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ABSTRACT
A non destructive evaluation system dedicated to rail inspec-
tion using a non-contact eddy current sensor embedded in a
subway train is presented. An original processing approach
borrowed from the MUSIC algorithm is proposed for rail
surface defects detection and classification. This approach,
based on the eigen decomposition of the signal covariance
matrix, produces signal and noise subspaces. The projections
of the typical defect signatures on the noise subspace and a
multiplicative fusion of the elementary detectors are then per-
formed. Compared to the approaches previously used in the
same context, this approach yields to better results, particu-
larly for shelling isolation. The proposed method has been
tested successfully on the labeled defect data set of a subway
line.

1. INTRODUCTION

Nondestructive testing (NDT) is used, amongst other fields,
for rail monitoring of guided transportation systems. The
goal is to ensure a high security level by detecting early rail
breakages and to contribute to maintenance policies by lo-
calizing minor defects such as rail shelling. In this frame-
work, the NDT techniques operate mainly from electromag-
netic and/or ultrasonic signals, with various, and often com-
bined, approaches [9, 16, 17, 12].

This study deals with the detection and classification of
rail surface defects using a non-contact eddy current sen-
sor embedded in a subway train, introduced in previous
works [11]. Such a eddy current sensor is sensitive to any
modification of the geometry and/or electromagnetic char-
acteristics of the surface of a conductive target. In order
to not only detect but also classify the rail defects (trans-
verse splits, shellings,. . . ) or singularities (fishplated joints,
welded joints,. . . ), the sensor has been associated with vari-
ous techniques of classification [10, 3] or signal processing,
such as a time heuristic approach, wavelet analysis, inverse
filtering [1] and Independent Component Analysis (ICA) [2].
These methods are able to detect and classify fishplated joints
and welded joints with high correct detection and low false
detection rates, but cannot isolate correctly shellings.

An approach for rail monitoring, where eddy current
measurements are processed by a subspace approach bor-
rowed from the multiple signal classification (MUSIC)
method, is presented here. This approach makes use of the
fact that typical defect signatures can be highlighted. Orig-
inally, the MUSIC algorithm has been proposed to estimate

the directions-of-arrival of multiple narrowband sources in
passive sensor arrays [15, 6]. Then MUSIC has been used for
ultrasonic non destructive evaluation applications [14], seis-
mic wave separation [5], mobile communication [8, 7] and
recently for buried object localization [13]. It is based on
the eigenspace decomposition of the autocovariance matrix
of the measured data in order to obtain signal and noise sub-
spaces. The basic idea is then to project the typical signatures
on the noise subspace resulting in a minimum value when
the typical signature and the defect are close. The proposed
approach gives satisfactory results and, contrary to the pre-
viously mentioned techniques proposed in this context, even
for the isolation of shellings defects from the other rail sin-
gularities.

The organization of the paper is as follows. The instru-
mentation and signals are presented in Sec. 2. The high res-
olution MUSIC algorithm is briefly presented in its original
form in Sect. 3. The application of this algorithm to simul-
taneously detect and classify the rail defects is presented in
Sect 4. The results obtained by tuning the detectors from
ROC curves are shown and discussed in Sec. 5.

2. SENSOR, SIGNALS, AND DEFECTS

The processed signals are provided by a non-contact double-
coils and double-frequencies eddy current sensor embedded
in a subway train, presented with more details in [11] and il-
lustrated Fig. 1. The sensor has been designed and optimized

Figure 1: Eddy current sensor prototype.

according to the following specifications: positioning at 40
mm height, vertical and horizontal displacements of the sen-
sor due to the bogie dynamics and 100 km/h maximum speed



of the train. Moreover, a particular attention has been given
for strong acceleration levels (until 10g in subway context)
and electromagnetic compatibility problem caused mainly by
the traction currents that circulate in the rails.

The two differential coils ensure a greater immunity to
the target-sensor distance variations for the detection of lo-
calized cracks as well as large shellings (see Fig. 2). The
two supply frequencies make the sensor sensitive to the rail
electromagnetic characteristics for different skin depths and
give some relevant information for instance in the case of
welded joint.

Figure 2: Example of shelling.

After preprocessing, eight real signals are available,
which are the active and reactive parts of four complex chan-
nels corresponding to the two coils and the two frequencies
of the sensor, as shown in Fig. 3. The device thus generates
complementary information that will be aggregated during
the phase of defect recognition. The digitalization is carried
out with respect to the distance covered by the train with a
fixed step of 5 mm. It must therefore be noted that, in all that
follows, processed signals are discrete signals depending on
the distance.

Figure 3: Data processing chain.

Fig. 4 gives an example of the first (active) signal on
500 m of rail. Particular points can be located, like switch
(Sw), undulatory wear (UW) of the rail, fishplated joints (Fj),
welded joints (Wj) and shellings (Sh). The complexity of
the processing lies in the fact that the track presents a great
number of singularities which must be distinguished from the
real defects.

In order to reduce the impact of low dynamics of the in-
spection vehicle and the influence of electronic noise, a band-
pass filtering between 0.05 m and 2.5 m is applied for the
eight received signals. For the processing design and after
perusal of records, track visits are required, in order to pre-
cisely label each detected singularity. For each of the 8 sig-
nals, a singularity is recorded as a vector of n = 160 sam-

Figure 4: Example of raw signal evolution on 500 m track.

ples (0.8 m), around the labeled point. This has led to gather
599 particular points distributed into three classes: fishplated
joints (Fj), welded joints (Wj) and shellings (Sh). These par-
ticular points will be called defect in the following, even if
only shellings are real defects.

3. THE MUSIC ALGORITHM

The MUSIC (Multiple Signal Classification) algorithm has
been initially proposed to process the signals received on an
array of antennas and estimate the number of incident wave-
fronts and the emitter locations [15]. The basic data model
used for characterizing the signals received on a array of m
sensors is:

x = Ea+b, (1)

where x is the m-vector of received signals amplitudes, a the
d-vector of incident signals amplitudes, b is a m-vector of
white noise with zero mean and variance σ2, and E is the
(m×d)-matrix of the signal arrival angles.

MUSIC is based on eigen decomposition of the received
signal covariance matrix R = E[xxH ], where the subscript
H denotes the conjugate transpose, giving:

R = SΛSH +B [σ2I]BH , (2)

where S is the signal subspace matrix and B is the noise
subspace matrix. The projection operators onto the signal
and the noise subspaces are given by:

ΠS = SSH , ΠB = BBH . (3)

The so-called steering vector which represents the shape
of the incident signals is considered as known. For ex-
ample, in the case of planar wavefronts received on an ar-
ray of sensors, the associated steering vector is given by:

e(θ) =
[
1, e−2 jπ f δ sinθ

c , ... , e−2 jπ f (m−1) δ sinθ
c

]T
, where θ is

the direction of arrival of the planar wavefronts, c is the ve-
locity of the wawe), δ is the distance between two adjacent
sensors, f is the signal frequency. The Euclidean distance
dist between the estimated noise subspace and the steering
vector e(θ) can be computed by: dist2 = e(θ)H ΠB e(θ).
Thus, the basic idea behind the MUSIC algorithm is that the
maximum of 1/dist2 is obtained around the true signal ar-
rival angles. Finally, the spatial spectrum obtained by the
MUSIC algorithm is given by:

z(θ) =
1

e(θ)H ΠB e(θ)
. (4)



4. PROPOSED METHOD

The proposed method involves three steps, described in the
following subsections: building the defect typical signatures,
deriving the elementary detectors from a signal moving win-
dow, enhancing the classification performances by fusion of
the elementary detectors.

4.1 Typical signatures

As mentioned at the end of Sec. 2, the database of defect
signatures, which are, for each of the 8 signals, vectors of
n = 160 points (0.8 m), is distributed into 3 classes: fish-
plated joints (Fj), welded joints (Wj) and shellings (Sh).
For each class k ∈ {1,2,3}, a ”typical” signature g jk =
[g jk(1,) · · · ,g jk(n)]T of length n can be obtained by averag-
ing the corresponding signatures, scaled between -1 and +1,
for each signal j = 1, . . . ,8. 132 (resp. 358, 109) defects are
used to built the Fj (resp. Wj, Sh) typical signatures, shown
resp. in Fig. 5, 6 and 7.

Figure 5: Typical signatures g j1 of the fishplated joints (Fj).

4.2 Elementary detectors

From the recorded signals, at each point for the design, but
also later, at each instant for the detection and classification
in real time, a sample d j = [d j(1), ...,d j(n)]T is extracted
from a window of length n = 160 samples, for each signal
j = 1, . . . ,8. Note that the amplitudes of the Fj, Wj and Sh
defects are different as shown in Fig. 4 and the proposed
subspace approach is sensitive to the amplitude. Each sample
is then normalized between −1 and 1 before any processing.

In case of defect, the defect typical signature gives the
model of the current sample:

d j = g jk +b j, (5)

where, for each signal j, d j, g jk and b j are the vectors of
length n of resp. the moving window signal sample, the k-th
typical signature and the white noise with variance σ2

j .

Figure 6: Typical signatures g j2 of the welded joints (Wj).

The eigen decomposition of the sample covariance esti-
mate matrix R j of the current sample d j gives:

R j = S j Λ j ST
j +B j [σ2

j I]B
T
j , (6)

where S j and B j are the signal and noise subspace matrices
and the corresponding projection operators onto the signal
and noise subspaces are given by:

ΠS j = S j ST
j , ΠB j = B j BT

j . (7)

The Euclidean distance between the estimated noise sub-
space and a typical defect signature is minimal when this typ-
ical defect signature and the signal sample are close, or, for
signal j and defect k, the detector:

z jk =
1

gT
jk ΠB j g jk

(8)

is maximal.

4.3 Fusion of detectors
As shown in the diagram of Fig. 8, the defects are classi-
fied sequentially: the Fj defects first, then the Wj defects and
finally the Sh defects.

For each defect k, eight detectors z jk can be built by
(8), from the active parts ( j = 1,3,5,7) and reactive parts
( j = 2,4,6,8) of the signals. Using this redundancy, given by
the double-coils double-frequencies sensor, greatly improves
the robustness of the detection. Thus two vectors achieving
a multiplicative fusion of the elementary detectors are com-
puted. The first vector, where the products involve the reac-
tive parts:

c =

[
∏

j=2,4,6,8
z j1, ∏

j=2,4,6,8
z j2, ∏

j=2,4,6,8
z j3

]
, (9)

is used to differentiate the Fj defects (k = 1) from the Wj (k =
2) and Sh (k = 3) defects. The second, where the products



Figure 7: Typical signatures g j3 of the shellings (Sh).

Figure 8: Diagram of detection and classification.

involve the active parts:

r =

[
∏

j=1,3,5,7
z j2, ∏

j=1,3,5,7
z j3

]
, (10)

is used to differentiate the Wj (k = 2) defects from the Sh
(k = 3) defects. The inclusion of the active or reactive parts of
the signals is based on the Receiver Operating Characteristic
(ROC) curves analysis, as presented in the next section.

Moreover, as the three typical signatures are very close to
each other, the final detectors include amplitude tests of the
original first signal window d1 without normalization:

dF j = {max(c) == c(1)} and {max(d1) > T hF j}
dW j = {max(r) == r(1)} and {maxd1) > T hW j} (11)
dSh = {max(r) == r(2)} and {max(d1) < T hSh},

where T hF j, T hW j and T hSh are detection thresholds for
Fishplated joints (Fj), Welded joints (Wj) and Shellings (Sh),
respectively.

5. EXPERIMENTAL RESULTS

The choice of the signals involved in the detectors and the
tuning of the thresholds are based on the analysis of the
Receiver Operating Characteristic (ROC) curves. In such
curves, the correct detection probabilities (Pc) are plotted
with respect to the false detection probabilities (Pf); the near-
est to the (0,1) point the ROC curve is, the better the tuning
is.

Figure 9: ROC curves for Fj.

Figure 10: ROC curves for Wj.

For the defects Fj, Wj and Sh, Fig. 9, 10 and 11 present
the ROC curves with 0.04 < T hF j < 0.16 , 0.013 < T hW j <
0.03 and 0.013 < T hSh < 0.03, where the probabilities are
obtained by Leave One Out (LOO). This cross-validation
procedure (see for instance [4]) involves splitting the data set
of N examples into two parts: a learning set of N−1 samples
and a validation set of only one example. The method iter-
ates N times the classifier learning with, at each time, a dif-
ferent validation example. The probabilities can then be ob-
tained by averaging the validation results. Applying LOO in
our context involves simply to leave out one signature when
computing the typical signatures. It can be seen from the fig-
ures that the reactive (resp. active) parts of the signals are
better suited to test Fj (resp. Wj and Sh). The optimal tun-
ing is obtained for T hF j = 0.1 (using only reactive parts),
T hW j = 0.019 and T hSh = 0.0272 (using only active parts).
The minimal distances to the (0,1) point are notably small:
dF j = 0.0155, dW j = 0.0546 and dSh = 0.0738.

The detection and classification results, which simultane-
ously minimize the false alarm rate (P f ) and maximize the



Figure 11: ROC curves for Sh.

correct detection rate (Pc), obtained by LOO, are given Ta-
ble 1. The fishplated joints (Fj), welded joints (Wj), and even
shellings (Sh) are detected and classified with very satisfying
detection rates.

Defects Pc P f
Fj 98.48% 0.33%
Wj 95.81% 3.51%
Sh 97.25% 6.84%

Table 1: Correct and false detection probabilities for each
defect.

6. CONCLUSION

A non destructive evaluation system dedicated to rail inspec-
tion has been presented. An original processing approach
borrowed from the MUSIC algorithm has been derived for
rail surface defects detection and classification. This ap-
proach, based on the eigen decomposition of the signal co-
variance matrix, produces signal and noise subspaces. The
projections of the typical defect signatures on the noise sub-
space and a multiplicative fusion of the elementary detectors
are then performed. Compared to the approaches previously
used in the same context, such as a time heuristic approach
and the wavelet analysis ([1]), the proposed approach yields
to better results, particularly for shelling isolation. Mixing
and comparing the proposed approach with the ones previ-
ously used will be done and can still improve performance.
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