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TEOPHS BEPOSITHOCTEM

Towm 42 M EE IPUMEHEHHX S Brnyck 4
1997
© 1997 r. BERZIN-JOSEPH C.", LEON J. R.™"

WEAK CONVERGENCE OF THE INTEGRATED 'NUMBER
OF LEVEL CROSSINGS TO THE LOCAL TIME
FOR WIENER PROCESSES

Oycts {X¢,¢t € [0,1]} ecTs cTanpapTHBIA BHHEPOBCKWME IIpolecc,
onpepesennsii Ha (2,4, P). PaccMoTpuM ynopsanoduBaloli Mpouecc
Xt = @ex Xt, roe pe(t) = (1/€)p(t/€) ecTb snpo, cxonsineecs K IeJbTa-
dynknuu [upaka npu € — §. B craThe u3y4aercs CXOMUMOCTD

Ze(f)=e/? /+°° [m - Lx(w)} J(2) dz,

—o0 | cl€)

KOr/Jia € CTPEMATCS K HYJIIO, 31€Ch NX (:z:) ecTh YHCJIO TlepecedeHmil mpo-
meccom X € ypoBHs z B ipomexyTke [0, 1}, a L x(z) ecTb JokaibHOe BpeMs
npe6biBanns X B z Ha oTpeske [0, 1]. Kak crencTsre npeioxeHHoro Me-
TOMla, TOJYYeH Pe3yabTaT O clXaboil CXOMMMOCTH IJA IpHpPallleHH: Ipo-
necca X.

Kawuesvie caoea v @padvi: BUHEPOBCKUU IpoIecc, JIOKAJIbHOE Bpe-
M1, IlepecedeHHs YPOBHSA, IpUPAICHUA.

1. Introduction. Let X; = {X(t,w), t € [0,1], w € Q} be a standard
Wiener process. For each t and € > 0 define A (¢) = E_I/Z(XH_E — X;), the
normalized increments of the process. If we fix a trajectory and consider
A,(t) as a random variable (r.v.) on ¢ with Lebesgue’s measure A then, as
M. Wschebor showed [10], for almost every trajectory, this variable converges
in distribution, as € goes to zero, to a Gaussian distribution:

F(t,z)=XMs<t: A(s) <z} — t®(z) ase—0

for almost every (a.e.) w € Q, where ® is the standard Gaussian distribution
function.

It is interesting now to find out at what speed this convergence takes
place. Moreover, one would like to know if

K.(t, z) = F.(t, z) - t9(z)
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conveniently normalized, converges weakly. To this end take p(t) = I;_1 gj(t)
and define X; = ¢, * Xt, the convolution of the process with ga,s(t) =
(1/e) p(t/e). Then (cf. [10]) A (¢) = '/ X, Thus, we will work in a more
general setting by considering the process et/ 2Xf for different functions ¢
instead of A.(%).

A related, and more involved problem, will also be considered. Let
N% (:1:) be the number of crossings of the level z by the process X° in the
interval [0,1}, and Lx(z) be the local time of X at level z. Define the r.v.

/_ Z ) N¥ () (5 ) lelias

whose almost sure (a.s:) limitis {*°_f(z) Lx(z) dz (cf. [10]) where f satisfies
certain regularity conditions. We study the convergence in distribution of
the normalized difference between these two variables, which we call Z_(f).
We show in Theorem 1 that Z.(f) converges in distribution, when ¢ tends
to zero to afol f(X,)dW, where W is a Brownian motion independent of X
and o is a positive constant.

As a consequence of the proof of the Theorem 1 we prove that

B.(t, z) = e *K.(t, z) — (¢, 7)

in distribution in C[0, 1] for each z when ¢ tends to zero, where 7(t,z) is
a Gaussian process with independent increments in ¢ and a variance that
depends on z. This answers the two questions raised above.

The authors in another article [1] considered the same problem for sta-
tionary Gaussian processes whose covariance behaves like r(¢) = 1— L(t) |¢t|*®
~with 0 < @ < 1. The Ornstein—Uhlenbeck process is a particular case
(a = %) and the results are similar to those of the Wiener process.

There exists a vast literature on results involving second order approx-
imations for Brownian local times. It is worth citing, among the first con-
tributions, the work of Kasahara [7], where the author obtains a weak limit
for the normalized difference between the number of times that the reflected
Brownian motion crosses down from ¢ to 0 and the local time in zero. Simi-
lar results were also studied by Borodin in two papers [4], [5], and in several
works by Csaki, Csorgo, Foldes and Révész, wonderfully summarized in a
recent paper [3]. For more information one can read the survey article [6]
and the references cited therein.

In these papers there also appears a Brownian motion W which is inde-
pendent of the original one. In the modern literature, such a process is the
result of applying Knight’s famous theorem (cf. [8, p. 172]) on the indepen-
dence of two continuous martingales whose mixed bracket equals zero. We
will not be able to use this type of method in our work given the anticipat-
ing character of the process X;. Instead, we will adopt an ad hoc method,
whose description we will give in Section 4 below.
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We remark, however, that in our work we consider a regularization by
convolution of the Brownian motion, and, to our knowledge, the weak limit,
after normalization, of the difference

(N”(z)(ge)mnwn;l —'kaz))

is still an open problem.

2. Assumptions and notation.

(H1) On the process X: {X;, t € [0,1]} is a Wiener process.
In what follows, we shall suppose that X (t) is defined for all ¢ € R, setting
X(t)=0whent¢ RT.

(H2) On the kernel ¢: suppp C [-1,1], ¢ is the distribution
function of a (signed) measure dy(y) which has bounded total variation,
fjll @(t) dt = 1. We define ¢¥(u) = & * p(—u) where (u) = p(—u), u € R.

(H3)On the function f: f€C? and f" is bounded.

We define
7r [s e}
g(z) = /2 |z} —‘1 = ; agn Han(2),

where {H,,n > 0} are Hermite’s polynomials, orthogonal with respect to
the standard Gaussian distribution and with leading coefficient equal to 1.
¢ denotes the standard Gaussian density.
We have
1 t/e

X; = - Xi—eqy dio(y),

— o0

and we define Yy = El/ZXfH(pH{l

1) Xxe
2= [ 10| Y - (o) do

with e(e) = v/2/(e)llgllz, 0(z) = v(e)ligll”, € R, 05 = [y BIf*(X,)] ds.

Ent{z}, z € R, is the mteger part of z.
Remark. The process Y,° has unit variance on {t > €}.
Throughout the paper, C shall stand for a generic constant, whose value
may change during a proof.
3. Results.
Theorem 1. Under assumptions (H1), (H2) and (H3) the process Z.( f)

converges weakly when ¢ tends to zero towaerds a r.v. Y € Lz(Q) and the
conditional distribution (Y | X,, 0 < s < 1) is Gaussian with zero mean and
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random variance equal to

1
02/ 2 (X,)ds where 02:/
0

- 00

e E [g(Zl(u)) g(Zz(u))] du

and (Z,(u), Z3(u)) is a Gaussian vector with zero mean and covariance ma-

triz : ) (0(11‘ | 0(111)>.

Remarks. a) Given the o-algebra generated by {X,, 0 < s < 1},
the limit variable Y is the stochastic integral of f(X,) with respect to a
Brownian motion o¢W. This last process is the limit of

€ 1 ¢ €
St zﬁ/(; g(Ys)I[Me,l](s)dsa

where M > 0 is «large enough» (see the proofs 4.c.c. and 4.c.8.), i.e.,
1
ofy f(X,)dW(s).
b) Another expression for o is

2 o0
ot = / 3 a2 (20)67" (u) du.
-2 p=1 '

The next result concerns the increments. Let £ be a standard Gaussian
r.v. and define '

t
)= [ (|8’ - Bier’) du.
: 0
Theorem 2. Under hypothesis (H1), (H2) and (H3) we have
(i) e (0) — oW,
in distribution in C[0, 1] and
(ii) B(e, z) — 7(e, z),

n(t,z) is @ Gaussian process with independent increments in t and a variance
linear on t that depends on z. The convergence here is in distribution in
C[0,1] for each z € R.

4. Proofs.
Proof of Theorem 1. Using as in {1] the formula

/_o:of(x)NXE(z)dx: /01 f(X:)lXﬂds
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we have the decomposition of Z,.( f):

Z.(f) =2 / XS (VY ds + V2 /0 [(X) — £(X,)] ds

Splitting the integrals in [0, Me] and [Me, 1], where M > 0 will be chosen
later, we get

Me 1 .
Ze(f)=e‘1/2»/0 f(Xf)g(Yf)ds+e_1/2/M F(X5)g(YE)ds

Me 1
+e71/? / [F(X5) = f(X,)] ds+e7/? / [£(X5) = £(X,)] ds
0 Me
=L+Ti+L+Ts.

The proof W111 proceed as follows: we prove in a. that I, I; and T, converge
to zero in L’ () when ¢ goes to zero; hence the 1mp0rtant term in the

development of Z.(f) is T; and we show in b. that E[Tl] converges to o’al.
In c. we prove that (X, §§) converges weakly to (X;,cW;). Furthermore the
processes X and W are independent. In d. we will consider the convergence
of 7). We study first the convergence of the following discrete version of T;:

ifn -
Z (f —E_I/ZZf X(z 1 /r')‘/( )/ g(Ys )I[ME’I](S)dS.
-1)/n

i=1

" Define .
ZM(f) =" f(X(i-1y/n) [Wijn — Wiiz1ya] o,
i=1
we know from c. that Z;(f) — Z"(f), weakly as ¢ goes to zero. On the

other hand there exists a r.v. Y € L*(Q) such that: Z"(f) — Y in L*(Q)
when n goes to infinity; furthermore, we can characterize this variable using
the asymptotic independence between X and W:

1
LY | Xy, 0<5<1) = N(o, 02/ fZ(Xs)ds>.
0
Hence, to prove the convergence of T}, it will be enough to prove that

ity 1 - 227, =0
a. Preliminary results. Let z be a continuous function ver-
ifying |z(z)] < C(1 + |z|™) for some n € N. The function g defined in
Section 2 verifies this condition.
Lemma 1. For all0 < s<1l,pe N ande > 0,

sup { B [£7(x2)], B["(%))], BI/"(X,), B[f*(x)]} <C
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Proof. Using the Taylor development of f we obtain
£ 1 [
FXD) = £(0) + X3£'(0) + 5(X2)' £ (a).
By using that f” is bounded we get

E [/*(X)] < CE [P(X)],

where P is a polynomial. But
2 sfe. rsfe
E{X,] =2/- / e(w)[s —ew]dwo(u)du C[s+1]< C
- 00 u

because s < 1. Similarly, E [fzp(Xs)] and E [f'ZP(Xs)] are bounded.

Recall that ¥y = eX{||ellz '; using that E [\/EX;E]2 = féz ©*(u) du <
lells and 2°%(z) < C[|z|*® + 1], for all z € R, E (2*?(¥;)) is bounded and
Lemma 1 holds.

Consider

Me . Me 9 9,
I =MV / fXg(VE)ds; EZ)< M / E [2(X5)g (V7)) ds.

Using Schwarz’s inequality and Lemma 1, we have E[If] < Ce where C
depends on M.

Similarly, E [Iz2 1< Ce.

For Ty = g~l/? fltle[f(X:) — f(X,)] ds, using Taylor’s development and
calling Q§ = g~1/? [X; — X,], we have

e IF(XE) - F(X,)] = QF'(X,) + %\/E(Qi)zf"(al).

The asymptotic law of Q5 is A/(0,C;) where

Cy =2 / i [ /0 " w(w) dw] o(u) du.

—00

To prove this it is enough to calculate covariances, but if M > 1 we have
s > €, then '

4+

E[X:]2 =s-¢eC; withC; = 2/

-0

[ wetw)au] o) an

and

+o0
E[X;X,]=s-¢C; withC; = / w p(w) dw,
0
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see [9] for the calculus of variances and covariances. Therefore,

1 41 ,
Bufi<c| [ [ BlQQi(x) £0x) dedt

Me J Me
1 2
+¢E [ f (Qi)"’f”(al)ds] ]
Me
For the first term, by computing covariances, one can show that

(Q.i’Q:astXt) — (K7Y2aXs>Xt)

in distribution, where Y; and Y; are independent N (0 C;). The vectors
(Y1,Y?) and (X,,.X;) are also independent.

By using uniform integrability (bounding E [Q ,Qt f (Xs) f (Xt)] uni-
formly in € and using Lemma 1) we prove that E [Q5Q% f' (X,)f (X:)] — 0
when € goes to zero. Hence the Dominated Convergence Theorem gives
the convergence to zero. For the second term using that f" is bounded we
get O(e).

b. Asymptotic second order moment of T3.

We have

1
T =g /2 /M f(X:)g(Y:)ds;

E[1?] =" /M /M E [£(X5) f(X5) g(VE) a(¥E)] dt ds.

We consider the change of variable: t = s + cu:

(1- 3)/5
E[T?] /Me / E [f(XS) f(X o) 9(VE) 9(VEren)] duds.

Me—3s)/e

There are three possible cases:
(1) (M +2)e<s<1— 2,
(2)1~-2e<s,
(3) s < (M + 2)e.
Case 1. The integral can be written as J; + J; + J3, where

1-2¢ 9
/ /_2 E [f(X3) f(Xsten) 9(Ys) §(Veren)] duds,

(M+2)e

1-2¢  p(l-s)/e . '
/ [ B D RS o0 ()] s,

(M+2)e

l !

1-2¢ -2
/ E [f(X2) f(Xerew) 9(Y) 9(Yeien)] duds.
M+2)e J(Me~3s) /e
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For J,. Using Lemma 1 we prove, by the Dominated Convergence
Theorem and uniform integrability, that J; converges to o’o¢ when ¢ goes
to zero. .

For Jy. Let X.(s,u) be the covariance matrix of the Gaussian vector
(X:,X:_i_au,}.’:, Y;_m). Since u > 2, it is easy to check that

s —eCy s—eD 27l 0
- -1 -1
5 _| s-eD  stew—cCi VElells  27'Vellell
(s, u) = -1 -1 -1
27Vellelle” velella 1 0
0 27" Vellgllz 0 1

where

D= /+°° wo(u) du.

We now fix s and u and consider the change of variables
X::ZI; Y::Z2; Y;I-eu:ZS;
Xoyeuw = B1Z1 + 225 + B3Z3 + BaZ4
with Zs independent of (Z;, Z;) and Z; independent of (2, Zy, Z3), where
- - - —27-1
Gi=[s—eD-2"¢llells?] [s — eC1 — 47 ellellz’] 5
- - . ~27-1
Pr=(27"s —eC)e'|lglla" [s - eCr ~ 47" |lolla"] T

Bs =27 |||l
and
Bs = s +cu—eCy — Bi(s — €Cy) — B3 — Bufoc llecllz” — 837",

Since B; and B3 converge to zero when € goes to zero, we develop f in a
neighbourhood of 8,z + B424; using that

/+°° 9(2z3) P(23) dz3 = /+boo 73 9(23) P(23) dz3 = 0

—c0 —00

and calling ¢(z;, 2y, 5,€) the joint Gaussian density of variables (X, Y,
one has

1-2¢
Jy = / [ Ge(Zl, 22,3)F5(21,22,8) ledzz] ds’
(M+2)5 R?

where

Gs(zl, 22, 3) = f(Zl) 9(22) ¢(21 322,85, E) I[(M+2)s,]—25] (5)
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and

(1-9)/e n
Fe(zlaz2a5) = /2 [/R2 9(23) f (20u)(,3222 + ﬂ3z3)2
X ¢(z3) ¢(24) d23d24] du Iiar42)e,1-261(9)-

Usmg that f” is bounded, that 52 and f; are smaller than C4/¢ (since

> Me, s—eCy — -1€Hcp|| > 27 's for M large enough), that g has finite
moments of all orders with respect to the measure ¢(z)dz, Lemma 1 and
the Dominated Convergence Theorem we have

e—0

1
lim J; = / / s—l/zf(zl) #(21) g(z9) (z3) lirr(ll F.(z1,29,5) dz1dzqds.
0o Jr2 e~

Setting eu = v in F.(21, 23, 5) we get

[/m 9(23) ) (200) (526_1/222 + 536—1/223)2

X ¢(Z3) (/)(24) dZ3dZ4 dv I[(M+2)€,1_25] (s)

13

Fs(thZ,s) ::/

2e

But 6, tends to z; + 4/vzy and both ,325—1/2 and ,536_1/2 converge
to 27||¢lls" when € goes to zero, so using again the Dominated Conver-
gence Theorem one has

hm Jy = / ‘/4 J;(\jl-) #(21) 9(22) #(22)

x [ o) o )
0
x ||l 2( 22 + 23)° (23) B(24) dv dzydzydz3dzeds = 0,
since
400 + o0
/ g(z) ¢(z)dz = / zg(z)d(z)de = 0.
For J;. A similar argument holds so that J3 tends to zero when £ goes to

Zero.

For cases 2 and 3, using the fact that the measure of the integration
domain is bounded by Ce and a uniform bound in € for the integrand (which
can be obtained by the previous calculations and Lemma 1), we get that both
tend to zero when ¢ goes to zero.

Adding the limits for the three cases we obtain the result.
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c. Asymptotic convergence of (X;,57).

ca. Preliminary result. Having in mind the theorem for
the increments we use a more general function g. Let then z be a con-
tinuous function verifying |2(z)| < C(1+|z|") for some n € N, E[2(£)] = 0,
E [£2(€)] = 0, where £ is a standard Gaussian random variable. Let

t
ME(z) = ¢~1/? /O AVE) Tngon () ds.

Observe that S; = M;(g). For 0 < t < 1, we want to prove first that My (z)
converges weakly to o(2)W; (where o(z) will be defined below) when ¢ goes
to zero. To this end let’s recall the following theorem proved in [2, p. 25].

Theorem 3. Suppose that {Y,} has asymptotically independent incre-
ments, that {Y,?(t): n=1,2,...} is uniformly integrable for each t, and that
E{Y,.()} — 0 and E{Y,f(t)} —t as n — oo for each t; suppose finally
that the distributions of Y, are tight. Then Y, converges weakly to W a
standard Brownian motion.

We will apply this theorem to Mj(z), with the obvious modification
that enables us to work with ¢ — 0 instead of sequences.

Let [t1,%3] and [t3,14] be two intervals in [0,1] such that i3 —t; =d >
2¢ > 0 for € small enough, then Mg, (2) — M¢, (2) and My, (2) — M;,(2) are
independent. ‘

" By using that z is centered we get E (M;(z)) = 0 and we claim that
E (M;(2))? — o*(2)t. In the case z = g this was the result proved in b.
taking f = 1. For general z, using the same notation as in b., we have for
t>0

E (Mf(z))2 =¢ ! /ME ” E [Z(Y:) 2(Ya )] ds' ds.

We consider the change of variable s’ = s + cu:

E(M(2))? = / / B V) (Ve )] duds.

Me—3) /e

We have again the three cases noted in b.

(1) (M +2)e < s <t — 2,

(2)t—2e < s,

(3) s < (M + 2)e.

The important case is the first one. Remember the decomposition made
in b. into three integrals Jy, J, and J;. We note that only J; is different
from zero. The other two are zero because of the independence between YS
and Y, when |s—s'| > 2¢. Using the Dominated Convergence Theorem and
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uniform integrability we get
t—2e

2
Jy = / E [2(V7) (Ve en)] duds
(M+2)e J—

— t/ E [z(Zl(u)) z(Zz(u))] du = to’(2),
-2
(Z1(u), Zy(u)) is a two-dimensional Gaussian vector with zero mean and
covariance matrix I'(z). Finally we prove tightness and uniform integrability.

t N(e)-1
M:(z) — ME(z) = e /2 / 2VE) Igey(w) du =7 Y Z5 + P,

where

Nle) = - . s+2(k+1)e . p
(e) =Ent{27 ¢ (¢t - 5)}, Z, = 2(Yy ) fimeay(u) du
g+4-2ke

and
£ -1/2 i ‘€
P = / AVE) Igeny(u) d.
: s+2N(e)e

The random variables Zj, are 1- dependent
By using Lemma 1, we obtain E [P} 3] <Clt- s|2. We shall prove that

N(e)-1 4
Ele? Y Zﬁ} <Ot - s

k=0

Remark. Zjisnot necessarily stationary here because s is arbitrary;
but Zj is centered because Y, is a standard Gaussian variable on {s > Me}.

N(e)-1 4 N(e)-1
E[e_l/z oozi| =t Y E[Zi,7;,7;, 7).
k=0 k],kz,kg,k4=0

We can suppose that k; < ky < k3 < ky.
1. If k4 — k3 > 2 then Zk4 is independent of Z;, , Zj, and Z;i3 50

because Zj, is centered.
2. I 0 < kg ~ k3 < 1 (then k4 is a function of k3).
2.a. If k3 — kg > 2, then Zj, and Zj, are independent of Zx, and Zj, so

E (2}, Zk, 2k, Z1,] = E (25, Z4,) E (23, 23, (1)
2.a.a. If ky — ky > 2 then Zj, is independent of Z;, and (1) = 0.
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2.a.8. If 0 < ky — k1 < 1 (then ks is a function of k;) then the sum
takes place only over two indices. Using Schwarz’s inequality and the fact
that E [Zk]ZP < €% for all p > 0 one has that the sum is less than

Ce’N¥(e)e* < CJt - 5.

2b. If 0 < k3 — k2 < 1 (then k3 is a function of k;). The sum takes
place only over two indices, as in 2.a.0 it is less than C|t — .s[2 and the result
holds.

The uniform integrability is a consequence of E (M7 (2)'<C £ <cC.

cf. Asymptotic independence between X(i)
and W(t).

c.8.1. Tightness. We know that X; — X, a.e. and M,(z) —
o(z)W, weakly. This implies that the bidimensional sequence (X,, M, (z))
is tight in C[0; 1] x C[0; 1].

c.02. Independence of increments. Lett; <1y <i3<
ty and consider the two random vectors (X;, — Xy, M;,(z) — M; (z)) and
(X:, — Xi,, Mi,(2) — M{,(2)). We can suppose without loss of generality
that t3 — t; > 3¢ and ¢t; > Me. To study the independence between these
two vectors, observe that the first is in

Fiyre = 0{Xs s <ty +€}.

Furthermere, if X, belongs to this o-algebra it holds that
E (X, [e(X7, - X5,) + XE]) = 0

where 3 — e < t. This fact implies the independence between F,,, and the
o-algebra generated by the Gaussian vectors

(Xf, — X6, Xi,t3 — € < ).

Given that (X7, — X¢,, M{,(z)— M¢,(2)) belongs to this o-algebra, the mutual
independence holds.

c.03. Limit identification. Let¢ Y be any limit point
of (X, M (z)). From the results of c.3.2, Y will be a vector process having
independent increments and finite second moment, thus it must be Gaussian.
We have, therefore, only to identify its covariance. We have calculated the
variances before The first coordinate is a Brownian motion and the second
one has o (z)t as variance. It remains only to compute

E{V1Y;} = lim B {XiM{(2)}=0.

This last result is a consequence of E [£z(¢)] = 0. We have shown that all the
limit points of (X, M. (z)) converge weakly to the same limit (X,, o(2)W,).
Therefore the sequence converges weakly and the two coordinates of the limit



Weak convergence of the integrated number of level crossings 769

processes are independent. By taking z = g this implies the same result for
(Xe, SeY-

d. Asymptotic convergence of 77. In this section we -
will work with W, the Wiener processes limit of S;. Recall that

ZMf) = E F(X(i=1)/n) 0 [Wisn — Wiim1ynl-
i=1

We can prove using standard arguments that there exists Y € Lz(ﬂ) such
that || Z"(f) — Y|z — 0 as n goes to infinity.
To show the convergence of T}, it is enough to prove that

Jim Jim |73 - Z2 ()]l =
We have
E [T, - 22(f)]* = B[ + E[22(f)]" - 2B [T 22(f)].

We have seen in b. that E[T;]* — 0’07 as € goes to zero and a similar
proof holds for E [T, Z](f)], i.e.,

pwwweazf [£(X,) F(X—1yyn)] ds

when ¢ goes to zero. The last term tends to azag when n goes to infinity
thanks to Lemma 1 and the Dominated Convergence Theorem.
To end the proof, we show that

lim hmE[Z (f)] = o’ot.

n—-oc e—0

E[z2(f)) ZZE F(XGi1y/n) F(XGi=1)/n)(SE/m = SGim1)/n)

i=1 j=1

X (85/m = S(j-1)/n)]
— ol Z E E [f(X(i—l)/n)f(X(j—l)/ﬂ)]

i=1 j=1

X E{ [Wijn = Wii-1y/a] [(Wisn = Wis-aysn) |

0' 2
= E [f(X(i-1)/n)]

i=1
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as € goes to zero. To see this, on the one hand we have as in [1], and thanks
to c.g, that

(XG=1)/n> X(i=1)/ms Sin = 8(i=1)/m> Sijn = S(i=1)/m)
— (X(i=1)/n> X(5-1) /1 Win = Wit fns Wign — W(i-1)/n)

weakly as € goes to zero and on the other hand, by Hélder’s inequality and |

Lemma 1, for é§ < 1:

E|f(X(i-1)/n) F(X(i=1)/n) (Sijn = S(i=1)/n) (Si/n — S(Ej—l)/n)|1+6
e . 4) (1+6)/4 e e (1+6)/4
< C{E [85/n — Sinyn]*} {E(85m— SGnyml'} <C

The uniform integrability theorem yields the result.
Finally.'we remark that

n"' 3B [f(Xo1ym)]t — ob
=1

when n goes to infinity. This yields Theorem 1.
e. Proof of Theorem 2. Let’s begin by proving (i). We have
only to observe the following: the function z is now gg(z) = |:1:|ﬂ -E |£|ﬁ,

where { is a standard Gaussian r.v., and A.(t) = el/zXe(t) by taking ¢ =
I;_1,0 (cf. [10]) and f = 1. The asymptotic variance is

= [ (g0 ) g5 (220

-0

To prove (ii) let’s define

This function verifies the condition given in c.a. except for the continuity
(¢ = Ij_1,0) and f = 1). However, this property is only important to compute

the limit variance but it is straightforward to do the computations in this
case. Hence we have

, to
M (z;) = ¢ /? / 22(Y3) Tinge 1y (8) ds — o(25) W,
0

weakly in C[0,1]. We get also that the two processes X, and W, are inde-
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pendent. Thus

Bs(ta Z‘) = Mte(z:c)_ ¢(1‘)/ X:ds
+A{s < Me, A(s) <z} — MB(z) Ve
= M;(zz) = ¢(z) (X{ — Xime)
+Ms< Mg, A(s) <z}~ Mé(z)\/—

By using the joint weak convergence of (X°(e), Mq(2;)) to (X.,0(2;)W,)
we get that
Be(t7 M - a(zz)Wt QS(Z) Xt n(t .’L‘)

The Hermite expansjon of the function I(_ ,j(y) and Mehler’s formula pro-
vide a more explicit expression for the limit variance:

e R =

=26(s )Z ZL;S‘?
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