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Т о м 42 
Т Е О Р И Я В Е Р О Я Т Н О С Т Е Й 

И Е Е П Р И М Е Н Е Н И Я 
1997 

В ы п у с к 4 

© 1997 г. BERZIN-JOSEPH С.*, LEON J. R** 

W E A K C O N V E R G E N C E O F T H E I N T E G R A T E D N U M B E R 

O F L E V E L C R O S S I N G S T O T H E L O C A L T I M E 

F O R W I E N E R P R O C E S S E S 

Пусть {Xt,t £ [ 0 , 1 ] } есть стандартный винеровский процесс, 
определенный на (Q,A,P). Рассмотрим упорядочивающий процесс 
XI = tpe*Xt, где tp£(t) = (l/£)ip(t/e) есть ядро, сходящееся к дельта-
функции Дирака при е —* 0 . В статье изучается сходимость 

ад) = е - с" 1 / * 
/

+оо 

-сю 

Nx' (х) 
Ф ) 

-Lx(x) f(x) dx, 

когда е стремится к нулю, здесь Nx (х) есть число пересечений про
цессом Xе уровня х в промежутке [ 0 , 1 ] , a Lx{x) есть локальное время 
пребывания X в а; на отрезке [ 0 , 1 ] . Как следствие предложенного ме
тода, получен результат о слабой сходимости для приращений про
цесса X. 

Ключевые слова и фразы: винеровский процесс, локальное вре
мя, пересечения уровня, приращения. 

1. Introduction. Let Xt = {X(t,cj), t £ [0,1], w e ft} be a standard 
Wiener process. For each t and e > 0 define A e ( i ) = e~1^2(Xt+£ - Xt), the 
normalized increments of the process. If we fix a trajectory and consider 
Ae(tf) as a random variable (r.v.) on t with Lebesgue's measure A then, as 
M. Wschebor showed [10], for almost every trajectory, this variable converges 
in distribution, as e goes to zero, to a Gaussian distribution: 

Fe(t, x) = \{s < t: A e ( s ) < x} —• t$(x) as e -> 0 

for almost every (a.e.) и £ ft, where Ф is the standard Gaussian distribution 
function. 

It is interesting now to find out at what speed this convergence takes 
place. Moreover, one would like to know if 

K£(t, x) = Fe(t, x) - ,Ф(_) 
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conveniently normalized, converges weakly. To this end take <p(t) = J[_LI0](0 
and define Xt = ip£ * Xt, the convolution of the process with ip£(t) — 
(l/e)ip(t/e). Then (cf. [10]) A£(t) = е1,2Х\. Thus, we will work in a more 
general setting by considering the process e~l2Xl for different functions ip 
instead of A e ( i ) . 

A related, and more involved problem, will also be considered. Let 
N (x) be the number of crossings of the level x by the process X е in the 
interval [0,1], and Lx(x) be the local time of X at level x. Define the r.v. 

whose almost sure (a.s:) limit is f(x) Lx{x) dx (cf. [10]) where / satisfies 
certain regularity conditions. We study the convergence in distribution of 
the normalized difference between these two variables, which we call Z£(f). 
We show in Theorem 1 that Z£(f) converges in distribution, when e tends 
to zero to a JQ f(Xs) dWs where ТУ is a Brownian motion independent of X 
and сг is a positive constant. 

As a consequence of the proof of the Theorem 1 we prove that 

B£(t, x) = e-1/2K£(t, x) —. »y(i, x) 

in distribution in C[0,1] for each x when e tends to zero, where r](t, x) is 
a Gaussian process with independent increments in t and a variance that 
depends on x. This answers the two questions raised above. 

The authors in another article [1] considered the same problem for sta
tionary Gaussian processes whose covariance behaves like r(t) = 1-L(t) \t\2a 

with 0 < a < 1. The Ornstein-Uhlenbeck process is a particular case 
(a = | ) and the results are similar to those of the Wiener process. 

There exists a vast literature on results involving second order approx
imations for Brownian local times. It is worth citing, among the first con
tributions, the work of Kasahara [7], where the author obtains a weak limit 
for the normalized difference between the number of times that the reflected 
Brownian motion crosses down from e to 0 and the local time in zero. Simi
lar results were also studied by Borodin in two papers [4], [5], and in several 
works by Csaki, Csorgo, Foldes and Revesz, wonderfully summarized in a 
recent paper [3]. For more information one can read the survey article [6] 
and the references cited therein. 

In these papers there also appears a Brownian motion W which is inde
pendent of the original one. In the modern literature, such a process is the 
result of applying Knight's famous theorem (cf. [8, p. 172]) on the indepen
dence of two continuous martingales whose mixed bracket equals zero. We 
will not be able to use this type of method in our work given the anticipat
ing character of the process Xt - Instead, we will adopt an ad hoc method, 
whose description we will give in Section 4 below. 
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We remark, however, that in our work we consider a regularization by 
convolution of the Brownian motion, and, to our knowledge, the weak limit, 
after normalization, of the difference 

1/2 

is still an open problem. 

2. Assumptions and notation. 
(HI) O n t h e p r o c e s s X: {Xt, t £ [0,1]} is a Wiener process. 

In what follows, we shall suppose that X(t) is defined for all £ £ R , setting 
X(t) = 0 when t <£ R + . 

(H2) O n t h e k e r n e l <p: supp (p С [—1,1], tp is the distribution 
function of a (signed) measure dip(y) which has bounded total variation, 
J-i dt = 1. We define ф(и) = ip * £>(-«) where <p(u) '= ip(—и), и £ R. 

(H3) O n t h e f u n c t i o n / : / G C 2 and / " is bounded. 
We define 

n—l 

where {Hn,n ^ 0} are Hermite's polynomials, orthogonal with respect to 
the standard Gaussian distribution and with leading coefficient equal to 1. 
ф denotes the standard Gaussian density. 

We have 
1 

Xt = ~ Xt-eydp(y), 
£ J—oo 

and we define Yf = e ' A t

e | | y j | | 2 

fOO 

ZE(f) = e~1/2 / f(x) 
J — oo 

NX\x) . 
~ж~ - L x { x \ 

dx 

with c(e) = у/ЩЩ\\ч>\\2, в(х) = ф(хШ\22, x £ R, o-l = [f2(Xs)\ds. 
Ent{.z}, z £ R, is the integer part of z. 

R e m a r k . The process Yt

e has unit variance on {t > e}. 
Throughout the paper, С shall stand for a generic constant, whose value 

may change during a proof. 

3. Results. 
Theorem 1. Under assumptions (HI), (H2) and (H3) the process Z£(f) 

converges weakly when e tends to zero towards a r.v. Y £ L (fi) and the 
conditional distribution (Y | Xs, 0 ^ & < 1) is Gaussian with zero mean and 
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random variance equal to 

o2 f2{Xs)ds where a2 = / E g(Z1(u)) g(Z2(u)) du 
JO J-oc J 

and (Zi(u), Z2(u)) is a Gaussian vector with zero mean and covariance ma
trix 

1 9(u)' 
Т ^ - \ в ( и ) 1 

R e m a r k s , a) Given the a-algebra generated by {Xs, 0 ^ s < 1} , 
the limit variable Y is the stochastic integral of f(Xs) with respect to a 
Brownian motion oW. This last process is the limit of 

1 г* 
St = ~= / g(Ys)I[Me,i](s)ds, 

V е Jo 

where M > 0 is «large enough* (see the proofs 4.ecu. and 4.С./3.), i.e., 
otf f(Xs)dW(s). 

b) Another expression for о is 

/

2 oo 

У~^а1п(2п)\в n(u)du. 
-2 n=l 

The next result concerns the increments. Let £ be a standard Gaussian 
r.v. and define 

Ш = £ (\A£(u)f-.E\tf) du. 

Theorem 2. Under hypothesis (H1),'(H2) and (H3) we have 

(i) £ " 1 / 2 a « ) — opW. 

in distribution in C[0,1] and 

(ii) Ве(ш, x) —> r/(«, x), 

n(t, x) is a Gaussian process with independent increments in t and a variance 
linear on t that depends on x. The convergence here is in distribution in 
C[0,1] for each x E R . 

4. Proofs. 
P r o o f o f T h e o r e m 1. Using as in [1] the formula 

/

oo rl 

f(x)NX\x)dx= / f(XE

s)\Xe

s\ds 
-oo Jo 
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we have the decomposition of Z£(f): 

Z £ ( / ) = £ - 1 / 2 С fiXDgiY^ds + e-1'2 f [ /(Xj) - f(Xs)} ds. 
Jo Jo 

Splitting the integrals in [0,Me] and [Afe, 1], where M > 0 will be chosen 
later, we get 

/•Me л 
Ze(f) = e-1/2 f(X£

s)g(Ys

£)ds + e-1/2 f(Xe

s)g(Y:)ds 
Jo JMs 

[Me fl 
+ e~1/2 / [/(X s

£) - f(X,j\ ds + e~1/2 / [f(Xt) - f(Xs)} ds 
Jo JMe 

= l1+T1+I2 + T2. 

The proof will proceed as follows: we prove in a. that J l 5 I2 and T2 converge 
to zero in L (ft) when e goes to zero; hence the important term in the 

2 2 2 
development of Z£(f) is Г г and we show in b. that E [ 7 \ ] converges to a a0. 
In c. we prove that (X t

e , St) converges weakly to (X t , crWt). Furthermore the 
processes X and W are independent. In d. we will consider the convergence 
of Ti. We study first the convergence of the following discrete version of T\: 

Zn

£{f) = e~1/2 J2 f(4-i)/«) 9(Ys

£)I[Me,i](s)ds. 
7=1 J(i-i)/n 

Define 
n 

zn(f) = ] T / ( x ( l _ 1 ) / n ) [ j y i / n - W ( i _D/»] 

we know from c. that Z£(f) —> Zn(f), weakly as e goes to zero. On the 
other hand there exists a r.v. Y 6 £ 2(ft) such that: Zn(f) -> Y in Z 2 (ft) 
when n goes to infinity; furthermore, we can characterize this variable using 
the asymptotic independence between X and W: 

C(Y I Xs, 0 ^ а < 1) = A ^ O , a2 £ / 2 ( X S ) da) . 

Hence, to prove the convergence of ТГ, it will be enough to prove that 

lim птНГх-ЯЗДИз = 0 . 

a. P r e l i m i n a r y r e s u l t s . Let z be a continuous function ver
ifying \z{x)\ ^ С (I + \x\n) for some n £ N. The function g defined in 
Section 2 verifies this condition. 

Lemma 1. For all 0 < s ^ 1, p £ N and e > 0, 

s u p { E [ / 2 p ( X s % E [ z 2 p ( y / ) ] , E [ / 2 p ( X s ) ] , E [ / ' 2 p ( X s ) ] } < C. 
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P r o o f . Using the Taylor development of / we obtain 

f(Xe

s) = /(0) + X s7'(0) + l-{Xlff'\a). 

By using that / " is bounded we get 

E[f2p(X£

s)]^CE[P(X£

3)}, 

where P is a polynomial. But 

, 9 fs/e fs/e 

E[X s

e ] 2 = 2 / / <p(w) [s - ew] dw ip(u) du^C[s + l)^C 
j — oc J и 

because s ^ 1. Similarly, E [ / 2 p (X g ) ] and E [ / / 2 p ( X s ) ] are bounded. 
Recall that У/ = у/ёХ^^1; using that E [s/e~X£

s]2 = if2(и) du ^ 
llv̂ lls a n d z2P(x) < C[\x\2p + 1 ] , for all x e R, Е(-г 2 р(У/)) is bounded and 
Lemma 1 holds. 

Consider 
rMe [Me 

h = e~1/2 / f(X£)g(Ys

£)ds; E[/ x

2] < M / E [f2(X£

s)g2(Y3

£)} ds. 
Jo Jo 

Using Schwarz's inequality and Lemma 1, we have Е[ / г ] < Се where С 
depends on M. 

Similarly, E [I2] ^ Ce. 
For T2 = e~1/2 JMe[f(XE

s) - f(Xs)] ds, using Taylor's development and 
calling Q£

s = e~l^2[X£

3 — X„], we have 

e " 1 / 2 [f(X£

s)-f(Xs)} = Q£

3f'(X3) + \y/i{Q;)2fM-

The asymptotic law of Q£

s is Af(Q, C2) where 

/

+оо г 
/ w(p(w) dw 

•oo Lio 
<p(u) du. 

To prove this it is enough to calculate covariances, but if M ^ 1 we have 
s ^ e, then 

/

+оо г f + oo I 

/ w(p(w) dw ip(u)du 
-oo \.Ju 

and 
/•-t-OO 

E [ X s

e X s ] = s-eC3 with C 3 = / w<p(w)dw, 
Jo 
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see [9] for the calculus of variances and covariances. Therefore, 

E[T 2

2] < el"/' С E {Q\Q\f{Xa)j'{Xt)) dsdt 
. JMe JMe 

+ eE 
L JMe 

(Qlff'Mds 
2-1 

For the first term, by computing covariances, one can show that 

{Q£siQti Xa,Xt) —• (Yi,Y2,Xa,Xt) 

in distribution, where Y\ and Y2 are independent ^ (0 ,6^ ) . The vectors 
(Yi,Y2) and (Xs,.Xt) are also independent. 

By using uniform integrability (bounding E [QlQtf'{Xs)f'(Xt)]2 uni
formly in e and using Lemma 1) we prove that E [Q£

aQ\f {Xa)f'(Xt)} —• 0 
when £ goes to zero. Hence the Dominated Convergence Theorem gives 
the convergence to zero. For the second term using that / " is bounded we 
get 0(e). 

b. A s y m p t o t i c s e c o n d o r d e r m o m e n t o f T\. 
We have 

Тл=е~1/2 f f(X£

s)g(Ya

£)ds; 
JMe 

E[T?] = e - 1 I' f E[f(X£

a)f(Xt)g(Ys

£)g(Yt

£)}dtds. 
JMe JMe 

We consider the change of variable: t = a + eu: 

r(l-s)/e 

l(Me-s)/e 
E p i ] - = Г S ) / £ E[f(X!)f(Xe

a+eu)g(Ys

e)g(Ys

£

+eu)]dudS. 
JMe J(Me-s)/e 

There are three possible cases: 
(1) ( M + 2 ) e < ' a < l - 2 e , 
(2) 1 - 2e < a, 
(3) a < ( M + 2)e. 

C a s e 1. The integral can be written as J\ + J2 + 7 3 , where 

h = / f E [f(X£

s) f(X£

a+£U) g(Ya

£) g(Ya

E+eu)] du ds, 
J(M+2)e J-2 

l _ 2 e 

h = / / E [/(X s

e) / ( A a

e

+ e u ) f f ( y / ) 5 ( y / + e u ) ] d u ds, 
J{M+2)e J 2 

h= I j " E[f(X£

a)f(X£

+eu)g(Ya

£)g(Ya

£

+eu)]duds. 
J(M+2)e J(Me-s)/e 
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F o r Jx. Using Lemma 1 we prove, by the Dominated Convergence 
Theorem and uniform integrability, that J\ converges to a2 a\ when e goes 
to zero. 

F o r J2. Let E e (s ,u) be the covariance matrix of the Gaussian vector 
(Xе, X £

+ e u , У / , Y £

+ £ U ) . Since и ^ 2, it is easy to check that 

E e (s , u) = 

/ s-eCx s-eD 2'1 у/ё Цф1 0 \ 
s-eD s + eu-eCr v l̂Mla"1 2~1ф\\ч>\\2

1 

V 0 2-1

у/ё\\ч>\\2-1 0 1 / 
where 

/

+оо 
u(p(u) du. 

-oo 

We now fix s and и and consider the change of variables 

Xs = Z\\ Ys — Z2; Y S + E U = Z3; 

X £

S + £ U = faZ! + p2z2 + faZ3 + p4z4 

with Z3 independent of (Zx, Z 2 ) and Z 4 independent of (Zx, Z2, Z 3 ) , where 

p\=[s-eD- 2-le\\V\\22] [s - eCx - eWvW?]_1; 

fa = (2~1s - ed^Ml? [s - eCx - A~le Ы\?уХ\ 

/33 = 2 - 1

£

1 / 2 | |И| 2 " 1 

and 

/34 = [s + £ U _ e C l - pl(s - eCx) - & ~ /3i&£ 1 / 2 |M|2 - 1 - Дз]1/2-

Since /?2 and /? 3 converge to zero when e goes to zero, we develop / in a 
neighbourhood of Pxzx + /3 4г 4; using that 

/

+ 0 0 r+00 

g(z3) ф(г3) dz3= z3 g(z3) ф(г3) dz3 = 0 
- 0 0 J—00 

and calling ф(гх,z2,s,e) the joint Gaussian density of variables (X£,Yg), 

one has 

= / [ / GE(z1,Z2,s)F£(z1,z2,s)dz1dz2 
J(M+2)e LJB I(M+2)E UK2 

where 

ds, 

G£(zx,z2,s) = / ( z 1 ) a ( z 2 ) ^ ( 2 1 , Z 2 , S , e ) / [ ( M + 2 ) £ , l - 2 £ ] ( s ) 
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and 

r(l~s)/e r r flu \ 

F£(z1,z2,s)= / g(z3)^-^-(P2z2+l33z3f 
J2 L J R S 1 

X ф(г3) ф(г4) dz3dz4 duI[(M+2)e,l-2e](s)-

Using that / " is bounded, that /32 and /33 are smaller than C\fi (since 
s ^ Me, s — eC\ - 4 - 1 e | | < ^ | | 2 _ 1 > 2 - 1 s for M large enough), that g has finite 
moments of all orders with respect to the measure ф(x)dx, Lemma 1 and 
the Dominated Convergence Theorem we have 

и т / 2 = / / s~1/2/(г1)ф(г1)д(г2)ф(г2) lim FE(z1,z2,s)dz1dz2ds. 
Jo J * ? =-O 

Setting eu — v in FE(zx,z2,s) we get 

= [ / R 2 ^ 3 ) ^ ( / 3 2 £ - 1 / 2 . 2 + ^ - 1 / 2 ^ з ) 2 

X ф(г3) ф(г4) dz3dz4 dv I[(M+2)e,\-2e]{s). 

But 0„ tends to + \ / ^ г 4 and both /?2e ^ 2 and /33e converge 
to 2 1 | | y | | 2 ~ 1 when e goes to zero, so using again the Dominated Conver
gence Theorem one has 

\imJ2 = f [ ^-Ф^)д(г2)ф(г2) 
£ _ > 0 Jo JR* ° V S 

x / g{z3)f"(z1 + y/vz4) 
Jo 

2 2 

X 1Mb + z3) ф(г3) ф(г4) dv dz^dz2dz3dz4ds = 0, 
since 

/

-t-oo r+oo 

g(x)ф(x)dx= / x g(x)ф(x)dx = 0. 
-oo J — oo 

F o r J 3. A similar argument holds so that J3 tends to zero when e goes to 
zero. 

For cases 2 and 3, using the fact that the measure of the integration 
domain is bounded by Ce and a uniform bound in e for the integrand (which 
can be obtained by the previous calculations and Lemma 1), we get that both 
tend to zero when e goes to zero. 

Adding the limits for the three cases we obtain the result. 
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c. A s y m p t o t i c c o n v e r g e n c e o f (Xе, SE). 
c.a. P r e l i m i n a r y r e s u l t . Having in mind the theorem for 

the increments we use a more general function g. Let then z be a con
tinuous function verifying \z(x)\ < C ( l + |ж| п) for some n £ N , E [•*(£)] = 0, 
E [£-?(£)] = 0) where £ is a standard Gaussian random variable. Let 

Me

t{z) = £ - 1 / 2 f z{Y!)I[MeA{s)ds. 
Jo 

Observe that SE = ME(g). For 0 < t ^ 1, we want to prove first that ME(z) 
converges weakly to a(z)Wt (where o(z) will be defined below) when e goes 
to zero. To this end let's recall the following theorem proved in [2, p. 25]. 

Theorem 3. Suppose that {YN} has asymptotically independent incre-
ments, that {YN (t): n = 1,2, . . .} is uniformly integrable for each t, and that 
E{Yn(t)}—>0 and Fi{Yn(t)}—• t as n —> oo for each t; suppose finally 
that the distributions of YN are tight. Then YN converges weakly to W a 
standard Brownian motion. 

We will apply this theorem to ME(z), with the obvious modification 
that enables us to work with e —> 0 instead of sequences. 

Let [*1,<г] and [^3,^4] be two intervals in [0,1] such that t3 — t2 = d ^ 
2e > 0 for e small enough, then M£

2(z) - Mtx(z) and М^(г) - M£

3(z) are 
independent. 

By using that z is centered we get ~Ei(ME(z)) = 0 and we claim that 
E(ME(z)y —* o\z)t. In the case z = g this was the result proved in b. 
taking / = 1. For general z, using the same notation as in b., we have for 
t > 0 

E (M t

£ (z)) 2 = e'1 f f E \z{Y!) Z{Y:,)) ds' ds. 
J ME JMe 

We consider the change of variable s' = s + eu: 

E(M?(z))2= f Г S ) / £ E[z(YE)z(Ys

E

+£U)]duds. 
JME J{ME-S)/E 

We have again the three cases noted in b. 
(1) (M.+ 2)e < s < t - 2e, 
(2) t - 2e < s, 
(3) а < {M + 2)e. 
The important case is the first one. Remember the decomposition made 

in b. into three integrals Jx, J2 and J3. We note that only Jx is different 
from zero. The other two are zero because of the independence between YS 

and Yfi when \s-s'\> 2e. Using the Dominated Convergence Theorem and 
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uniform integrability we get 

rt-2e ti 
h= f I E[z(Y:)z(Y:+eu)]duds 

J(M+2)E J - 2 

г 2 
t j E[Z{Z1(U))Z{Z2(U)) 

J —2 

du = to2(z), 

(Z 1 (u) , Z2(u)) is a two-dimensional Gaussian vector with zero mean and 
covariance matrix T(u). Finally we prove tightness and uniform integrability. 

Me

t{z)-Mt{z) = e-112 z(Y:)I[ME,1](u)du = e'1/2 £ Ze

k + P T % , 
J S I n fe=0 

where 

rs+2(k+l)e 

N(e) = E n t { 2 " 1

£ - 1 ( f - a ) } , Z£ = / z(F u

£) / [ М е , 1 ] ( « ) du 
Js+2ke 

and 

= г'1'2 / 
ls+2N(e)e 

The random variables ZjJ are 1-dependent. 
By using Lemma 1, we obtain E [P t%]4 < C\t - a| 2. We shall prove that 

E 
-1/2 

N(s)-1 

E я 
fc=0 

< C\t- a| 

R e m a r k . is not necessarily stationary here because a is arbitrary; 
but Z% is centered because Ys

e is a standard Gaussian variable on {a > Me}. 

E 
-1/2 

ЛГ(е)-1 

E я 
fc=0 

JV(e)-l 

- £ E E
 ^ 2 ^ 3 Zk4 ] • 

k1,k2,k3,ki=0 

We can suppose that кг ^ k2 ^ k3 ^ k4. 
1. If fc4 - A;3 > 2 then Z£4 is independent of Zj^ , Z^ 2 and Z^ 3 so 

E [ZlZlZlA] = E [ZJUfc^] E [Z^] = 0 

because Z£4 is centered. 
2. If 0 ^ k4 - A:3 ^ 1 (then k4 is a function of k3). 
2.a. If k3 — k2 ^ 2, then Zl3 and Z^ 4 are independent of Zkl and Z^ 2 so 

E[ZlZl2ZlZl\=E[ZlXk^[ZkZl]. (1) 

2.a.a. If k2 - кг > 2 then Z\2 is independent of Zkl and (1) = 0. 
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2.a./3. If 0 ^ k2 — ki ^ 1 (then k2 is a function of kx) then the sum 
takes place only over two indices. Using Schwarz's inequality and the fact 
that E [Zl]2p ^ £ 2 p for all p ^ 0 one has that the sum is less than 

Ce"2N2(e)ei ^ C | * - s | 2 . 

2.b. If 0 ^ A;3 — k2 ^ 1 (then k3 is a function of k2). The sum takes 
place only over two indices, as in 2.a./? it is less than C\t - s\ and the result 
holds. 

The uniform integrability is a consequence of E(Mt{z)Y < СГ < C. 
c/3. A s y m p t o t i c i n d e p e n d e n c e b e t w e e n X(t) 

a n d W[t). 
c/3.1. T i g h t n e s s . We know that Xs —> X, a.e. and Me(z) —> 

a(z)W, weakly. This implies that the bidimensional sequence (X£,M9(z)) 
is tight in C[0; 1] x C[0; 1]. 

c/3.2. I n d e p e n d e n c e o f i n c r e m e n t s . Let tx < t2 < t3 < 
t4 and consider the two random vectors (X £

2 — Xе , M£

2(z) — М£

г(г)) and 
(X £

4 - ХЕ

3, M^(z) — Mi3(z)). We can suppose without loss of generality 
that t3 — t2 > 3e and tx > Me. To study the independence between these 
two vectors, observe that the first is in 

Tt2+e = a{Xs: s ^t2 +•£}. 

Furthermore, if Xs belongs to this cr-algebra it holds that 

E ( A S [ C I ( A £

4 - A £

3 ) + C 2 1 £ ] ) = 0 

where t3 — e ^ t. This fact implies the independence between ^ 2 + е and the 
cr-algebra generated by the Gaussian vectors 

{Xl-Xt3,Xlt3-e^t). 

Given that (X £

4 — X £

3 , М£

4(г)-M£

3(z)) belongs to this cr-algebra, the mutual 
independence holds. 

c/3.3. L i m i t i d e n t i f i c a t i o n . Let Y be any limit point 
of ( X £ , Ml(z)). From the results of c/3.2, Y will be a vector process having 
independent increments and finite second moment, thus it must be Gaussian. 
We have, therefore, only to identify its covariance. We have calculated the 
variances before. The first coordinate is a Brownian motion and the second 
one has a (z)t as variance. It remains only to compute 

E {YM = l im E {X£M£{z)} = o: 

This last result is a consequence of E [&(£)] = 0. We have shown that all the 
limit points of ( X е , Ml(z)) converge weakly to the same limit (X9,a(z)W9). 
Therefore the sequence converges weakly and the two coordinates of the limit 
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processes are independent. By taking z = g this implies the same result for 
{xl si). 

d. A s y m p t o t i c c o n v e r g e n c e o f 2 \ . In this section we 
will work with W, the Wiener processes limit of St- Recall that 

n 

Zn(f) = Y, " -
i=l 

We can prove using standard arguments that there exists У G L (ft) such 
that \\Zn(f) — У | | 2 —• 0 as n goes to infinity. 

To show the convergence of Ti, it is enough to prove that 

lim Ц т Ц Г х - ^ Ш Ц ^ О . 
n—»oo e—>0 " 

We have 

E [Ti - z:(f)]2
 = E[T X ] 2 + E [Z £

n ( / ) ] 2 - 2E \T,Z:U)}. 

We have seen in b. that E [Ti] 2 —> a2cro as £ goes to zero and a similar 
proof holds for E [TiZ"( / ) ] , i.e., 

E [TiZrt/)] —> a2 E [f(Xs) f(X{i_1)/n)) ds 

when £ goes to zero. The last term tends to a1 a\ when n goes to infinity 
thanks to Lemma 1 and the Dominated Convergence Theorem. 

To end the proof, we show that 

Hm l i m E [ z n / ) ] W a 2 . 

E W(f)}2
 = E E E [ / ( ^ - i , / „ ) / T O . 1 ) / n ) ( 5 ^ n - S & _ i , / n ) 

г=1 j=l 
X (Sj/n - S(j-l)/n)] 

— * 2 Ё E e № ( i - D / " ) / № - i ) / » ) ] 
i=l j=l 

x E { [ i y i / n - 1У ( , _ 1 ) / П ] [ W i / B - Т У 0 _ 1 ) / П ] } 

= ^E E[/(^)/ n)] 2 

4 = 1 
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n ^ E E ^ i - D / n ) ] 8 — > * o 

j = i 

when n goes to infinity. This yields Theorem 1. 
e. P r o o f o f T h e o r e m 2. Let's begin by proving (i). We have 

only to observe the following: the function z is now gp(x) — \xf - E \%f', 
1 / 2 ' 

where £ is a standard Gaussian r.v., and Ae(t) = £ -Xe(^) by taking y> = 
I[-\fi\ (cf. [10]) and / = 1. The asymptotic variance is 

/

+°o r _ 

E g/3{Zi(u)) gp(Z2(u)) du. 
-oo 

To prove (ii) let's define 

Zx(y) = I^oo,x] (v) ~ + <K*) У-

This function verifies the condition given in c.a. except for the continuity 
(if = /[-i,o] a n d / = !)• However, this property is only important to compute 
the limit variance but it is straightforward to do the computations in this 
case. Hence we have 

Mt(zx)^= £ ~ 1 / 2 f zx(Y:)I[Metl](s)ds — > a(zx)Wt 

Jo 

weakly in C[0,1]. We get also that the two processes X, and W, are inde-

as £ goes to zero. To see this, on the one hand we have as in [1], and thanks 
to c./3, that 

( - * ( i - l ) / m - * ( j - l ) / r n Ji/n — J ( i - l ) / n ) bj/n ~ J ( j _ i ) / „ J 

• {X{i-\)ln,X(j-\)ln,Wiln - Щ(-1)/п, Щ/п - Щ]-1)/п) 

weakly as £ goes to zero and on the other hand, by Holder's inequality and 
Lemma 1, for 6 < 1: 

E | / ( ^ ( E i - i ) / n ) f{X(j-i)/n) (Si/n - 5 £ i _ i ) / n ) (Sj/n - 5 ( E j _ i ) / n ) | 1 + * 

< CJE [S£/n - 5 ( £ j _ i ) / n ] 4 | | E [S'/n - 5 ( e j _ i ) / n ] 4 | < С 

The uniform integrability theorem yields the result. 
Finally, we remark that 
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pendent. Thus 

Be[t, x) = Mt(zx)- ф(х) [ Xe

sds 
JMe 

+ A {s < Me, Ae(s) ^x}- M § ( x ) y/e 

= М*(гх)-ф(х)(Х?-ХМе) 

+ \{s < Me, Д е (а) < x) - МФ(х)у/ё. 

By using the joint weak convergence of (X e (* ) , M£(zx)) to (X9,a(zx)W,) 
we get that 

B£(t, x) —• c{zx)Wt - Ф(х)Хг = rj(t, x). 

The Hermite expansion of the function I(-oo,x](y) and Mehler's formula pro
vide a more explicit expression for the limit variance: 

E{B2

£(t, x)}-^2t 
ф\х) oo TT2 , \ 

Hn_x(x) 

71=1 4 ' 
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