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On Schrödinger equation outside strictly convex

obstacles

Oana Ivanovici

Abstract

We prove Strichartz estimates without loss of derivatives for the Schrödinger equa-
tion on a Riemannian manifold with smooth, strictly geodesically concave boundary.
We deduce global existence for the H

1-critical (quintic) Schrödinger equation in 3D.

1 Introduction

Let (Ω, g) be a Riemannian manifold of dimension n ≥ 2. Strichartz estimates are a family

of dispersive estimates on solutions u(x, t) : Ω × [−T, T ] → C to the Schrödinger equation

i∂tu+ ∆gu = 0, u(x, 0) = u0(x), (1.1)

where ∆g denotes the Laplace-Beltrami operator on (Ω, g). In their most general form, local

Strichartz estimates state that

‖u‖Lq([−T,T ],Lr(Ω)) ≤ C‖u0‖Hs(Ω), (1.2)

where Hs(Ω) denotes the Sobolev space over Ω and 2 ≤ q, r ≤ ∞ satisfy (q, r, n) 6= (2,∞, 2)

(for the case q = 2 see [23]) and are given by the scaling admissibility condition

2

q
+
n

r
=
n

2
. (1.3)

In Rn and for gij = δij, Strichartz estimates in the context of the wave and Schrödinger

equations have a long history, beginning with Strichartz pioneering work [33], where he

proved the particular case q = r for the wave and (classical) Schrödinger equations. This was

later generalized to mixed Lq
tL

r
x norms by Ginibre and Velo [15] for Schrödinger equations,

where (q, r) is sharp admissible and q > 2; the wave estimates were obtained independently

by Ginibre-Velo [17] and Lindblad-Sogge [25], following earlier work by Kapitanski [21]. The
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remaining endpoints for both equations were finally settled by Keel and Tao [23]. In that

case s = 0 and T = ∞; (see also Kato [22], Cazenave-Weissler [10]). Estimates for the flat

2-torus were shown by Bourgain [4] to hold for any s > 0.

In the variable coefficients case, even without boundaries, the situation is much more

complicated: we simply recall the pioneering work of Staffilani and Tataru [32], dealing

with compact, non trapping pertubations of the flat metric, and recent work of Bouclet and

Tzvetkov [3] which considerably weakens the decay of the pertubation (retaining the non-

trapping character at spatial infinity). On compact manifolds without boundaries, Burq,

Gerard and Tzvetkov [7] established Strichartz estimates with s = 1/p, hence with a loss of

derivatives when compared to the case of flat geometries. Recently, Blair, Smith and Sogge

[2] improved on the current results for compact (Ω, g) where either ∂Ω = ∅, or ∂Ω 6= ∅ and

g Lipschitz, by showing that Strichartz estimates hold with a loss of s = 4/3p derivatives.

This appears to be the natural analog of the estimates of [7] for the general boundaryless

case.

In this paper we shall show that Strichartz estimates for the Euclidian Schrödinger equa-

tion also hold on Riemannian manifolds with smooth, strictly geodesically concave bound-

aries. By the last condition we understand that the second fundamental form on the bound-

ary of the manifold is strictly positive definite and we assume moreover the manifold to be

flat at infinity (though presumably one may use Bouclet and Tzvetkov [3] result to combine

both situations).

Let (Ω, g) be a Riemannian manifold with C∞ boundary, Ω = Rn\O, where O is compact

with smooth boundary. We shall assume that n ≥ 2 and that ∂Ω is strictly geodesically

concave throughout. Let ∆g be the Laplace-Beltrami operator associated to g on Ω, acting

on L2(Ω), with domain H2(Ω) ∩H1
0 (Ω). We assume that we can globally write

∆g =

n
∑

j,k=2

gj,k(x)∂j∂k +

n
∑

j=1

aj(x)∂j , (1.4)

where the coefficients belong to a bounded set of C∞ and the principal part is uniformly

elliptic. Our main result reads as follows

Theorem 1.1. Given (q, r) satisfying the scaling condition (1.3), q > 2, there exists a

constant C such that the solution u(x, t) of the Schrödinger equation on Ω×R with Dirichlet

boundary condition






i∂tu+ ∆gu = 0, on Ω × R

u(x, 0) = u0(x),
u|∂Ω = 0

(1.5)
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satisfies

‖u‖Lq(R,Lr(Ω)) ≤ C‖u0‖L2(Ω). (1.6)

The proof of Theorem 1.1 combines several arguments: firstly, we perform a time rescal-

ing, first used by Lebeau [24] in the context of control theory, which transforms the equation

into a semiclassical problem: due to the finite speed of propagation we can use the argu-

ments of Smith and Sogge [29] for the wave equation which consists of exploiting the L2

continuity of certain operators to reduce consideration to operators which are similar to

those on a manifold without boundary, which will allow to use the parametrix construction

of Melrose and Taylor for the wave group. In order to prove (1.5) we only need to show that

the ”glancing” part of the parametrix satisfies the same bounds. Secondly, we adapt a result

of Burq [5] which provides Strichartz estimates without loss for a non-trapping problem,

with a metric that equals the identity outside a compact set. The proof relies on a local

smoothing effect for the free evolution exp (it∆g), first observed in the case of the flat space

in the works of Constantin and Saut [13], Doi [14], [6] in the non-trapping case. Following a

strategy suggested by Staffilani and Tataru [32], we prove that away from the obstacle the

free evolution enjoys the Strichartz estimates exactly as for the free space.

We give two applications of Theorem 1.1 is a local existence result for the quintic

Schrödinger equation in 3D:

Theorem 1.2. (Local existence for the quintic Schrödinger equation) Let T > 0 and u0 ∈

H1
0 (Ω), where Ω ⊂ R3 is the complementary of a smooth, strictly convex obstacle O. Then

there exists a unique solution u ∈ C([0, T ], H1
0(Ω)) ∩ L5((0, T ],W 1,30/11(Ω), of the quintic

nonlinear equation

i∂tu+ ∆gu = ±|u|4u on Ω × R, u|t=0 = u0 on Ω, u|∂Ω = 0. (1.7)

Moreover, for any T > 0, the flow u0 → u is Lipschitz continuous from any bounded set of

H1
0 (Ω) to C([−T, T ), H1

0 (Ω)). If the initial data u0 has sufficiently small H1 norm, then the

solution is global in time.

Theorem 1.3. (Scattering for subcritical Schrödinger equation) Let 3 ≤ p < 5 and u0 ∈

H1
0 (Ω), with Ω the exterior of a strictly convex domain in R3. Then the global in time solution

of the defocusing Schrödinger equation

i∂tu+ ∆gu = |u|p−1u, u|t=0 = u0 on Ω, u|∂Ω = 0 (1.8)

scatters in H1
0 (Ω). If p = 5 and the initial data u0 has sufficiently small H1 norm, then the

global solution of the critical Schrödinger equation scatters in H1
0 (Ω).
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Results for the Cauchy problem associated to the critical wave equation outside a strictly

convex obstacle were obtained by Smith and Sogge [29]. Their result was a consequence of the

fact that the Strichartz estimates for the Euclidian wave equation also hold on Riemannian

manifolds with smooth, compact and strictly concave boundaries.

In [8], Burq, Lebeau and Planchon proved that the defocusing quintic wave equation

with Dirichlet boundary conditions is globally wellposed on H1(Ω)×L2(Ω) for any smooth,

compact domain Ω ⊂ R
3. Their proof relies on Lp estimates for the spectral projector

obtained by Smith and Sogge [30]. A similar result for the defocusing critical wave equation

with Neumann boundary conditions was obtained in [9].

In the case of the Schrödinger equation outside a nontrapping obstacle in R3, Burq, Ger-

ard and Tzvetkov [6] proved global existence for subcubic defocusing nonlinearities and Anton

[1] for the cubic case. Recently Planchon and Vega [27] improved the local well-posedness

theory to H1-subcritical (subquintic) nonlinearities for n = 3. In R3 × Rt, Colliander, Keel,

Staffilani, Takaoka and Tao [12] established global well-posedness and scattering for energy-

class solutions to the quintic defocusing Schrödinger equation (1.7), which is energy-critical.

Theorem 1.3 is proved in [27] in the case of the exterior of a star-shaped domain, using

‖eit∆gu0‖L4
t,x

. ‖u0‖Ḣ1/4 ,

but since this estimate fails to provide control of L4
tL

∞ one has to use local smoothing

estimates close to the boundary, and Strichartz estimates for the usual Laplacian on R3

away from it, the sub-criticality with respect to H1 compensating the weakness of the local

smoothing estimate. Here we give a much more simpler proof using the classical Strichartz

estimates (1.6).

Acknowledgements

The author would like to thank Fabrice Planchon for having suggested to her the applications

and for a nice proof of Lemma 3.2 and Nicolas Burq for useful discussions. She would also

like to thank Michael Taylor for having sent her the manuscript ”Boundary problems for the

wave equations with grazing and gliding rays”.

4



2 Estimates for semiclassical Schrödinger equation

2.1 Preliminaries

We may assume that the metric g is extended smoothly across the boundary, so that Ω is a

geodesically concave subset of a complete Riemannian manifold Ω̃, which we assume to be

Rn. By the free Schrödinger equation we mean the Schrödinger equation on Ω̃ = Rn, where

the data u0 has been extended to R
n by an extension operator preserving the Sobolev spaces.

This ”mirror reflection” method consists in taking a copy of the domain Ω and ”glue” it to

the initial one by identifying the points of the boundary. For details see [1].

Let Ψ ∈ C∞
0 (R∗) be compactly supported away from 0 such that for all λ ∈ R

∑

k∈Z

Ψ(2−2kλ) = 1. (2.1)

In what follows let k ∈ N
∗ and h = 2−k. We study the semiclassical Schrödinger equation

with initial data Ψ(h2∆g)u0 localized at frequency h−1 and then we recover the behavior of

the linear flow thanks to using Lemma 3.2.

2.2 Proof of Theorem 1.1

The first step in the proof of Theorem 1.1 is to prove usual estimates for small intervals of

time (depending on the frequency). In order to do that we introduce the semiclassical time

t by v(x, t) = u(x, ht). If u is a solution of the equation

{

i∂tu+ ∆gu = 0,
u(x, 0) = Ψ(h2∆g)u0(x),

(2.2)

on a time interval [0, T ], T > 0 then v solves the following semiclassical equation on [0, h−1T ]

{

ih∂tv + h2∆gv = 0,
v(x, 0) = Ψ(h2∆g)u0(x).

(2.3)

Theorem 2.1. (Strichartz estimates for the semiclassical problem) Under the assumptions

of Theorem 1.1, there exists C > 0 such that for any h ∈ (0, 1] and any interval of time Ih

of lenght |Ih| ≤ Th the solution u(x, t) of (2.2) satisfies

(

∫

Ih

‖eit∆gΨ(h2∆g)u0‖
q
Lr(Rn)

)1/q

≤ C‖Ψ(h2∆g)u0‖L2(Rn). (2.4)

5



Proof. In order to prove Theorem 2.1 it is enough to prove Strichartz estimates for the

solution of the semiclassical problem (2.3). The arguments of this part of the proof are very

similar to those given in [28]. We need to show the following

‖v(x, t)‖Lq([0,T ],Lr(Rn)) ≤ C‖Ψ(h2∆g)u0‖L2(Rn). (2.5)

It will be enough to consider T an arbitrary, fixed small positive number. Let δ > 0 be a

constant to be fixed below and set T = δ/2,

S(δ, T ) := {(x, t) ∈ Ω × [0, T ]|dist(x,Ω) < δ}.

On the complement of S(δ, T ) in Ω × [0, T ], the solution v(x, t) equals the soltuion of the

semiclassical Schrödinger equation on Rn for which Strichartz estimates are known, thus it

suffices to establish each of the estimates for the norm over S(δ, T ). The (semiclassical)

Schrödinger group exp (iht∆g), which maps data at time 0 to data at time t, is an isomor-

phisme on Hα(Ω), consequently it suffices to establish the estimates over S(δ, T ) for the

function exp (ih(t0 + .)∆g)Ψ(h2∆g)u0 for some t0.

It follows from [19, Lemma 24.3.4] the existence of c0 > 0 such that of t0 is less than some

fixed constant, then whenever γ(s) is a unit speed broken geodesic in Ω with dist(γ(0), ∂Ω) ≤

c0t
2
0, one has

dist(γ(s), ∂Ω) ≥ c0t
2
0, s ∈ [t0/2, 4t0].

We now define a set ω ⊂ Ω: a point p lies in ω if there is a unit speed broken bicharacteristic

with γ(0) = p and dist(γ(t0+s), ∂Ω) ≤ 2δ for some s ∈ [−δ, δ]. We assume 2δ < c0t
2
0, so that

ω is a compact subset of Ω with dist(ω, ∂Ω) ≥ c0t
2
0. There is a smooth function χ supported

in ω such that the Schwartz kernel of exp (ih(t0 + t)∆g)(1− χ) lies in C∞(S(δ, T )×Ω). We

are thus reduced to estimating exp (ih(t0 + .)∆g)Ψ(h2∆g)u0 for data u0 supported in ω.

Let ∆ denote the Laplacian on Rn. We let M denote the outgoing solution to the Dirichlet

problem for the semiclassical Schrödinger operator on Ω × R. Thus, if g is a function on

∂Ω × R which vanishes for t ≤ −t0, then Mg is the solution on Ω × R to







ih∂tMg + h2∆gMg = 0,
Mg = 0, t ≤ −t0,

Mg|∂Ω×R = g.
(2.6)

Then, for t ∈ [−t0, T ] and data f supported in ω and localized at frequency 1/h, i.e. such

that f = Ψ(h2∆g)f (modulo O(h∞)), we have we have

exp (ih(t0 + .)∆g)f = exp (ih(t0 + .)∆)f −M(exp (ih(t0 + .)∆)f |∂Ω×R).
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The cotangent bundle of ∂Ω × R is divided into three disjoint, time independent sets: the

hyperbolic and elliptic regions where the Dirichlet problem is respectively hyperbolic and

elliptic, and the glancing region which is the boundary between the two. We decompose the

identity operator into

Id = Πh + Πe + Πg,

where Πh, Πe are time-independent pseudo-differential cutoffs, essentially supported inside

the hyperbolic and elliptic regions, and Πg is essentially supported in a small set about the

glancing region, on which the Melrose and Taylor construction is valid (see Section 5.1). On

S(δ, T ) we can write exp (ih(t0 + .)∆g)f as the sum of four terms

exp (ih(t0 + .)∆g)f = exp (ih(t0 + .)∆)f −MΠe(exp (ih(t0 + .)∆)f |∂Ω×R)

−MΠh(exp (ih(t0 + .)∆)f |∂Ω×R) −MΠg(exp (ih(t0 + .)∆)f |∂Ω×R).

For the first term in the right hand side, exp (ih(t0 + .)∆)f , the desired estimates follow as

in the boundaryless case. The projection on any characteristic direction for the semiclassical

Schrödinger operator onto T ∗(∂Ω × R) is contained in the hyperbolic and glancing regions,

so that

MΠe(exp (ih(t0 + .)∆)f |∂Ω×R) ≃ 0,

where ≃ denotes equality modulo smoothing operators. As far as the hyperbolic part is

concerned, because of the finite speed of propagation of the semiclassical Schrödinger equa-

tion, we can use the same arguments as in [29] in order to ”elliminate” the hyperbolic part.

Precisely, on the essential support of Πh the forward Dirichlet problem can be solved locally,

modulo smoothing kernels, on an open set in R× Ω̃ around ∂Ω. In fact, there is an operator

M̃ from R × ∂Ω to R × Ω̃, and a constant t1 such that

ih∂tM̃ + h2∆M̃ = 0, t ∈ [−2t1, 2t1],

(M−M̃)Πh ≃ 0.

We assume that t0 ≤ t1 and we set f̃ := M̃Πh exp (ih(t0 + .)∆)f |t=−t0 . The operator f → f̃

is a classical Fourier integral operator associated to the relation ”reflection about ∂Ω”. We

can take the data f̃ to be compactly supported in Ω̃ \ Ω and hence

‖f̃‖Hs(Rn) ≤ C‖f‖Hs(Rn).

On S(δ, T ) we have

MΠh exp (ih(t0 + .)∆)f = exp (ih(t0 + .)∆)f̃
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and the estimates for the third term follow as for the firts one, thus we are left with estimating

the last term.

Near the glancing region we use the Melrose and Taylor construction in order to write

each solution v(x, t) of the semiclassical Schrödinger equation (2.3) as a finite sum of pseudo-

differential cutoffs, each essentially supported in a suitably small neighborhood of a glancing

ray. Each term in the resulting sum can be written, modulo a smoothing operator

1

(2πh)n

∫

Rn

e
i
h
(θ(x,ξ)+tξ2

1)2ξ1(a(x, ξ, h)A(ζ(x, ξ/h)) + b(x, ξ, h)A′(ζ(x, ξ/h)))× (2.7)

×
Ai(ζ0(ξ/h))

A+(ζ0(ξ/h))
K̂(Ψ(h2∆g)u0)(

ξ

h
)dξ,

where the symbols a, b and the phases θ, ζ have the properties stated in Proposition 5.1:

a and b are symbols of type (1, 0) and order 1/6 and −1/6, respectively, both of which

are supported in a small neighborhood of the ξ1 axis and where K is a classical Fourier

integral operator of order 0, compactly supported. The phases θ and ζ are real, smooth and

homogeneous of degree 1 and 2/3, respectively. If local coordinates are chosen so that Ω is

given by xn > 0, the phases satisfy the eikonal equations







ξ2
1− < dθ, dθ >g +ζ < dζ, dζ >g= 0,

< dθ, dζ >g= 0,

ζ(x′, 0, ξ) = ζ0(ξ) = −ξ
−1/3
1 ξn,

(2.8)

in the region ζ ≤ 0. Here x′ = (x1, .., xn−1) and < ., . >g denotes the inner product given by

the metric g. The phases also satisfy the eikonal equations (2.8) to infinite order at xn = 0

in the region ζ > 0. For further discussions and proofs we refer the reader to the manuscript

[26] of Melrose and Taylor.

By the L2 continuity of K, to finish the proof of Theorem 2.1 we need only to show that

the operator Ah defined by

Ahf(x, t) =
1

(2πh)n

∫

Rn

2ξ1(a(x, ξ/h)A+(ζ(x, ξ/h)) + b(x, ξ/h)A′
+(ζ(x, ξ/h)))× (2.9)

×e
i
h
(θ(x,ξ)+tξ2

1) Ai(ζ0(ξ/h))

A+(ζ0(ξ/h))
F(Ψ(h2∆g)f)(

ξ

h
)dξ,

where by F we denote the Fourier transform, satisfies

‖Ahf‖Lq((0,T ],Lr(Rn)) ≤ Ch−n/2(1/2−1/r)‖f‖L2(Rn). (2.10)

End of the proof of Theorem 2.1:
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Proof. Coming back to the solution u(x, t) = eit∆xΨ(h2∆x)u0(x), we find, for 1
q

= n
2
(1

2
− 1

r
)

‖u(x, t)‖Lq(0,hT ],Lr(Rn) = h1/q‖v(x, t)‖Lq(0,T ],Lr(Rn) ≤ C‖Ψ(h2∆x)u0‖L2(Rn). (2.11)

Thus, the proof of Theorem 2.1 will be accomplished once we establish (2.10). In order

to prove the Strichartz estimates (2.10), we split the operator Ah into two parts: a main

term and a diffractive term. To this end, let χ(s) be a smooth function satisfying

suppχ ⊂ (−∞,−1], supp(1 − χ) ⊂ [−2,∞).

We write this operator as a sum Ah = Mh +Dh, by decomposing

A+(ζ) = (χA+)(ζ) + ((1 − χ)A+)(ζ),

and letting the ”main term” be defined by

Mhf(x, t) =
1

(2πh)n

∫

Rn

2ξ1(a(x, ξ/h)(χA+)(ζ(x, ξ/h)) + b(x, ξ/h)(χA′
+)(ζ(x, ξ/h)))×

×e
i
h
(θ(x,ξ)+tξ2

1) Ai(ζ0(ξ/h))

A+(ζ0(ξ/h))
F(Ψ(h2∆g)f)(

ξ

h
)dξ.

The ”diffractive term” is then defined by

Dhf(x, t) =
1

(2πh)n

∫

Rn

2ξ1(a(x, ξ/h)((1−χ)A+)(ζ(x, ξ/h))+b(x, ξ/h)((1−χ)A′
+)(ζ(x, ξ/h)))×

×e
i
h
(θ(x,ξ)+tξ2

1) Ai(ζ0(ξ/h))

A+(ζ0(ξ/h))
F(Ψ(h2∆g)f)(

ξ

h
)dξ.

We analyze these operators separately:

2.2.1 The main term Mh

To estimate the ”main term” Mh we first use the fact that

|
Ai(s)

A+(s)
| ≤ 2, s ∈ R. (2.12)

Consequently, since the term Ai(ζ0)
A+(ζ0)

acts like a multiplier, the estimates for Mh will follow

from showing that the operator

f →
1

(2πh)n

∫

Rn

2ξ1(a(x, ξ/h)(χA+)(ζ(x, ξ/h)) + b(x, ξ/h)(χA′
+)(ζ(x, ξ/h)))× (2.13)
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×e
i
h
(θ(x,ξ)+tξ2

1)f̂(
ξ

h
)dξ

satisfies the same bounds like in (2.10). Following [35, Lemma 4.1], we write χA+ and (χA+)′

in terms of their Fourier transform to express the phase function of this operator,

φ(t, x, ξ) = tξ2
1 + θ(x, ξ) −

2

3
(−ζ)3/2(x, ξ) (2.14)

which satisfies the eikonal equation (2.8). We denote its symbol cm(x, ξ/h), cm(x, ξ) ∈

S0
2/3,1/3(R

n × Rn) and we also denote the operator defined in (2.13) by Wm
h , thus

Wm
h f(x, t) =

1

(2πh)n

∫

Rn

e
i
h

φ(t,x,ξ)cm(x, ξ/h)f̂(
ξ

h
)dξ.

We can use the Littlewood-Paley theory to see that if ψ ∈ C∞
0 (R∗) is compactly supported

away from 0 such that
∑

k ψ(2−kλ) = 1, then it is sufficient to prove the following:

Proposition 2.2. Let (q, r) be an admissible pair with q > 2, let T > 0 be sufficiently small

and define

Whf(x, t) :=
1

(2πh)n

∫

ei
φ(t,x,ξ)

h cm(x, ξ/h)ψ(|ξ|)f̂(
ξ

h
)dξ,

then the following estimates hold

‖Whf‖Lq((0,T ],Lr(Rn)) ≤ Ch−n/2(1/2−1/r)‖f‖L2(Rn). (2.15)

In the rest of this section we prove Proposition 2.2. The main step in the proof is to

reduce matters to proving more symmetric inequalities involving dual space. Explicitly,

F(W ∗
h (F ))(

ξ

h
) =

∫

e−
i
h

φ(s,y,ξ)F (y, s)cm(y, ξ/h)dyds

and if we set

(ThF )(x, t) = (WhW
∗
hF )(x, t) =

1

(2πh)n

∫

e
i
h
(φ(t,x,ξ)−φ(s,y,ξ))cm(x, ξ/h)cm(y, ξ/h)ψ2(|ξ|)F (y, s)dξdsdy,

then inequality (2.15) is equivalent to

‖ThF‖Lq((0,T ],Lr(Rn)) ≤ Ch−n(1/2−1/r)‖F‖Lq′((0,T ],Lr′(Rn)), (2.16)

where (q′, r′) satisfies 1/q+1/q′ = 1, 1/r+1/r′ = 1. To see, for instance, that (2.16) implies

(2.15), notice that the dual version of (2.15) is

‖W ∗
hF‖L2(Rn) ≤ Ch−n/2(1/2−1/r)‖F‖Lq′((0,T ],Lr′(Rn)),

and we have

‖W ∗
hF‖

2
L2(Rn) =

∫

WhW
∗
hFF̄dtdx ≤ ‖ThF‖Lq((0,T ],Lr(Rn))‖F‖Lq′((0,T ],Lr′(Rn)).
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Proof. Since the symbols are of type (2/3, 1/3) and not of type (1, 0), before starting the

proof of (2.15) for the operator Wh we need to make a further decomposition: let ρ ∈ C∞
0 (R)

satisfying ρ(s) = 1 near 0, ρ(s) = 0 if |s| ≥ 1. Let

ThF = WhW
∗
hF, ThF = T f

hF + T s
hF,

where

T s
hF (x, t) =

∫

Ks
h(t, x, s, y)F (y, s)dsdy, (2.17)

Ks
h(t, x, s, y) =

1

(2πh)n

∫

e
i
h
(φ(t,x,ξ)−φ(s,y,ξ))(1− ρ(h−1/3|t− s|))cm(x, ξ/h)cm(y, ξ/h)ψ2(|ξ|)dξ,

(2.18)

while

T f
hF (x, t) =

∫

Kf
h(t, x, s, y)F (y, s)dsdy, (2.19)

Kf
h (t, x, s, y) =

1

(2πh)n

∫

e
i
h
(φ(t,x,ξ)−φ(s,y,ξ))ρ(h−1/3|t− s|)cm(x, ξ/h)cm(y, ξ/h)ψ2(|ξ|)dξ.

(2.20)

Remark 2.3. The two pieces will be handled differently. The kernel of T f
h is supported in

a suitable small set and it will be estimate by ”freezing” the coefficients. To estimate T s
h we

shall use the stationary phase method for type (1, 0) symbols. For type (2/3, 1/3) symbols,

these stationary phase arguments break down if |t− s| is smaller than h1/3, which motivates

the decomposition. We use here the same arguments as in [29].

• The ”stationary phase admissible” term T s
h

Proposition 2.4. There is a constant 1 < C0 < ∞ such that the kernel Ks
h of T s

h

satisfies

|Ks
h(t, x, s, y)| ≤ CNh

N ∀N, if
|t− s|

|x− y|
/∈ [C−1

0 , C0]. (2.21)

On the other hand, there is a function ξc(t, x, s, y) which is smooth in the variables

(t, s), uniformly over (x, y), so that if C−1
0 ≤ |t−s|

|x−y|
≤ C0, then

|Ks
h(t, x, s, y)| ≃ h−n(1 +

|t− s|

h
)−n/2, for |t− s| ≥ h1/3. (2.22)
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Proof. We shall use stationary phase lemma to evaluate the kernel Ks
h of T s

h . The

critical points occur when |t− s| ≃ |x− y|. For some constant C0 and for |ξ| ∈ suppψ,

ξ1 in a small neighborhood of 1, we have

|∇ξ(φ(t, x, ξ) − φ(s, y, ξ))| ≃ |t− s| + |x− y| ≥ h1/3, if
|t− s|

|x− y|
/∈ [C−1

0 , C0].

Since c ∈ S0
2/3,1/3, an integration by parts leads to (2.21). If |t − s| ≃ |x − y| we

introduce a cutoff function κ( |x−y|
|t−s|

) for some bump function κ. The phase function can

be written as

φ(t, x, ξ) − φ(s, y, ξ) = (t− s)Θ(t, x, s, y, ξ) for |t− s| ≃ |x− y| ≥ h1/3.

We want to apply the stationary phase method with parameter |t− s|/h ≥ h−2/3 ≫ 1

to estimate Ks
h. For x, y, t, s fixed we must show that the critical points of Θ are

non-degenerate.

Lemma 2.5. The phase function Θ(t, x, s, y, ξ) admits a unique, non-degenerate crit-

ical point ξc. Moreover, for T sufficiently small and 0 ≤ t, s ≤ T , the function

ξc(t, x, s, y) solving ∇ξΘ(t, x, s, y, ξc) = 0 is smooth in t and s, with uniform bounds on

derivatives as x and y vary and we have

|∂α
t,s∂

γ
x,yξc(t, x, s, y)| ≤ Cα,γh

−|α|/3, if |x− y| ≥ h1/3. (2.23)

Proof. Setting z = (x− y)/|t− s|, the equation ∇ξΘ(t, x, s, y, ξ) = 0 writes

0 = ∇ξ(ξ
2
1 +

1

(t− s)
(φ(0, x, ξ) − φ(0, y, ξ))) =

∇ξ(< ∇xφ,∇xφ >g (0, x, ξ) −
(x− y)

(t− s)
∇xφ(0, x, ξ) +O(|x− y|)).

Let us write < ∇xφ,∇xφ >g=
∑

j,k g
j,k(x)∂xj

φ∂xk
φ and compute explicitly ∇ξΘ. For

each l ∈ {1, .., n} we have

0 = ∂ξl
Θ = 2pos(l)(∇x∇ξφ)









∑

k g
1,k(x)∂xk

φ− x1−y1

2(t−s)

.

.
∑

k g
n,k(x)∂xk

φ− xn−yn

2(t−s)









+O(|x− y|), (2.24)

if |x− y| ≃ |t− s| is small enough (notice that it is sufficient to take T small enough).

Here we have denoted vl = pos(l)





v1

.
vn



 the l-th position in the vector (v1, .., vn).
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We shall prove that there is a unique solution ξc to (2.24) and that









∑

k g
1,k(x)∂xk

φ− x1−y1

2(t−s)

.

.
∑

k g
n,k(x)∂xk

φ− xn−yn

2(t−s)









|ξc = O(|x− y|). (2.25)

Notice that we will be finished once we show (2.25), since then for q ∈ {1, .., n}

∂ξq∂ξl
Θ = 2pos(l)(∇x∇ξ∂ξqφ)









∑

k g
1,k(x)∂xk

φ− x1−y1

2(t−s)

.

.
∑

k g
n,k(x)∂xk

φ− xn−yn

2(t−s)









+O(|x− y|)+ (2.26)

+pos(l)
(

(∇x∇ξφ)(gij)col(q)(∇x∇ξφ)
)

,

where col(q)M denotes the q-th column of a matrix M ∈ Mn. Using (2.26) we can

compute ∇2
ξΘ|ξc ,

∂ξq∂ξl
Θ|ξc =

(

(∇x∇ξφ)(gij)i,j(∇x∇ξφ)
)

q,l
+O(|x− y|),

consequently for T small enough the critical point ξc is non-degenerate.

Let come back to equation (2.24). In order to prove (2.25) it is enough to show

that ∇x∇ξφ(0, x, ξ) is invertible. To deduce this we need to use the precise form of

the initial phase function in (2.13). Writing again χA+ and (χA+)′ in terms of their

Fourier transform, we express the phase function of (2.13) in the form

tξ2
1 + θ(x, ξ) + σξ

−2/3
1 ζ(x, ξ) + σ3/3ξ2

1− < z, ξ >, (2.27)

where < z, ξ > denotes the scalar product. Notice that at t = 0 this phase is homoge-

neous of degree 1 in ξ and the following holds

Lemma 2.6. (see [35, Lemma 3.1], [29, Lemma A.2]) At t = 0, the phase function

defined in (2.27) is the graph of a canonical transformation.

Proof. The proof reduces to checking that the Jacobian J of the mapping

(ξ, σ) → (∇x(θ(x, ξ) + σζ(x, ξ)), ζ(x, ξ) + σ2)

does no vanish at the glancing point ρ defined by x = x̄, ξ1 = 1, z = 0 (for the notations

see Section 5.1). At this (critical) point σ = ζ(x, ξ) = 0 and ∇x′ζ(x, ξ) = 0. Since

13



∂xnζ(x, ξ) 6= 0 and ∂ξnζ(x, ξ) 6= 0 there, the result follows by the nonvanishing of

|∇x′∇ξ′θ(x, ξ)|. In fact

J |ρ = det |





∇x′∇ξ′θ ∇ξ′∂xnθ ∇ξ′ζ = 0
∂ξn∇x′θ ∂ξn∂xnθ = 0 ∂ξnζ 6= 0
∇x′ζ = 0 ∂xnζ 6= 0 2σ = 0



 ||ρ 6= 0.

This geometric property can be restated in an equivalent form by saying that at t = 0,

φ(0, x, ξ) satisfies

det
(

∇ξ∇xφ
)

(0, x, ξ) 6= 0

and thus equation (2.24) admits a critical point which satisfies (2.23) for |x−y| ≥ h1/3

and, on the other hand the same argument allows to obtain (2.25).

On the support of κ it follows that the kernel Ks
h writes

Ks
h(t, x, s, y) =

1

(2πh)n

∫

e
i
h
|t−s|Θ(t,x,s,y,ξ)ψ2(|ξ|)(1−ρ(h−1/3|t−s|))cm(x, ξ/h)cm(y, ξ/h)dξ,

(2.28)

where, if ω = |t− s|/h and ξ1 ≃ 1, the symbol satisfies

|∂α
t,s∂

k
ωσh(t, x, s, y, ωξ/|t− s|)| ≤ Cα,kh

−|α|/3(|t− s|3/2/h)−2k/3,

where we set

σh(t, x, s, y, ωξ/|t− s|) = (1 − ρ(h−1/3|t− s|))cm(x, ωξ/|t− s|)cm(y, ωξ/|t− s|).

Indeed, since cm ∈ S0
2/3,1/3, for α = 0 one has

|∂k
ωσh| ≤ |ξ||t−s|−k|(∂k

ξ c)(t, x, ωξ/|t−s|)| ≤ C0,k|t−s|
−k(ω/|t−s|)−2k/3 = C0,k|t−s|

−kh2k/3.

We conclude using the next lemma with ω = |t−s|
h

and δ = |t− s|3/2 ≥ h1/2 ≫ h.

Lemma 2.7. Suppose that Θ(z, ξ) ∈ C∞(R2(n+1) × Rn) is real, ∇ξΘ(z, ξc(z)) = 0,

∇ξΘ(z, ξ) 6= 0 if ξ 6= ξc(z), and

| det∇2
ξξΘ| ≥ c0 > 0, if |ξ| ≤ 1.

Suppose also that

|∂α
z ∂

β
ξ Θ(z, ξ)| ≤ Cα,βh

−|α|/3, ∀α, β.

14



In addition, suppose that the symbol σh(z, ξ, ω) vanishes when |ξ| ≥ 1 and satisfies

|∂α
z ∂

γ
ξ ∂

k
ωσh(z, ξ, ω)| ≤ Ck,α,γh

−(|α|+|γ|)/3(δ/h)−2k/3, ∀k, α, γ,

where on the support of σh we have ω ≥ h−2/3 and δ > 0. Then we can write
∫

Rn

eiωΘ(z,ξ)σh(z, ξ, ω)dξ = ω−n/2eiωΘ(z,ξc(z))bh(z, ω),

where bh satisfies

|∂k
ω∂

α
z bh(z, ω)| ≤ Ck,αh

−|α|/3(δ/h)−2k/3

and where each of the constants depend only on c0 and the size of finitely many of

the constants Cα,β and Ck,α,γ above. In particular, the constants are uniform in δ if

1 ≥ δ ≥ h.

This Lemma is used in [29, Lemma 2.6] and also in the thesis of Grieser [18] and it

follows easily from the proof of standard stationary phase lemma (see [31, pag. 45]).

Proposition 2.4 is thus proved.

For each t, s, let T s
h(t, s) be the ”frozen” operator defined by

T s
h(t, s)g(x) =

∫

Ks
h(t, x, s, y)g(y)dy.

From Proposition 2.4 we deduce

‖T s
h(t, s)g‖L∞(Rn) ≤ C max(h−n, (h|t− s|)−n/2)‖g‖L1(Rn). (2.29)

We need the following

Lemma 2.8. For t, s fixed the frozen operator T s
h(t, s) is bounded on L2(Rn),

‖T s
h(t, s)g‖L2(Rn) ≤ C‖g‖L2(Rn). (2.30)

Proof. Explicitly we have

T s
h(t, s)g(x) =

1

(2πh)n

∫

e
i
h
(φ(t,x,ξ)−φ(s,y,ξ))(1 − ρ(h−1/3|t− s|))cm(x, ξ/h)cm(y, ξ/h)ψ2(|ξ|)g(y)dξdy

and (since 0 ≤ ρ(h−1/3|t−s|) ≤ 1) it is enough to prove that the frozen operatorWh(., t)

is bounded on L2(Rn). This follows from the energy conservation ‖Ahf(., t)‖L2(Rn) =

‖f‖L2(Rn) together with the fact that the L2(Rn) norms of Ahf , Mhf and thus Whf

are equivalent.
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Interpolation between (2.29) and (2.30) with weights 1−2/r and 2/r respectively yields

‖T s
h(t, s)g‖Lr(Rn) ≤ Ch−n(1−2/r)(1 +

|t− s|

h
)−n(1/2−1/r)‖g‖Lr′(Rn) (2.31)

and hence

‖T s
hF‖Lq(0,T ],Lr(Rn) ≤ Ch−n/2(1−2/r)‖

∫ T

1≪
|t−s|

h

|t− s|−n/2(1−2/r)‖F (., s)‖Lr′(Rn)ds‖Lq′((0,T ]).

Since n(1
2
− 1

r
) = 2

q
< 1 the application |t|−2/q : Lq′ → Lq is bounded and by Hardy-

Littlewood-Sobolev inequality we deduce

‖T s
hF‖Lq((0,T ],Lr(Rn)) ≤ Ch−n(1/2−1/r)‖F‖Lq′((0,T ],Lr′(Rn)). (2.32)

• The ”frozen” term T f
h

To estimate T f
h it suffices to obtain bounds for its kernel Kf

h with both the variables

(t, x) and (s, y) restricted to lie in a cube of Rn+1 of sidelength comparable to h1/3. Let

us decompose ST into disjoint cubes Q = Qx ×Qt of sidelength h1/3. We then have

‖T f
hF‖

q
Lq([0,T ],Lr(Rn)) =

∫ T

0

(

∑

Q=Qt×Qx

‖χQT
f
hF‖

r
Lr(Qx)

)q/r

dt =
∑

Q

‖χQT
f
hF‖

q
Lq([0,T ],Lr(Rn)).

In fact, by the definition, the integral kernel Kf
h (t, x, s, y) of T f

h vanishes if |t−s| ≥ h1/3.

If |t− s| ≤ h1/3 and |x− y| ≥ C0h
1/3, then the phase

φ(t, x, ξ) − φ(s, y, ξ)

has no critical points with respect to ξ1 (on the support of ψ), so that

|Kf
h(t, x, s, y)| ≤ CNh

N ∀N, if |x− y| ≥ C0h
1/3.

It therefore suffices to estimate
∑

Q ‖χQT
f
h χQ∗F‖Lq([0,T ],Lr(Rn)), where Q∗ is the dilate of

Q by some fixed factor independent of h (and where by χQ we denoted the characteristic

function of the cube Q). Since q > 2 > q′, r ≥ 2 ≥ r′, where q′, r′ are such that

1/q + 1/q′ = 1, 1/r + 1/r′ = 1, then we shall obtain

∑

Q

‖χQT
f
h χQ∗F‖q

Lq([0,T ],Lr(Rn)) ≤ C1

∑

Q

‖χQ∗F‖q

Lq′ ([0,T ],Lr′(Rn))
≤ C2‖F‖

q

Lq′([0,T ],Lr′(Rn))
.

(2.33)

In order to prove (2.33) we shall use the following:
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Proposition 2.9. Let b(ξ) ∈ L∞(Rn) be elliptic near ξ1 ≃ 1, bh(ξ) := b(ξ/h), then for

h≪ |t− s| ≤ h1/3, h≪ |x− y| ≤ h1/3 the operator defined by

Bhf(x, t) =
1

(2πh)n

∫

e
i
h

φ(t,x,ξ)ψ(|ξ|)bh(ξ)f̂(
ξ

h
)dξ (2.34)

satisfies

‖Bhf‖Lq((0,T ],Lr(Rn)) ≤ Ch−n/2(1/2−1/r)‖f‖L2(Rn). (2.35)

Proof. We use the TT ∗ argument. Since b(ξ) acts as an L2 multiplier we can apply the

stationary phase theorem in the integral

∫

e
i
h
(φ(t,x,ξ)−φ(s,y,ξ))ψ(|ξ|)dξ

in order to obtain

‖BhB
∗
hF‖Lq((0,T ],Lr((Rn)) . h−n(1/2−1/r)‖F‖Lq′((0,T ],Lr′(Rn)).

Noticed that we haven’t used the special properties of the phase function at t = 0.

Let now Q be a fixed cube in Rn+1 of sidelength h1/3. Let

bh(t, x, s, y, ξ) = ρ(h−1/3|t− s|)cm(x, ξ/h)cm(y, ξ/h),

and write

bh(t, x, s, y, ξ) = bh(0, 0, s, y, ξ) +

∫ t

0

∂tbh(r, 0, s, y, ξ)dr+ ...

+..+

∫ t

0

...

∫ xn

0

∂t..∂xnbh(r, z1, .., zn, s, y, ξ)drdz.

If the symbol c is independent of t, x then the estimates (2.15) follow from Proposition

2.9. We use this, for instance, to deduce

‖T f
hF‖Lq((0,T ],Lr(Rn)) ≤

Ch−n/2(1/2−1/r)(‖

∫ ∫

e
i
h
(xξ−φ(s,y,ξ))ψ(|ξ|)bh(0, 0, s, y, ξ)F (s, y)dξdsdy‖L2(R) + ..

..+‖

∫ h1/3

0

...

∫ h1/3

0

∫ ∫

e
i
h
(xξ−φ(s,y,ξ))∂t..∂xnψ(|ξ|)bh(r, z, s, y, ξ)F (s, y)dξdsdy‖L2(Rn)drdz.
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Each derivative of bh(t, x, s, y, ξ) loses a factor of h−1/3, but this is compensate by the

integral over (r, z), so that it suffices to establish uniform estimates for fixed (r, z). By

duality, we have to establish the estimate

‖

∫ ∫

e
i
h

φ(s,y,ξ)ψ(|ξ|)bh(0, 0, s, y, ξ)f̂(
ξ

h
)dξ‖Lq((0,T ],Lr(Rn)) ≤ C‖f‖L2(Rn),

which follows by using the same argument of freezing the variables (s, y) together with

Proposition 2.9.

2.2.2 The diffractive term Dh

In order to estimate the diffractive term we shall reason again like in [29, Sect.2].

Lemma 2.10. For xn ≥ 0 and for ξ in a small conic neighborhood of the positive ξ1 axis,

the symbol q of Sh can be written in the form

q(x, ξ) := (a(x, ξ)((1 − χ)A+)(ζ(x, ξ)) + ib(x, ξ)((1 − χ)A+)′(ζ(x, ξ)))
Ai(ζ0(ξ))

A+(ζ0(ξ))

= p(x, ξ, ζ(x, ξ)),

where, for some c > 0

|∂α
ξ ∂

j
ζ∂

β
x′∂

k
xn
p(x, ξ, ζ(x, ξ))| ≤ Cα,j,β,kξ

1/6−|α|+2k/3
1 e−cx

3/2
n ξ1−|ζ|3/2/2.

Proof. Since

|∂k
ζ ((1 − χ)A+)(ζ)| ≤ Ck,ǫe

(2/3+ǫ)|ζ|3/2

, ∀ǫ > 0,

and the symbols a and b belong to S
1/6
1.0 , the above fact will follow by showing that in the

region ζ(x, ξ) ≥ −2,
Ai

A+
(ζ0(ξ)) = p̃(x, ξ′, ζ(x, ξ)),

where if ξ′ = (ξ1, .., ξn−1)

|∂α
ξ′∂

j
ζ∂

β
x′∂

k
xn
p̃(x, ξ′, ζ)| ≤ Cα,j,β,k,ǫξ

−|α|+2k/3
1 e−cx

3/2
n ξ1−(4/3−ǫ)|ζ|3/2

. (2.36)

At xn = 0, one has ζ = ζ0, ∂xnζ < 0. It follows that for some c > 0

ζ0(x, ξ) ≥ ζ(x, ξ) + cxnξ
2/3
1 .

18



By the asymptotic behavior of the Airy function we have, in the region ζ(x, ξ) ≥ −2

|
( Ai

A+

)(k)

(ζ0)| ≤ Ck,ǫe
−cx

3/2
n ξ1−(4/3−ǫ)|ζ(x,ξ)|3/2

. (2.37)

We introduce a new variable τ(x, ξ) = ξ
1/3
1 ζ(x, ξ). At xn = 0 one has τ = −ξn, so that we

can write ξn = σ(x, ξ′, τ), where σ is homogeneous of degree 1 in (ξ′, τ). We set

p̃(x, ξ′, ζ) =
Ai

A+
(−ξ

−1/3
1 σ(x, ξ′, ξ1/3ζ)).

The estimates (2.36) will follow by showing that

|∂α
ξ′∂

j
τ∂

β
x′∂

k
xn

Ai

A+
(−ξ

−1/3
1 σ(x, ξ′, τ))| ≤ Cα,j,β,k,ǫξ

−|α|−j+2k/3
1 e−cx

3/2
n ξ1−(4/3−ǫ)|τ |3/2ξ

−1/2
1 . (2.38)

For k = 0, the estimates (2.38) follow from (2.37), together with the fact that

|∂α
ξ′∂

j
τ∂

β
x′

Ai

A+
(−ξ

−1/3
1 σ(x, ξ′, τ))| ≤ Cα,β,j(xnξ

2/3
1 + ξ

−1/3
1 |τ |)ξ

−|α|−j
1 ,

which, in turn, holds by homogeneity, together with the fact that σ(x, ξ′, τ) = 0 if xn = τ = 0.

If k = 0, the estimate (2.38) follows by observing that the effect of differentiating in xn is

similar to multiplying by a symbol of order 2/3. This concludes the proof of Lemma 2.10.

We now write the Schwartz kernel of the diffractive term Dh in the form
∫

ei(θ(x,ξ)+htξ2
1)ψ(h|ξ|)q(x, ξ)dξ

=

∫

ei(θ(x,ξ)+htξ2
1+sξ

−2/3
1 ζ(x,ξ)+s3/3ξ2

1−<y,ξ>)ψ(h|ξ|)a(x, ξ, sξ
−2/3
1 )dsdξ,

where

|∂α
ξ ∂

j
s∂

β
x′∂

k
xn
a(x, ξ, sξ

−2/3
1 )| ≤ Cα,j,β,k,Nξ

−1/2−|α|−2j/3+2k/3
1 e−cx

3/2
n ξ1 < ξ−2/3s >−N , ∀N.

From now on we proceed as for the main term and we reduce the problem to considering the

operator

W d
hf(x, t) =

1

(2πh)n

∫

e
i
h

iφ(t,x,ξ)cd(t, x, ξ/h)ψ(|ξ|)f̂(
ξ

h
)dξ,

where now xj
n∂

k
xn
cd(t, x, ξ) ∈ S

2(j−k)/3
2/3,1/3 (Rn

x′,t × Rn
ξ ) uniformly over xn. Using the freezing

arguments behind the proof of the estimates for T f
h and Minkovski inequality we have

‖W d
hf‖Lq((0,T ],Lr(Rn)) ≤ ‖

1

(2πh)n

∫

e
i
h

φ(t,x,ξ)cd(t, x
′, 0, ξ/h)ψ(|ξ|)f̂(

ξ

h
)dξ‖Lq((0,T ],Lr(Rn))+
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h−2/3

∫ h2/3

0

‖
1

(2πh)n

∫

e
i
h

φ(t,x,ξ)(h2/3∂xncd(t, x
′, r, ξ/h))ψ(|ξ|)f̂(

ξ

h
)dξ‖Lq((0,T ],Lr(Rn))dr+

h2/3

∫

r>h2/3

dr

r2
‖

1

(2πh)n

∫

e
i
h

φ(t,x,ξ)(h−2/3r2∂xncd(t, x
′, r, ξ/h))ψ(|ξ|)f̂(

ξ

h
)dξ‖Lq((0,T ],Lr(Rn−1×{xn>r})).

Since cd(t, x
′, 0, ξ) and h2/3(1 + h−4/3r2)∂xncd(t, x

′, r, ξ) are symbols of order 0 and type

(2/3, 1/3) with uniform estimates over r, the estimates for the diffractive term also follow

from Proposition 2.2. Indeed, the term in the second line loses a factor h−2/3, but this is

compensate by the integral over r ≤ h2/3. The term in the third line can be bounded by

above by

‖
1

(2πh)n

∫

e
i
h

φ(t,x,ξ)(h−2/3r2∂xncd(t, x
′, r, ξ/h))ψ(|ξ|)f̂(

ξ

h
)dξ‖Lq((0,T ],Lr(Rn)) × h2/3

∫

r>h2/3

dr

r2

≤ ‖
1

(2πh)n

∫

e
i
h

φ(t,x,ξ)(h−2/3r2∂xncd(t, x
′, r, ξ/h))ψ(|ξ|)f̂(

ξ

h
)dξ‖Lq((0,T ],Lr(Rn)).

We conclude using the same arguments as in the proof of Proposition 2.2, where nowWh is re-

placed by operators with symbols cd(t, x
′, 0, ξ), h2/3∂xncd(t, x

′.r, ξ) and h−2/3r2∂xncd(t, x
′, r, ξ)

respectively.

3 Classical Strichartz estimates

In this section we achieve the proof of Theorem 1.1 using essentially Theorem 2.1. We work

here with the Laplace-Beltrami operator ∆g defined in (1.4), under the assumption that its

principal part is uniformly elliptic.

Following [5], we split u(x, t) = (eit∆gu0)(x) as a sum of two terms u = χu + (1 − χ)u,

where χ ∈ C∞
0 (Rn) equals 1 near the boundary ∂Ω.

• Study of v = χu. We have

i∂tv − ∆gv = [∆g, χ]u, v|t=0 = χu0. (3.1)

Let Ψ ∈ C∞
0 (R+) like before and let ϕ ∈ C∞

0 ((−1, 2)) equal to 1 on [0, 1]. Let vh =

Ψ(h2∆g)v and for l ∈ Z, vh,l = ϕ(t/h− l)vh, solution to

{

i∂tvh,l − ∆gvh,l = ϕ(t/h− l)Ψ(h2∆g)[∆g, χ]u+ iϕ
′(t/h−l)

h
Ψ(h2∆g)χu,

vh,l|t<hl−h = 0, vh,l|t>hl+2h = 0.
(3.2)
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If we denote Vh,l the right-hand side of (3.2), the Duhamel formula writes

vh,l(x, t) =

∫ t

hl−l

ei(t−s)∆gVh,l(x, s)ds.

Using Minkovski inequality we obtain

‖vh,l‖Lq([hl−h,hl+2h],Lr(Ω)) ≤ C

∫

[hl−h,hl+2h]

‖ei(t−s)∆gVh,l(s)‖Lq([hl−h,hl+2h],Lr(Ω))ds

and using Theorem 2.1

‖vh,l‖Lq([hl−h,hl+2h],Lr(Ω)) ≤ C

∫

[hl−h,hl+2h]

‖Vh,l(s)‖L2(Ω)ds (3.3)

≤ Ch1/2‖Vh,l‖L2([hl−h,hl+2h],L2(Ω))

and since q ≥ 2,

‖vh‖
q
Lq(R,Lr(Ω)) ≤ Chq/2

∞
∑

l=−∞

‖Vh,l(s)‖
q
L2([hl−h,hl+2h],L2(Ω)) (3.4)

≤ Chq/2
(

∞
∑

l=−∞

‖Vh,l‖
2
L2([hl−h,hl+2h],L2(Ω))

)q/2

.

Thanks to the spectral cutoff Ψ, we obtain

‖Vh,l‖L2([hl−h,hl+2h],L2(Ω)) (3.5)

= ‖ϕ(t/h− l)Ψ(h2∆g)[∆g, χ]u+ i
ϕ′(t/h− l)

h
Ψ(h2∆g)χu‖L2([hl−h,hl+2h],L2(Ω))

≤ Ch−1/2‖ϕ(t/h− l)Ψ(h2∆g)[∆g, χ]u‖L2([hl−h,hl+2h],H−1/2(Ω))

+Ch1/2‖
ϕ′(t/h− l)

h
Ψ(h2∆g)χu‖L2([hl−h,hl+2h],H1/2(Ω)).

If ϕ̃ ∈ C∞
0 (R), ψ̃ ∈ C∞

0 (R∗) and χ̃ ∈ C∞
0 (Ω) are chosen such that they are equal to 1

on the supports of ϕ, Ψ, χ, we get, modulo O(h∞)

‖Vh,l‖L2([hl−h,hl+2h],L2(Ω)) ≤ Ch−1/2‖ϕ̃(t/h− l)ψ̃(h2∆g)χ̃u‖L2([hl−h,hl+2h],H1/2(Ω)), (3.6)

from which we deduce, using also (3.4)

‖vh‖Lq(R,Lr(Ω)) ≤ C‖ψ̃(h2∆g)χ̃u‖L2(R,H1/2(Ω)). (3.7)

We also need the next result
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Proposition 3.1. ( [6, Prop.2.7]) Assume that Ω = Rn \ O, O 6= ∅. Then for T > 0,

for every χ̃ ∈ C∞
0 (Rn), n ≥ 2, one has

‖χ̃u‖L2([−T,T ],Hs+1/2(Ω) ≤ C‖u0‖Hs(Ω),

where s ∈ [0, 1] and u(x, t) = eit∆gu0(x). Moreover, the constant C do not depend on

T , i.e. the estimates are global in time.

In order to finish the proof in this case it suffices to use the next lemma:

Lemma 3.2. Let Ψ0 ∈ C∞
0 (R), Ψ ∈ C∞

0 (R∗) such that

Ψ0(λ) +
∑

j≥1

Ψ(2−2jλ) = 1, ∀λ ∈ R.

Then for all r ∈ [2,∞) we have

‖f‖Lr(Ω) ≤ Cr

(

‖Ψ0(−∆g)f‖Lr(Ω) + (

∞
∑

j=1

‖Ψ(−2−2j∆g)f‖
2
Lr(Ω))

1/2
)

. (3.8)

A complete and elementary proof of this lemma is given in [20].

Remark 3.3. Notice that here we have defined the fractional Sobolev spaces through

the spectral localization, following [27]; they do coincide with the usual ones B0,2
r (Ω) in

the range we are interested in and the proof follows from [34].

Now, applying Lemma 3.2 to f = χu(., t) and taking the Lq norm in time yields

‖χu‖Lq(R,Lr(Ω)) ≤ ‖
(

‖Ψ0(−∆g)u0‖Lr(Ω) + (
∑

j≥1

‖eit∆gΨ(−2−2j∆g)u0‖
2
Lr(Ω))

1/2
)

‖Lq(R)

(3.9)

which, by Minkowski inequality and Theorem 2.1 leads to

‖χu‖Lq(R,Lr(Ω)) ≤ C‖u0‖L2(Ω). (3.10)

• Study of w = (1− χ)u. We follow here the method suggested by Staffilani and Tataru

[32]. We have

i∂tw − ∆gw = [∆g, χ]u, w|t=0 = (1 − χ)u0. (3.11)

Since on the support of w we have g = (δi,j), i.e. the flat metric, we can replace in

(3.11) ∆g by the Euclidian Laplace operator ∆ (on Rn) and we find

w(x, t) = eit∆(1 − χ)u0 − i

∫ t

0

ei(t−s)∆[∆g, χ]u(s)ds. (3.12)

The contribution of the first term can be easily evaluated. For the second term we

shall use the next lemma, due to Christ and Kiselev [11]:
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Lemma 3.4. (Christ and Kiselev) Consider a bounded operator

T : Lq′(R, B1) → Lq(R, B2)

given by a locally integrable kernel K(t, s) with values in bounded operators from B1 to

B2, where B1 and B2 are Banach spaces. Suppose that q′ < q. Then the operator

T̃ f(t) =

∫

s<t

K(t, s)f(s)ds

is bounded from Lq′(R, B1) to Lq(R, B2) and

‖T̃‖Lq′(R,B1)→Lq(R,B2) ≤ C(1 − 2−(1/q−1/q′))−1‖T‖Lq′(R,B1)→Lq(R,B2).

This lemma allows (since q > 0) to replace the study of the second term in the right

hand side of (3.12) by that of

W (x, t) =

∫ ∞

0

ei(t−s)∆[∆g, χ]u(s)ds = U0U
∗
0 (x, t),

where U0 = eit∆ is bounded from L2(Rn) to Lq(R, Lr(Rn)) and U∗
0 is bounded from

L2(R, H
−1/2
comp) to L2(Rn), which gives the estimates for W and thus for w.

4 Applications

In this section we sketch the proofs of Theorem 1.2 and Theorem 1.3.

We start with Theorem 1.2. From Theorem 1.1 we have an estimate of the linear flow of

the Schrödinger equation

‖e−it∆gu0‖L5(R,L30/11(Ω)) ≤ C‖u0‖L2(Ω).

One may shift regularity by 1 and obtain

‖e−it∆gu0‖L5(R,W 1,30/11(Ω)) ≤ C‖u0‖H1
0 (Ω).

For T > 0, let XT := L5((0, T ],W 1,30/11(Ω)), one may then set up the usual fixed point

argument in XT .

Let us proceed with Theorem 1.3. From [27], one has a global in time control on the

solution u, at the level of Ḣ
1
4 regularity:

u ∈ L4((0,+∞), L4(Ω)).
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By interpolation with either mass or energy conservation, combined with the local existence

theory, one may bootstrap this global in time control into

u ∈ Lp−1((0,+∞), L∞(Ω)),

from which scattering in H1
0 (Ω) follows immediately.

5 Appendix

5.1 Construction of Melrose and Taylor parametrices: general

theory.

We provide in this appendix an outline of the construction of Melrose and Taylor parametrices

for diffractive problems. The material is originally from the papers [28], [26], [35].

Let x denote the local geodesic normal coordinates on ∂Ω such that the normal coordinate

xn > 0 defines Ω and such that the principal symbol of −∆g on T ∗(Ω) writes

< η, η >g= η2
n + r(x, η′). (5.1)

The time variable and its dual are respective t and λ. Let

Q = {(x, t, η, λ), xn = 0}, P = {(x, t, η, λ), λ2 = η2
n + r(x, η′)}. (5.2)

The cotangent bundle of ∂Ω × R is naturally the quotient of Q by the action of translation

in ηn and we take as coordinates (x′, t, η, λ). Assume that ∂Ω is strictly convex, so that

geodesics (light rays) which hit ∂Ω tangentially have exactly second order contact. The

overlying bicharacteristic is called a glancing ray. A point ρ ∈ Q∩P is called glancing point

if the bicharacteristic through ρ is a glancing ray. This is equivalent to the condition ηn = 0.

Strict convexity implies that at such points ∂xnr(x, η
′)|ρ < 0.

A point (x′, t, η′, λ) ∈ T ∗(∂Ω × R) is classified as one of three distinct types. It is said

to be hyperbolic if λ2 > r(x, η′) so that there are two distinct nonzero real solutions ηn to

λ2−r(x, η′) = η2
n. These two solutions yield two distinct bicharacteristics, one of which enters

Ω as t increases (the incoming ray) and one which exits Ω as t increases (the outgoing ray).

The point is elliptic if λ2 < r(x, η′), so there are no real solutions ηn to λ2 − r(x, η′) = η2
n. In

the remaining case λ2 = r(x, η′) there is a unique solution which yields a glancing ray, and

the point is said to be a glancing point. Consider the problem

−(λ2 + ∆g)w(x, λ) = 0, w(x′, 0, λ) = f(x′, λ).
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Let (y, yn+1, ξ, ξn+1) denote the canonical coordinates on T ∗(Rn+1). The normal form for a

pair of glancing hypersurfaces is the pair

QF = {(y, yn+1, ξ, ξn+1), yn+1 = 0}, PF = {(y, yn+1, ξ, ξn+1), ξ
2
n+1 − yn+1ξ

2
1 − ξ1ξn = 0}.

(5.3)

Let ρ = (x̄, 0, η̄, 1) be a glancing point in Q ∩ P . By the equivalence of glancing surfaces

theorem of Melrose [26], there exists a homogeneous canonical transformation χ from a

conical neighborhood of the point ρF = (y = 0, yn+1 = 0, ξ1 = 1, ξ′′ = 0, ξn+1 = 0) in

T ∗(Rn+1) to a conical neighborhood of ρ in T ∗(Rn × R) such that χ maps ρF to ρ, QF to Q

and PF to P . By translation invariance of both forms, one can take λ = ξ1.

In the model coordinates, the function

ΦF (y, yn+1, ξ, ξn+1) =< y, ξ > +
2

3

ξ3
n+1

ξ2
1

(5.4)

satisfies dΦF =
∑n+1

j=1 ξjdyj when restricted to the Lagrangian manifold of the form

ξ = const., ξ2
n+1 = yn+1ξ

2
1 + ξ1ξn.

Let Φ(x, ξ, ξn+1) + tξ1 be this function in (x, t, ξ, ξn+1) coordinates. One seeks to use (x, t, ξ)

as coordinates on P , since in this coordinates Φ solves the eikonal equation, that is

(x, t, ξ) → (x, t, dxΦ(x, ξ, ξn+1)) ∈ P

parameterizes the characteristic variety P . The hypersurface P is defined by

ξ2
n+1 = xnf(x, ξ, ξn+1)ξ

2
1 + ξ1ξn,

where yn+1 = xnf(x, ξ, ξn+1), with f(x, ξ, ξn+1) > 0, homogeneous of degree 0. Consider the

mapping

P → R
n, P ∋ p→ (ξj(χ

−1(p)))j∈{1,..,n} ∈ R
n,

defined by sending p to the values of the (ξj)j∈{1,..,n} at the image point under the canonical

transformation χ. Combining this map with the projection Y from P to the base gives (for

small xn) a map with Whitney folds at points in P for which 2ξn+1 = xn∂ξn+1f(x, ξ, ξn+1)ξ
2
1

(see [26, Chp.4]). Near the positive ξ1 axis, the image of these folding points under Y is

defined by

ξn + xnφ(x, ξ′) = 0

for some positive, elliptic φ homogeneous of degree one in ξ′, with image Y (P ) = {ξn +

xnφ(x, ξ′) ≥ 0}. In particular, on ∂Ω × R, the hyperbolic, elliptic and glancing points are
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respectively given by ξn > 0, ξn < 0 and ξn = 0. If we consider in P the submanifolds

defined by the constancy of the (ξj)j=1,..,n, Λξ = {p ∈ P, Y (p) = (., ξ)}, (i.e. the Lagrangian

Λξ foliates P near ρ), then the function Φ is satisfies d(Φ|Λξ
) = α|Λξ

, and, since Y is a fold,

Φ|P can be written uniquely in the form

Φ = Y ∗
(

Θ ±
2

3
(−ζ)3/2

)

, where Θ, ζ : Y (P ) → R are C∞. (5.5)

The even part of Φ projects to a function θ(x, ξ) + tξ1, smoothly extendable. The odd part

vanishes to second order (and hence to third order) at the fold because the differential of Φ

is the pullback of a smooth form. Therefore, the odd part of Φ can be written in the form

±µ(x, ξ)(ξn + xnφ(x, ξ′))3/2,

where µ is a smoothly extendable function defined on Y (P ), homogeneous of degree −1/2.

At xn = 0, P is defined by ξ2
n+1 = ξ1ξn and Φ is given by

< y(x′, t, ξ), ξ > +
2

3

ξ3
n+1

ξ2
1

= θ0(x
′, ξ) + tξ1 ±

2

3

ξ
3/2
n

ξ
1/2
1

,

with θ0(x
′, ξ) = θ(x′, 0, ξ), µ(x, ξ) 6= 0. We take µ(x, ξ) > 0 and define

ζ(x, ξ) = −µ2/3(x, ξ)(ξn + xnφ(x, ξ′)),

so that Y (P ) = {ζ(x, ξ) ≤ 0}. At xn = 0 we have ζ(x′, 0, ξ) = ζ0(ξ) = −ξ
−1/3
1 ξn. The above

imply that the phases Θ, ζ satisfy the eikonal equations (2.8).

Proposition 5.1. (see [35], [29], [28]) Let w(x, λ) solve

{

−(λ2 + ∆g)w(x, λ) = 0,
w(x, λ)|∂Ω = f(x′, λ).

(5.6)

Near a glancing direction, the stationary wave w(x, λ) can be written in the form

w(x, λ) =

∫

(

a(x, λ, ξ′)A+(ζ) + b(x, λ, ξ′)A′
+(ζ)

)Ai(ζ0)

A+(ζ0)
eiθ(x,λ,ξ′)K̂(f)(λ, ξ′)dξ′,

where here ξ′ = (ξ2, .., ξn), the phase functions θ(x, λ, ξ′) = λθ(x, 1, ξ′/λ), ζ(x, λ, ξ′) =

λ2/3ζ(x, 1, ξ′/λ) are smooth and satisfy the eikonal equations (2.8) in the region ζ ≤ 0,

K is a Fourier integral operator of order 0 and a ∈ S
1/6
phm, b ∈ S

−1/6
phm are polyhomogeneous

symbols defined on a conic neighborhood of the glancing point.
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