξ)

qi
= ς2∞(µ, g, χ).

In the sequel, for i = (i1, . . . , id) ∈ {1, . . . , I}d, we denote Ji
def
=
∏d

j=1[(ij − 1)/I, ij/I ]. Set f̃(u)
def
=

[fµ]/g]G−1(u) if u ∈ (0, 1)d and 0 otherwise and similarly, h̃k(u)
def
= [∂kφµ/gk](G−1(u)) if u ∈ (0, 1)d and

0 otherwise. Using symmetry and (28) one obtains

p2i σ
2
i =

∫

Si

∫

Si

fµ(x)fµ(y)φµ(y)(φµ(y)−φµ(x))dxdy =
1

2

∫

J 2
i

f̃(u)f̃(v)
(
φµ(G−1(v)) − φµ(G−1(u))

)2
dvdu.

Since φ is continuously differentiable, Eq. (28) implies that φ(G−1(v))−φ(G−1(u)) =
∑d

k=1

∫ vk

uk
h̃k(uvk(t))dt

where uvk(t)
def
= (u1, . . . , uk−1, t, vk+1, . . . , vd). Therefore,

p2i σ
2
i =

1

2

d∑

k,l=1

∫∫

Ji×Ji

∫ vk

uk

∫ vl

ul

f̃(u)f̃(v)h̃k(uvk(t))h̃l(uvl(s))dtdsdvdu. (32)
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We may similarly obtain

∫

Si

(fµ∂kφµ)2

g2kχ
dλ =

∫
Si

(fµ∂kφµ)2

gg2
k

dλ−Ri[
(fµ∂kφµ)2

g2
k
χ

, χ]

Id
∫
Si
χdλ

=

∫
Ji

(f̃ h̃k)2dλ−Ri[
(fµ∂kφµ)2

g2
k
χ

, χ]

Id
∫
Si
χdλ

.

Noting that
1

2

∫

J 2
i

∫ vk

uk

∫ vl

ul

dtdsdvdu =
1{k=l}

12I2d+2
, (33)

one deduces that

I2
∑

i∈{1,...,I}d

p2i σ
2
i

qi
− ς2∞(µ, g, χ) =

1

12

∑

i∈{1,...,I}d

Ri[
∑d

k=1
(fµ∂kφµ)2

g2
kχ

, χ]

Id
∫
Si
χdλ

+
d∑

k,l=1

∑

i∈{1,...,I}d

I2d+2 ∫
J 3

i

∫ vk

uk

∫ vl

ul

(
f̃(u)f̃(v)h̃k(uvk(t))h̃l(uvl(s)) − f̃2h̃kh̃l(w)

)
dtdsdvdudw

2Id
∫
Si
χdλ

(34)

Since
∫

Rd

(fµ∂kφµ)4

gg4
kχ2 dλ ≤

(
esssupλ

(
fµ
g

)
esssupλ

(
|∂kφµ|

gk

))4

(
essinfg·λ

(
χ
g

))2 < +∞, by Lemma 3 and (30), the first term of

the right-hand-side converges to 0 as I → +∞. Let us now prove that for fixed k and l in {1, . . . , d},
the corresponding sum of ratios over i in the second term also converges to 0. As the denominators are

bounded from below away from 0 by (30), it is enough to check that the sum of the numerators tends to

0. For u, v ∈ R
d uvp

def
= (u1, . . . , up, vp+1, . . . , vd) if p ∈ {1, . . . , d− 1} and uv0

def
= v, uvd

def
= u. One has

∣∣∣∣∣

∫

J 3
i

∫ vk

uk

∫ vl

ul

(
f̃(u)f̃(v)h̃k(uvk(t))h̃l(uvl(s)) − f̃2h̃kh̃l(w)

)
dtdsdvdudw

∣∣∣∣∣

≤
∫

J 3
i

∫ ik
I

ik−1

I

∫ il
I

il−1

I

∣∣∣f̃(u)f̃(v)h̃k(uvk(t))h̃l(uvl(s)) − f̃2h̃kh̃l(w)
∣∣∣ dtdsdvdudw

≤
d∑

p=1

( ∫

J 3
i

∫ ik
I

ik−1

I

∫ il
I

il−1

I

|f̃(uwp) − f̃(uwp−1)||f̃(v)h̃k(uvk(t))h̃l(uvl(s))|dtdsdvdudw

+

∫

J 3
i

∫ ik
I

ik−1

I

∫ il
I

il−1

I

|f̃(vwp) − f̃(vwp−1)||f̃(w)h̃k(uvk(t))h̃l(uvl(s))|dtdsdvdudw

+

∫

J 3
i

∫ ik
I

ik−1

I

∫ il
I

il−1

I

|h̃k([uvk(t)]wp) − h̃k([uvk(t)]wp−1)||f̃2(w)h̃l(uvl(s))|dtdsdvdudw

+

∫

J 3
i

∫ ik
I

ik−1

I

∫ il
I

il−1

I

|h̃l([uvl(s)]wp) − h̃l([uvl(s)]wp−1)||f̃2(w)h̃k(w)|dtdsdvdudw
)
.

In each of the 4d integrals in the right-hand-side, only d+1 of the 3d+2 integration variables are involved

in the difference which appears in the integrand. Their domain of integration is
∏d

j=1[(ij − 1)/I, ij/I ] ×
[(ip − 1)/I, ip/I ]. Integrating first the absolute value of the product of three functions with respect to

the 2d + 1 remaining variables one obtains a function of these d + 1 variables smaller than CI2d+1 with

C =
(
esssupλ

(
fµ

g

)
∨ esssupλ

(∑d
k=1

|∂kφµ|
gk

))3
. Dealing for instance with the p-th integral of the first

kind, one has

∑

i∈{1,...,I}d

I2d+2
∫

J 3
i

∫ ik
I

ik−1

I

∫ il
I

il−1

I

|f̃(uwp) − f̃(uwp−1)||f̃(v)h̃k(uvk(t))h̃l(uvl(s))|dtdsdvdudw

≤ C
∑

i∈{1,...,I}d

I

∫
∏

d
j=1[(ij−1)/I,ij/I]×[(ip−1)/I,ip/I]

|f̃(uup(t)) − f̃(u)|dtdu

≤ C

∫ 1

−1

∫

Rd

|f̃(u+
s

I
ep) − f̃(u)|duds

where ep denotes the p-th element of the canonical basis on R
d. By continuity of the translations in

L1(Rd, du), one concludes that the second term of the right-hand-side of (34) tends to 0.
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Proof of Proposition 4 By Lemma 1(iii), it is enough to check that

lim
I→+∞

I
∑

i∈{1,...,I}d

piσi = ς∞(µ, g, χ⋆
µ,g).

Since for a, b ≥ 0, |√a −
√
b| ≤

√
|a− b|, the relations (32), (33) together with the Cauchy-Schwarz

inequality imply
∣∣∣∣I

∑

i∈{1,...,I}d

piσi − ς∞(µ, g, χ⋆
µ,g)

∣∣∣∣

≤
∑

i∈{1,...,I}d

∣∣∣∣
I2

2

d∑

k,l=1

∫

J 2
i

∫ vk

uk

∫ vl

ul

f̃(u)f̃(v)h̃k(uvk(t))h̃l(uvl(s))dtdsdvdu− 1

12

d∑

k=1

∫

Ji

f̃ h̃k(w)f̃ h̃k(r)drdw

∣∣∣∣
1/2

≤
( d∑

k,l=1

∑

i∈{1,...,I}d

I3d+2
∫

J 4
i

∫ ik
I

ik−1

I

∫ il
I

il−1

I

∣∣∣f̃(u)f̃(v)h̃k(uvk(t))h̃l(uvl(s)) − f̃ h̃k(w)f̃ h̃k(r)
∣∣∣ dtdsdvdudwdr

)1/2

.

Reasoning like in the end of the proof of Proposition 3, one concludes that the right-hand-side converges

to 0 as I → +∞.

6.3 Proofs of Section 4

Proof of Proposition 5 Let H ∈ R
d be such that |H | < |µ|, e1 = µ

|µ|
, a = 〈H, e1〉, b = |H − ae1| and e2 be

equal to H−ae1
b if b 6= 0 and to any vector with norm 1 orthogonal to e1 otherwise. We complete (e1, e2)

with (e3, . . . , ed) to obtain an orthonormal basis of R
d. For α ∈ R

d, αk = 〈α, ek〉.

gz(µ+H) − gz(µ) =

∫

{α,α1≤
z−α2b

|µ|+a
}
h(α) dα−

∫

{α,α1≤
z

|µ| }
h(α) dα

=

∫

Rd−1

∫ z−α2b

|µ|+a

z
|µ|

h(α)dα1dα2:d

= −
∫

Rd−1

∫ 1

0
h

(
z − α2bs

|µ| + as
e1 +

d∑

k=2

αkek

)
az + α2b|µ|
(|µ| + as)2

dsdα2:d

= −
∫ 1

0

∫

Rd−1

h

(
z
(|µ| + as)e1 + bse2
(|µ| + as)2 + (bs)2

+
d∑

k=3

αkek

+

(
α2 − zbs

(|µ| + as)2 + (bs)2

)
(|µ| + as)e2 − bse1

|µ| + as

)
az + α2b|µ|
(|µ| + as)2

dα2:dds

= −
∫ 1

0

∫
h(y)

〈y,H〉
|µ+ sH |dλ

µ+sH
z ds , (35)

where, for the last equality, we made the change of variable

β2 =

√
(|µ| + as)2 + (bs)2

|µ| + as
α2 − zbs

(|µ| + as)
√

(|µ| + as)2 + (bs)2
,

used the equality (|µ| + as)e1 + bse2 = µ + sH and remarked that 〈µ+ sH, y〉 = z implies that az +

〈y, e2〉 b|µ| = (|µ| + as) 〈y,H〉. Define, for ν ∈ R
d
∗,

γ(h, ν)
def
=

∫
y

|ν|h(y)dλ
ν
z . (36)

We deduce that

gz(µ+H) − gz(µ) +

〈
H,

∫
y

|µ| h
(
y
)
dλµ

z

〉
=

〈
H,

∫ 1

0
{γ(h, µ) − γ(h, µ+ sH)}ds

〉
.
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Consider now the following decomposition

γ(h, ν) = γ
(
h1{|·|>M}, ν

)
+ γ

(
h1{|·|≤M}, ν

)
. (37)

Under assumption 19, the first term is arbitrarily small as M goes to infinity uniformly in ν close to µ.

When ν → µ, the measure 1{|·|≤M}λ
ν
z converges weakly to 1{|·|≤M}λ

µ
z ; hence, the second term in the

RHS of (37) converges to γ
(
h1{|·|≤M}, µ

)
. Therefore, the function ν 7→ γ(h, ν) is continuous at µ and

the conclusion follows easily.

Proof of Corollary 1 Let H be a d ×m matrix with columns (H1, . . . ,Hm). Let {ak, bk, k ∈ {1, . . . ,m}}
be real numbers. We have

m∏

k=1

ak −
m∏

k=1

bk =
m∑

k=1

(ak − bk)




k−1∏

j=1

bj






m∏

j=k+1

aj


 ,

where, by convention,
∏ℓ

k=j ck = 1 for j > ℓ. We deduce from the latter expression

m∏

k=1

ak −
m∏

k=1

bk −
m∑

k=1

(ak − bk)


∏

j 6=k

aj




= −
m∑

k=1

(ak − bk)




m∏

j=k+1

aj






k−1∑

j=1

(aj − bj)





j−1∏

u=1

au









k−1∏

u=j+1

bu






 .

We apply this equality with ak = φk(y, 0) and bk = φk(y,H) where φk(y,∆)
def
= 1{y,〈µk+∆k,y〉≤zk}, which

yields

gz(µ+H) − gz(µ) −
m∑

k=1

∫
{φk(y,H) − φk(y, 0)}




∏

j 6=k

φj(y,H)



 h(y)dλ(y)

=
m∑

k=1

k−1∑

j=1

∫
{φk(y,H) − φk(y, 0)} hj,k(y;H)dλ(y) ,

where the function hj,k(y,H) is defined as

hj,k(y,H)
def
= h(y){φj(y,H) − φj(y, 0)}

m∏

u=k+1

φu(y, 0)

j−1∏

u=1

φu(y, 0)

k−1∏

u=j+1

φu(y,H) . (38)

By the weak convergence argument used to conclude the proof of Proposition 5, we obtain

lim
|H|→0

∣∣∣∣∣∣

m∑

k=1

∫
{φk(y,H) − φk(y, 0)}

∏

j 6=k

φj(y, 0)h(y)dλ(y)−
m∑

k=1

〈
Hk,

∫
y

|µk|
∏

j 6=k

φj(y, 0)h(y)dλ
µk
zk

〉∣∣∣∣∣∣
= 0 .

To conclude the proof, it is enough to check that for any j < k,

I(H,hj,k)
def
=

∫
{φk(y,H) − φk(y, 0)} hj,k(y;H)dλ(y) = o(|H |) as |H | → 0 . (39)

Using (35), the latter integral may be expressed as

I(H,hj,k) = −
〈
Hk,

∫ 1

0

∫
hj,k(y;H)

y

|µk + sHk|
dλµk+sHk

zk
(dy)ds

〉
.

We write I(H,hj,k) = I(H,hj,k1{|·|>M}) + I(H,hj,k1{|·|≤M}). By (20), the first term is small uniformly

in H for |H | ≤ ε, when M large enough.
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Let [e1, . . . , ed] be any (given) orthonormal basis of R
d such that 〈µk, ed〉 6= 0. Consider the following

matrix Sk(µ)
def
= [Π(µk)e1, . . . ,Π(µk)ed−1], where Π(µk) is the orthogonal projector on the orthogonal

complement of the vector µk. By the change of variable formula, I(H,hj,k1{|·|≤M}) is equal to

−
〈
Hk,

∫ 1

0
det

[
µk + sHk

|µk + sHk|2
, Sk(µ+ sH)

] ∫

Rd−1
h̃j,k

(
zk

µk + sHk

|µk + sHk|2
+ Sk(µ+ sH)ỹ;H

)
dλ(ỹ)ds

〉
,

where h̃j,k(y;H)
def
= hj,k(y;H) y1{|y|≤M}.

We then conclude by the Lebesgue Theorem : by construction, h̃j,k is bounded and the integration

domain is bounded; it is sufficient to check that the limit of the integrand is zero almost-everywhere w.r.t.

the Lebesgue measure on R
d−1. Note that |h̃j,k(y;H)| ≤ CM |φj(y,H) − φj(y, 0)| and that

lim
|H|→0

{
φj

(
zk

µk + sHk

|µk + sHk|2
+ Sk(µ+ sH)ỹ, H

)
− φj

(
zk

µk + sHk

|µk + sHk|2
+ Sk(µ+ sH)ỹ, 0

)}
= 0

except on the set {ỹ ∈ R
d−1,

〈
µj , zk

µk

|µk|2
+ Sk(µ)ỹ

〉
= zj}, which is of measure zero w.r.t. the Lebesgue

measure on R
d−1.
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Fig. 1 Asian Option: Optimal drift vector ν⋆, direction µg and direction µ(N). The directions have been scaled to
have the same norm as the drift ν⋆.
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Fig. 2 Asian Option: [left] successive directions of stratification t 7→ µ(t). µ(0) is proportional to the vector (1, · · · , 1)

so that the d curves start from the same point 1/
√

d. By convention, the first component of µ(t) is positive. [top

right] successive estimations of the quantity of interest t 7→ E(t). [bottom right] successive values of the variance

t 7→ (
∑

i
pi σ̂

(t)
i

)2; the limiting value is 0.0015.
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Fig. 3 Asian Option when ν is the null vector in (23): [left] the direction µg and the limiting direction µ(N) when .

[top right] successive estimations of the quantity of interest t 7→ E(t). [bottom right] successive values of the variance

t 7→ (
∑

i
pi σ̂

(t)
i

)2; the limiting value is 0.0015.
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Fig. 4 Barrier Option: Optimal drift vector ν⋆, direction µg and direction µ(N). The directions have been scaled
to have the same norm as the drift ν⋆
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Fig. 5 Barrier Option: successive directions of stratification t 7→ µ(t). By convention, the first component of µ(t)

is positive. [left] µ(0) is proportional to the vector (1, · · · , 1) so that the d curves start from the same point 1/
√

d.

[right] µ(0) = µg.
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Fig. 6 Basket Option: Optimal drift vector ν⋆, direction µg and direction µ(N). The directions have been scaled to
have the same norm as the drift ν⋆ [left] when (c, K) = (0.1, 60). [right] when (c, K) = (0.5, 45)
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Fig. 7 Basket Option: successive directions of stratification t 7→ µ(t). By convention, the first component of µ(t) is
positive [left] when (c, K) = (0.1, 60). [right] when (c, K) = (0.5, 45)
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Fig. 8 Asian Option in Heston model: Value of
∑
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i

as function of t for K = 100, θ = 0.01, k = 2 and ρ = 0.5.
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Fig. 9 Asian Option in Heston model: components of µ(N) with respect to component number for K = 100,
θ = 0.01, k = 2 and [left] ρ = 0.5, [right]ρ = −0.5
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Parameters Price Variance
υ K - Monte Carlo GHS AdaptStr (ν⋆) AdaptStr (no drift)
0.10 45 6.05 8.68 0.007 0.001 0.004

50 1.92 4.93 0.0009 0.0004 0.0017
55 0.20 0.55 0.00003 0.00002 0.00053

0.30 45 7.15 59.30 0.035 0.025 0.062
50 4.17 40.11 0.021 0.013 0.039
55 2.21 21.48 0.010 0.006 0.023

Table 1 Asian Option

Parameters Price Variance
K B - Monte Carlo GHS AdaptStr (ν⋆) AdaptStr (no drift)
50 60 1.38 2.99 0.494 0.130 0.106

70 1.90 4.79 0.020 0.005 0.007
80 1.92 4.92 0.0011 0.0005 0.0017

55 70 0.19 0.49 0.0014 0.0006 0.0012
80 0.20 0.55 0.00004 0.00002 0.00053

Table 2 Barrier Option

Parameters Price Variance
c K - Monte Carlo GHS AdaptStr (ν⋆) AdaptStr (no drift)
0.1 45 11.20 22.18 0.256 0.206 0.215

60 0.78 3.70 0.037 0.018 0.023
0.5 45 11.56 81.38 0.077 0.061 0.099

60 2.54 27.00 0.021 0.012 0.032
0.9 45 12.09 134.31 0.022 0.008 0.053

60 3.73 56.85 0.004 0.002 0.034

Table 3 Basket Option

Parameters Price Variance Ratio
ξ0 K - AdaptStr

0.01 120 0.105 400
100 4.93 25
80 22.65 60

0.04 130 0.20 150
120 0.63 18
100 6.21 31
80 22.65 19
70 31.73 19.5

Table 4 Asian Option in Heston model
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