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Convergence of non-linear functionals of

smoothed empirical processes and kernel

density estimates

Corinne Berzin ∗ José R. León † Joaqúın Ortega ‡

Abstract. We consider regularizations by convolution of the empirical process and study the asymp-
totic behaviour of non-linear functionals of this process. Using a result for the same type of non-linear
functionals of the Brownian Bridge, shown in a previous paper [4], and a strong approximation theo-
rem, we prove several results for the p-deviation in estimation of the derivatives of the density. We also
study the asymptotic behaviour of the number of crossings of the Smoothed Empirical Process defined
by Yukich [17] and of a modified version of the Kullback deviation.

KEY WORDS: Non-linear functionals, Empirical process, kernel density estimation, crossings, Kullback-
Leibler deviation, regularization by convolution.

1 Introduction

The problem of estimating the density s(x) of simple random sample X1, X2, . . . , Xn is a classical problem
in non-parametric statistics. The most popular method is kernel estimation, introduced by Parzen and
Rosenblatt in the 50’s. The study of consistency properties and asymptotic normality of these estimators
was one of the important subjects of study during the following two decades.

Among these works was Bickel & Rosenblatt [5] where the authors use strong convergence results
to establish the asymptotic normality of the L2 distance between the estimator and the real density.
This work, source of inspiration for many others, allows the substitution of the Empirical Process by
the Brownian Bridge in the functional under study, that is, the L2 distance between the estimator and
the real density. This replacement can be controlled using the strong approximation theorem of Komlós,
Major and Tusnády [8]. One of the important consequences of their result is that it gives L2 confidence
bands and provides the tools for hypothesis tests for contiguity alternatives for functions close to the
density in the null hypothesis. Silverman [16] extends these methods to the estimation of the density’s
derivatives.

In this work we generalize Bickel & Rosenblatt’s result to kernel estimators of the density and of the
derivative of the density, not only for the L2 norm but also for Lp norms. The first work where this
problem was studied was Csörgő y Horváth [7], also using the strong approximation method. From then
on there has been much work done trying to simplify the hypothesis for the density and the kernel, as,
for example, Horváth [12], Beirlant & Mason [3] and finally the work of Giné, Mason & Zaitsev [9], where
a limit theorem uniform with respect to the regularization kernel is obtained. In the last three papers
mentioned the technique of Poissonization is used, which proves to be stronger than strong approximation.

Our method is interesting because, apart from allowing us to study the derivative of the density,
handles the asymptotic convergence of functionals of the type∫ 1

0

G(
√
nh(l̂n(u)− l(u)))du
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where l̂n is an estimator of the density or its derivatives. The p norm case corresponds to G(x) = |x|p.
Using this viewpoint we can look at the asymptotics for a variant of the Kullback deviation. The results
are obtained passing to functionals of the Brownian Bridge via the strong approximation theorem and
then studying the asymptotic behaviour of these functionals using methods developed in a previous article
[4].

With these same methods we can also study the number of crossings of a level by the Smoothed
Empirical Process, defined by Yukich [17], as we explain in the next section, where we describe more
precisely our results.

2 Description of the Results

Let X1, X2, . . . , Xn be a random sample from the distribution F with density s(u), Fn be the empirical
distribution of the sample and βFn (u) =

√
n(Fn(u)− F (u)) be the empirical process. The kernel density

estimator is

ŝn(u) = ŝn,h(u) =
1

h

∫ ∞
−∞

ϕ(
u− v
h

) dFn(v)

where ϕ is the estimation kernel and h depends on n: h = h(n).
1.- Define

√
n[ŝn(u)− E(ŝn(u))] =

1

h

∫ ∞
−∞

ϕ(
u− v
h

) dβFn (v)

Integrating by parts √
nh[ŝn(u)− E(ŝn(u))] =

√
h β̇n,h(u)

where β̇n,h is the derivative of the ϕ-regularization of the empirical process βn,h. If s has two continuous
and bounded derivatives it is known that the optimal window is h(n) = O(n−1/5). The window is
sub-optimal if h = o(n−1/5), otherwise it is super-optimal. It is also known that

lim
n→∞

√
nh[E(ŝn(u))− s(u)] = α(u)

where α(u) is a known function of the unknown density for an optimal window and α(u) ≡ 0 for sub-
optimal windows.

Consider the function gp(x) = |x|p − E |N |p, p ≥ 1 where N is a standard Gaussian r.v. The results
that we will show imply for sub-optimal windows the following theorem of Csörgő & Horváth [7]:

1√
h

∫ 1

0

[
|
√
nh(ŝn(u)− s(u))|p − E[|

√
nh(ŝn(u)− s(u))|p]

]
du→ N(0, v2p)

Indeed the integral above is equivalent to

1√
h

∫ 1

0

gp(

√
hβ̇n,h(u)

[Var(
√
hβ̇n,h(u))]1/2

)|Var(
√
hβ̇n,h(u))|p/2 du.

Using now the KMT theorem we can replace β̇n,h(u) by the derivative of the regularization of the F-B.B.
and get that the last integral converges to N(0, v2p).

In section 6 we obtain results along this line for the derivatives of the density and for a general function
in place of |x|p for the sub-optimal and optimal cases.

Let βFn (u) =
√
n(Fn(u)− F (u)) be the empirical process and define

νn,h(u) = ŝn,h(u)− s(u).

If ϕ = 1[−1,1]/2 then
√
nhνn,h(u) =

βFn (u+ h)− βFn (u− h)

2
√
h

+ o(1)
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as long as the density is sufficiently regular and h is chosen adequately. We want to study the asymptotic
behaviour of the sums

1

n

[nt]∑
i=1

gn(
i

n
,
√
nhνn,h(

i

n
)) and

1

n

[nt]∑
i=1

f(βFn (
i

n
))gn(

i

n
,
√
nhνn,h(

i

n
))

where gn is a sequence of functions that satisfy certain properties that will be made explicit later on.
These sums are generalizations of the so-called divisible statistics studied by Khmaladze [15] and they
correspond to the following integrals∫ t

0

gn(u,
√
nhνn,h(u))du and

∫ t

0

f(βFn (u))gn(u,
√
nhνn,h(u))du. (1)

Using the Komlós, Major & Tusnády (KMT) strong approximation theorem ([8], see section 9 for the
statement) we show that if gn → g then

lim
n→∞

∫ t

0

gn(u,
√
nhνn,h(u))du =

∫ t

0

E[g(u,

√
s(u)

2
N)]du

lim
n→∞

∫ t

0

f(βFn (u))gn(u,
√
nhνn,h(u))du =

∫ t

0

f(bF (u))E[g(u,

√
s(u)

2
N)]du

where bF (u) is the F-Brownian bridge (F-B.B.), N is a standard Gaussian variable and the convergence
is in L2(Ω) for the first limit and in law for the second. We also study the speed of convergence in both
cases. Using a similar result for the F-B.B. shown in a previous work [4], we get that there exists a

Brownian motion (B.M.) W̃ independent of bF and a positive function σg(.), which depends only on g
such that

lim
n→∞

1√
h

∫ t

0

{f(βFn (u))gn(u,
√
nhνn,h(u))− f(bF (u))E[g(u,

√
s(u)

2
N)]}du

=

∫ t

0

f(bF (u))dW̃ (σg(u)).

with convergence in law. Making f ≡ 1 one gets the same result for the first kind of integrals in (1). We
consider these problems for general kernel estimators of the density and also several applications of these
results which we now describe briefly.

2.- We consider in section 7 the modified Kullback deviation between the kernel estimator of the density
ŝn and s. Let

K(ŝn, s) =

∫ 1−h

h

ŝn(u) ln(
ŝn(u)

s(u)
) du.

We show that

n
√
h[K(ŝn, s)−

1

2

∫ 1−h

h

1

s(u)
E[ŝn(u)− s(u)]2 du−

∫ 1−h

h

(ŝn(u)− s(u)) du]

is equivalent, in the sub-optimal and optimal cases, to

1

2
√
h

∫ 1

0

s−1(u)
[
[
√
nh(ŝn(u)− s(u))]2 − E[

√
nh(ŝn(u)− s(u))]2

]
du

which is similar to the previous result for p = 2 and converges to a normal distribution. We show a
similar result for the super-optimal case but with a different normalization.
3.- Define as in Yukich [17] the Smoothed Empirical Process:

β̃n,h(u) =
√
n(F̂n(u)− F (u))

where F̂n(u) =
∫ u
−∞ ŝn(v) dv.
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Yukich proved that if
√
nh2 → 0 then β̃n,h(u) converges in law (in notation

D→) to the F-B.B. bF (u).

Moreover, using a Taylor expansion for
√
n(F̃n(u)− F (u)), where

F̃n(u) =

∫ ∞
−∞

ϕ(v)F (u− hv) dv,

he shows that, if
√
nh2 → a, then β̃n,h(u)

D→ bF (u) +
a

2
K2ṡ(u), where K2 =

∫ ∞
−∞

ϕ(v)v2dv.

Let Ñh
n (x) be the number of times that the process β̃n,h(·) crosses level x before time 1, and define

˜̀h
n(·) as a modification of the occupation measure for β̃n,h (see Corollary 2 in section 9 for an exact

definition). By a formula of Banach-Kac [2, 14]∫ ∞
−∞

f(x) Ñh
n (x) dx =

∫ 1

0

f(β̃n,h(u))| ˙̃
β n,h(u)|du.

Let Λh = ( πh
2||ϕ||22

)
1
2 , using results included in a previous work [4] we obtain in section 9 the following:

a) If
√
nh2 → 0 then

ξ̃hn(f) =
1√
h

∫ ∞
−∞

f(x)(ΛhÑn(x)− ˜̀h
n(x))dx

D→ V

where V is a r.v. which, conditional on F∞, the σ-field generated by {bF (u), 0 ≤ u ≤ 1}, has the same

law as σ0
∫ 1

0
f(bF (u))

√
s(u)dW̃ (u), W̃ (·) is a B.M. independent of bF (·) (see Theorem 3 in [4]) and σ0 is

defined in the next section.
b) On the other hand if

√
nh2 → a then

Λh

∫ ∞
−∞

f(x)Ñh
n (x) dx

D→
∫ 1

0

f(bF (u) +
a

2
K2ṡ(u))

√
s(u)du.

Moreover, we show that ξ̃hn(f) converges weakly to a r.v. Ṽ such that

L(Ṽ /F∞) = σ0

∫ 1

0

f(bF (u) +
a

2
K2ṡ(u))

√
s(u) dW̃ (u).

c) In section 9 we also treat the case
√
nh2 → +∞. In this situation we need a different normalization

sequence for the process β̃n,h.

3 Hypothesis and notation

Let F be a distribution function with bounded support and density s. To simplify the notation we shall
suppose that its support is [0, 1] i.e. F (0) = 0 and F (1) = 1. The F-Brownian Motion is defined as
WF (t) = W (F (t)), where W is a standard B. M. With this definition one has E(WF (u)WF (v)) = F (u∧
v). The F-B.B. is defined as bF (t) = WF (t)−F (t)W (1) and then E(bF (u)bF (v)) = F (u∧v)[1−F (u∨v)].

For each t and h > 0 we define the regularized processes bFh (t) = ϕh ∗ bF (t) and WF
h (t) = ϕh ∗WF (t)

where ϕh(t) = 1
h
ϕ( t
h

) and ∗ denotes the convolution. We use h instead of ε (as in [4]) for the regularization
parameter to be consistent with the usual notation in density estimation.

We shall use the Hermite polynomials, which can be defined by exp(tx − t2

2 ) =
∑∞
n=0Hn(x) t

n

n! .
They form an orthogonal system for the standard Gaussian measure φ(x)dx and, if h ∈ L2(φ(x) dx),

h(x) =
∑∞
n=0 ĥnHn(x) and ||h||22,φ =

∑∞
n=0 n!ĥ2n. Mehler’s formula [6] gives a simple form to compute

the covariance between two L2 functions of Gaussian r.v.’s: If (X,Y ) is a Gaussian random vector having
correlation ρ then

E[h(X)k(Y )] =

∞∑
n=0

ĥnk̂nn!ρn. (2)

We have the following hypothesis

4



(H1) For the kernel ϕ:
∫ 1

−1 ϕ(t) dt = 1, ϕ ≥ 0, ϕ is absolutely continuous with support in [−1, 1]. Define

ψ(u) = ϕ ∗ ϕ̄(u) where ϕ̄(u) = ϕ(−u) and θ(u) = ψ(u)||ϕ||−22 , u ∈ R. Let K2 =
∫∞
−∞ ϕ(v) v2 dv.

Further conditions will be required for some applications.

(H2) For the function s: s ∈ C2[0, 1], 0 < s(x) for all x ∈ [0, 1].

Let g(x, y) be a function in L2(φ(y)dy) a.s. continuous in the first variable and with polynomial
growth in the second variable (|g(x, y)| ≤ K P (|y|) for x in a set compact) that satisfies the following two
conditions:

i) E g(x,N) = 0, 0 ≤ x.

ii) E [Ng(x,N)] = 0, 0 ≤ x.

Define g(x, y) =
∑∞
k=2 ck(x)Hk(y) the Hermite expansion of g, where we suppose that ∀x > 0, ∃k ≥ 2

such that ck(x) > 0, (σ̇bh(u))2 = Var(ḃFh (u)) and

gh(u, y) = g(
√
h σ̇bh(u), y), (3)

and for 0 ≤ t ≤ 1

Sb
F

h (t) =
1√
h

∫ t

0

gh(u, ξbh(u))du with ξbh(u) =
ḃFh (u)

σ̇bh(u)
(4)

Define also

σ2(t) =

∫ t

0

κ(u) du (5)

where

κ(u) =

∞∑
k=2

k!c2k(
√
s(u)||ϕ||2)

[∫ 2

−2
θk(w) dw

]

=

∫ 2

−2
E[g(

√
s(u)||ϕ||2, X)g(

√
s(u)||ϕ||2, θ(w)X +

√
1− θ2(w)Y )] dw

and X,Y are independent, standard Gaussian variables. We shall write

lq(u, x) =

√
π

2

∣∣∣∣∣x+
qK2s̈(u)

2
√
s(u)||ϕ||2

∣∣∣∣∣ =

+∞∑
k=0

dk,q(u)Hk(x)

and

σ2
q (u) =

∫ 2

−2

∞∑
n=2

d2n,q(u)n!θn(w)dw,

for u ∈ [0, 1], x ∈ R and q ≥ 0 (note that σ2
0(u) doesn’t depend on u so we will note σ2

0(u) = σ2
0).

Also define cn =
2

K2
√
nh2

.

We have ḃFh (t) = 1
h

∫ t/h
−∞ bF (t− hy) dϕ(y). We introduce

Zb
F

h (f) = h−
1
2

∫ ∞
−∞

f(x)[ΛhN
bF

h (x)− `b
F

(x)] dx with Λh =

√
πh

2
||ϕ||−12 ,

where N bF

h (x) is the number of times that the process bFh (·) crosses level x before time 1 and `b
F

(·) is a
modification of the local time for the F-B.B. on [0, 1] that satisfies, for any continuous function f ,∫ ∞

−∞
f(x)`b

F

(x) dx =

∫ 1

0

f(bF (u))
√
s(u) du

In what follows we shall drop out the indices F when no confusion is possible. Throughout the paper,
Const shall stand for a generic constant, whose value may change during a proof, N denotes a standard
Gaussian r.v.
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3.1 Stable Convergence

We shall use the notion of stable convergence, which we describe now following [1, 11] and [13].
Let Xn be a sequence of r. v.’s defined over (Ω,F , P ) and taking values in C[0, 1], and let G ⊂ F be a

sub-σ-field. Let X be another r. v. defined over an extension (Ω̄, F̄ , P̄ ) of the original probability space,
with values in C[0, 1]. The sequence Xn converges G-stably to X if

lim
n

E(Y h(Xn)) = Ē(Y h(X)),

for all bounded and continuous functions h : C[0, 1]→ R and all G-measurable and bounded r.v. Y .
Stable convergence is invariant under absolutely continuous changes of the measure.

4 Preliminary Results

We shall say that a function f is locally Lipschitz if

|f(x)− f(y)| ≤ |P (x, y)||x− y| (6)

where P is a polynomial. .
We need two results from [4] which we state for completeness.

Theorem 1 Under H1, H2, i) and ii)

Sbh(t)→W̃ (σ2(t))

stably in C[0, 1] where W̃ is a B.M. and σ2(t) is given by (5). Furthermore the vector process (bFh (·), Sbh(·))
converges weakly in C[0, 1]× C[0, 1] towards (bF (·), W̃ (σ2(·))) and the processes bF (·) and W̃ (σ2(·)) are
independent.

Corollary 1 Under H1, H2 and if f ∈ C2 with f̈ bounded, Zbh(f) converges stably as h → 0 towards
a r.v. V ∈ L2(Ω) and the conditional distribution L(V |F∞) is Gaussian with zero mean and random

variance equal to σ2
0

∫ 1

0
f2(bF (u))s(u)du.

(σ2
0 has been defined in previous section 3).

Remark 1. Conditionally on F∞, V has the same distribution as σ0
∫ 1

0
f(bF (u))

√
s(u) dW̃ (u) (remem-

ber that F∞ is the σ-field generated by {bF (u), 0 ≤ u ≤ 1}).
Remark 2. Although the theorem has been stated assuming that in the definition of Sbh(t), gh(u, y) is

of the form g(
√
hσ̇bh(u), y), (see (3) and (4)), a slight modification of the proof shows that the result is

true for other forms of the function gh(u, y) that will appear in sections 6 and 9.

5 Convergence in L2 for the Empirical Process

Let βFn (u) =
√
n(Fn(u) − F (u)) be the empirical process associated to a n-sample X1, . . . , Xn of the

continuous distribution F , where Fn is the corresponding empirical d. f. and F satisfies the conditions
of section 3. The transformation Ui = F (Xi), i = 1, . . . , n gives a n-sample of the uniform distribution
U [0, 1]. If En(v) is the associated empirical distribution function, the corresponding empirical process is
αn(v) =

√
n (En(v)− v), 0 ≤ v ≤ 1. Note that αn(F (u)) = βFn (u) and if b(t) denotes the standard B.B.

sup
t∈[0,1]

√
n |αn(t)− b(t)| =

√
n ||βFn − bF ||∞

The following approximation theorem is due to Komlós, Major and Tusnády (1975) [8].
Theorem [KMT]For any integer n there exists some B.B. bn such that for some absolute positive con-
stants C,Λ, γ the following inequality holds:

P ( sup
t∈[0,1]

√
n|αn(t)− bn(t)| ≥ x+ C ln(n)) ≤ Λ exp(−γx)

6



for any positive x. Consequently

sup
t∈[0,1]

|αn(t)− bn(t)| = O(
ln(n)√
n

) a.s.

Let βn,h(u) =
1

h

∫ ∞
−∞

ϕ(
u− v
h

)βFn (v)dv, with ϕ verifying H1, be the regularized empirical process,

and denote by β̇n,h(u) its derivative. Defining bFn (·) = bn(F (·)), bn,h = bn ? ϕh and using the KMT
theorem, it is easy to see that

||βn,h − bn,h||∞ ≤ Const
ln(n)√
n

and ||β̇n,h − ḃn,h||∞ ≤ Const
ln(n)

h
√
n
,

where the constant is random.

Lemma 1 For p ≥ 1,

E(
√
n ||βFn − bFn ||∞)p ≤ Const (ln(n))p (7)

E(
√
n ||βn,h − bn,h||∞)p ≤ Const (ln(n))p (8)

E(
√
n ||β̇n,h − ḃn,h||∞)p ≤ Const h−p(ln(n))p (9)

Proof. We only consider the case p = 2, the proof is similar for general p. Define Yn(u) =
√
n|βFn (u)−

bFn (u)| and let Aλ = {||Yn||∞ ≥ λ + C ln(n)}, where λ ≥ 0 and C is the constant in the KMT theorem.
We have

E(||Yn||2∞) = E(||Yn||2∞1Acλ) + E(||Yn||2∞1Aλ) ≤ (λ+ C ln(n))2 + E(||Yn||2∞1Aλ) (10)

Call Gn the distribution function of ||Yn||∞, then, integrating by parts and using KMT

E(||Yn||2∞1Aλ) =

∫ ∞
λ+C ln(n)

u2 dGn(u)

= (λ+ C ln(n))2(1−Gn(λ+ C ln(n))) +

∫ ∞
λ+C ln(n)

2u(1−Gn(u)) du (11)

but by the inequality in the KMT theorem

1−Gn(λ+ C ln(n)) ≤ Λe−γλ; 1−Gn(u) ≤ Λe−γ(u−C ln(n))

thus

(11) ≤ Λ(λ+ C ln(n))2e−γλ + 2Λ

∫ ∞
λ+C ln(n)

ue−γ(u−C ln(n))du

≤ Const(ln(n))2 + ConstnγC
(

(λ+ C ln(n))e−γ(λ−C ln(n)) + e−γ(λ−C ln(n))
)

≤ Const(ln(n))2 (12)

Using (12) in (10) we get (7). We shall now prove (9), the proof of (8) is similar but simpler.

E(n ||β̇n,h − ḃn,h||2∞) = E(n sup
x
|
∫ ∞
−∞

1

h2
ϕ̇(
x− y
h

)(βFn (y)− bFn (y)) dy|2)

≤ E(n (sup
x

∫ ∞
−∞

1

h
|ϕ̇(u)| |βFn (x− uh)− bFn (x− uh)| du)2)

≤ Const
1

h2
E ||Yn||2∞ ≤ Const

(ln(n))2

h2
. �
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Theorem 2 Let g be an even function verifying (6), under H1 and H2 and if
ln(n)√
hn
→ 0 as h→ 0,

lim
n→∞

∫ 1

0

g(
√
hβ̇n,h(u))du =

∫ 1

0
E{g(

√
s(u)N ||ϕ||2)}du in L2

Proof. We have

E[

∫ 1

0

g(
√
hβ̇n,h(u))du−

∫ 1

0

E{g(
√
s(u)||ϕ||2N)}du]2≤Const E[

∫ 1

0

g(
√
hβ̇n,h(u))du−

∫ 1

0

g(
√
hḃn,h(u))du]2

+ Const E[

∫ 1

0

g(
√
hḃn,h(u))du−

∫ 1

0
E{g(

√
s(u)||ϕ||2N)}du]2 (13)

Using the Lipschitz property for g, Hölder’s inequality and lemma 1 the first term is bounded by

Const
(ln(n))2

nh
.

Up to a constant the second term is equal to

E[

∫ 1

0

g(
√
hḃFh (u))− E(g(

√
s(u)||ϕ||2N)]2 du ≤ Const E[

∫ 1

0

(g(ξbh(u)
√
hσ̇bh(u))− g(ξbh(u)||ϕ||2

√
s(u))) du]2

+ Const E[

∫ 1

0

(g(ξbh(u)||ϕ||2
√
s(u))− E[g(||ϕ||2

√
s(u)N)]) du]2.

For the first of these two terms, use the fact that

|
√
hσ̇bh(u)− ||ϕ||2

√
s(u)| ≤ Consth

for h ≤ u ≤ 1−h, the Lipschitz property and Hölder’s inequality to obtain that it is bounded by Consth2.
For the second term we consider the function

g(u, y) = g(y||ϕ||2
√
s(u))− E[g(

√
s(u)||ϕ||2N)].

It verifies i) and ii), hence by Theorem 1 the second term is O(h). We thus obtain that

(13) ≤ Const
(ln(n))2

hn
+O(h)

and the theorem holds. �

6 Estimation of a Density’s Derivatives

In [7] Csörgő and Horváth consider the asymptotic behaviour of the p-th order risk for the kernel estimator
of a density. In previous works the case p = 2 was established for sub-optimal windows by Bickel &
Rosenblatt [5] and in all generality by Hall [10].

With our method we can consider the same problem as Csörgő and Horváth but with a general G
instead of G(u) = |u|p and for the estimation of the derivatives of the density.

Assume that s is in Cm+2[0, 1] and satisfies the conditions of section 3. Define the estimator for the
mth-derivative as in [16] by

ŝ(m)
n (u) =

1

nhm+1

n∑
k=1

ϕ(m)(
u−Xk

h
)

with ϕ even and in Cm+1. We shall use the notation s
(m)
n (u) = E[ŝ

(m)
n (u)]. It is easy to show, using a

Taylor expansion of order m+ 2 for s, that for 0 < u < 1 the bias is

E[ŝ(m)
n (u)− s(m)(u)] =

(−1)m+2

(m+ 2)!
h2
∫ ∞
−∞

ϕ(m)(v)um+2s(m+2)(θ1) dv,

8



where θ1 depends on u, v and n. Thus h−2(E[ŝ
(m)
n (u)− s(m)(u)])→ K2s

(m+2)(u)/2 as n goes to infinity
(remember that K2 =

∫∞
−∞ v2 ϕ(v) dv). The variance term can also be calculated, giving

nh2m+1
E(ŝ(m)

n (u)− s(m)
n (u))2 =

∫ ∞
−∞

[ϕ(m)(v)]2 s(u− hv) dv − h[

∫ ∞
−∞

ϕ(m)(v) s(u− hv) dv]2

→
∫ ∞
−∞

(ϕ(m)(v))2 dv s(u) = ||ϕ(m)||22s(u)

i.e. nh2m+1σ2
n,m(u) → ||ϕ(m)||22s(u) as n→∞.

Let now G be a locally Lipschitz function (see (6) for the definition), we want to study

I(m)
n =

1√
h

∫ 1−h

h

{
G
( ŝ(m)

n (u)− s(m)(u)

σn,m(u)

)
− EG

( ŝ(m)
n (u)− s(m)(u)

σn,m(u)

)}
du.

It is well known, and can also be shown using the previous expressions for the bias and variance, that
the optimal estimation window for the mean square error is h = O(n−1/2m+5) i.e.

√
nhm+ 5

2 → Cm and
in this case

√
nhm+ 1

2 (s
(m)
n (u)− s(m)(u))

√
nhm+ 1

2σn,m(u)
→ fm(u) =

K2Cms
(m+2)(u)

2||ϕ(m)||2
√
s(u)

(14)

as n→∞. The window is sub-optimal if h = o(n−1/2m+5).
Let us introduce some notation before stating the next result.

σ2
so,m =

∞∑
k=2

k!
[ 1

k!

∫ +∞

−∞
Hk(y)φ(y)G(y) dy

]2
[

∫ 2

−2
θkm(ω) dω]

with

θm(ω) =
[∫ ∞
−∞

ϕ(m)(y)ϕ(m)(y + ω) dy
]
||ϕ(m)||−22 ,

σ2
o,m =

∫ 1

0

∞∑
k=2

k!
[ 1

k!

∫ +∞

−∞
Hk(y)φ(y)G(y + fm(u)) dy

]2
[

∫ 2

−2
θkm(ω) dω] du,

ζso(u) = [

∫ +∞

−∞
−z G(z)φ(z) dz]

ṡ(u)

2
√
s(u)||ϕ||2s(u)

,

ζo(u) =

∫ +∞

−∞
G(y)φ(y − f0(u))

1

η2(u)

[
(y − f0(u))2ḟ0(u)η(u)− ḟ0(u)η(u)− (y − f0(u))η̇(u)

]
dy

where
η2(u) = ||ϕ||22s(u) (15)

(see (14) for the definition of fm). We also define the following integral operator

〈Ka, a〉 =

∫ 1

0

∫ 1

0

F (u ∧ v)(1− F (u ∨ v))a(u)a(v) du dv (16)

Theorem 3 Let G be a function verifying (6), under H1, H2, if s ∈ C(m+3)[0, 1], ϕ is an even function

and
ln(n)√
nh
→ 0 as h→ 0, then

I(m)
n

D→ N(0, σ2
G,m)

where if m 6= 0

σ2
G,m =

{ σ2
so,m in the sub-optimal case
σ2
o,m in the optimal case

and if m = 0

σ2
G,m =

{ σ2
so,m + 〈Kζso, ζso〉 in the sub-optimal case
σ2
o,m + 〈Kζo, ζo〉 in the optimal case

9



Remark 1: For m = 0 and G(u) = |u|p the result was proved by Csörgő & Horváth in [7]. Note that, if
G is even, ζso(u) = 0 and then 〈Kζso, ζso〉 = 0.

Remark 2: In the sub-optimal case, if m = 0 and G is even we can drop the hypothesis that s ∈ Cm+3 ∈
[0, 1] and use the less restrictive condition s ∈ Cm+2 ∈ [0, 1].
The same conclusion holds if m 6= 0.

Proof.

I(m)
n =

1√
h

∫ 1−h

h

{
G
[ hm+ 1

2 β
(m+1)
n,h (u)

√
nσn,m(u)hm+ 1

2

+

√
nhm+ 1

2 (s
(m)
n (u)− s(m)(u))

√
nσn,m(u)hm+ 1

2

]
−E

{
G
[ hm+ 1

2 β
(m+1)
n,h (u)

√
nσn,m(u)hm+ 1

2

+

√
nhm+ 1

2 (s
(m)
n (u)− s(m)(u))

√
nσn,m(u)hm+ 1

2

]}}
du

where

β
(m+1)
n,h (u) =

1

hm+2

∫ ∞
−∞

ϕ(m+1)(
u− v
h

)βFn (v) dv

thus

hm+ 1
2 β

(m+1)
n,h (u) =

1

h
√
h

∫ ∞
−∞

ϕ(m+1)(
u− v
h

)βFn (v) dv =
√
h

1

h

∫ ∞
−∞

ϕ(m+1)(v)βFn (u− hv) dv

and then hm+ 1
2 β

(m+1)
n,h (u) has the same form as

√
hβ̇Fn,h(u) replacing ϕ̇ by ϕ(m+1). We have:

I(m)
n =

1√
h

∫ 1−h

h

{
G
[ hm+ 1

2 b
(m+1)
n,h (u)

√
nσn,m(u)hm+ 1

2

+

√
nhm+ 1

2 (s
(m)
n (u)− s(m)(u))

√
nσn,m(u)hm+ 1

2

]
−E

{
G
[ hm+ 1

2 b
(m+1)
n,h (u)

√
nσn,m(u)hm+ 1

2

+

√
nhm+ 1

2 (s
(m)
n (u)− s(m)(u))

√
nσn,m(u)hm+ 1

2

]}}
du

+
1√
h

∫ 1−h

h

{
G
[ hm+ 1

2 β
(m+1)
n,h (u)

√
nσn,m(u)hm+ 1

2

+

√
nhm+ 1

2 (s
(m)
n (u)− s(m)(u))

√
nσn,m(u)hm+ 1

2

]
−G
[ hm+ 1

2 b
(m+1)
n,h (u)

√
nσn,m(u)hm+ 1

2

+

√
nhm+ 1

2 (s
(m)
n (u)− s(m)(u))

√
nσn,m(u)hm+ 1

2

]}
du

+
1√
h

∫ 1−h

h

{
E
{
G
[ hm+ 1

2 b
(m+1)
n,h (u)

√
nσn,m(u)hm+ 1

2

+

√
nhm+ 1

2 (s
(m)
n (u)− s(m)(u))

√
nσn,m(u)hm+ 1

2

]
−E

{
G
[ hm+ 1

2 β
(m+1)
n,h (u)

√
nσn,m(u)hm+ 1

2

+

√
nhm+ 1

2 (s
(m)
n (u)− s(m)(u))

√
nσn,m(u)hm+ 1

2

]}}
du

= (I) + (II) + (III)

We need the following lemma, which is similar to Lemma 1.

Lemma 2 For p ≥ 1,

E(
√
n ||β(m+1)

n,h − b(m+1)
n,h ||∞)p ≤ Const (

ln(n)

hm+1
)p

Proof. The proof is similar to that of Lemma 1, putting ϕ(m+1) instead of ϕ̇ . �

Using the Lipschitz property (6) for G and Lemma 2, we can show that |(III)| ≤ Const
ln(n)√
nh

. In

the same manner we obtain E[(II)2] ≤ Const (
ln(n)√
nh

)2.
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We have then proved that asymptotically I
(m)
n ∼ (I) and also

(I)
D
=

1√
h

∫ 1−h

h

{
G
[
ξ
b,(m)
h (u) +

√
nhm+ 1

2 (s
(m)
n (u)− s(m)(u))

√
nσn,m(u)hm+ 1

2

]
− E

{
G
[
ξ
b,(m)
h (u) +

√
nhm+ 1

2 (s
(m)
n (u)− s(m)(u))

√
nσn,m(u)hm+ 1

2

]}}
du

=
1√
h

∫ 1−h

h

Gh(u, ξ
b,(m)
h (u)) du+ En,m

where

ξ
b,(m)
h (u) =

hm+ 1
2 b
F,(m+1)
h (u)

√
nσn,m(u)hm+ 1

2

b
F,(m+1)
h (u) =

1

hm+2

∫ ∞
−∞

ϕ(m+1)(
u− v
h

) bF (v) dv.

Then

Gh(u, y) = G(y +

√
nhm+ 1

2 (s
(m)
n (u)− s(m)(u))

√
nσn,m(u)hm+ 1

2

)

−E
[
G
(
N +

√
nhm+ 1

2 (s
(m)
n (u)− s(m)(u))

√
nσn,m(u)hm+ 1

2

)]
− yE

[
NG

(
N +

√
nhm+ 1

2 (s
(m)
n (u)− s(m)(u))

√
nσn,m(u)hm+ 1

2

)]
and

En,m =
1√
h

∫ 1−h

h

ξ
b,(m)
h (u) E

[
NG

(
N +

√
nhm+ 1

2 (s
(m)
n (u)− s(m)(u))

√
nσn,m(u)hm+ 1

2

)]
du.

Note that

hm+ 1
2 b
F,(m+1)
h (u) =

√
h

1

h

∫ ∞
−∞

ϕ(m+1)(v)bF (u− hv) dv =
√
hḃFh (u)

and then hm+ 1
2 b
F,(m+1)
h (u) is of the same form as

√
hḃFh (u), using ϕ(m) instead of ϕ, and

ξ
b,(m)
h (u) =

ḃFh (u)

σ̇bh(u)

D
= N(0, 1)

Observe that Gh(u, y) is not of the form g(
√
hσ̇bh(u), y) but as we remarked at the end of section 4,

Theorem 1 is still true and

1√
h

∫ 1−h

h

Gh(u, ξ
b,(m)
h (u)) du→ N(0, σ2

G,m)

where

σ2
G,m =

{ σ2
so,m in the sub-optimal case
σ2
o,m in the optimal case

On the other hand

En,m =

∫ 1−h

h

qn,m(u)
hmb

F,(m+1)
h (u)

√
nσn,m(u)hm+ 1

2

du

and

qn,m(u) =

∫ ∞
−∞

y φ(y)G(y +

√
nhm+ 1

2 (s
(m)
n (u)− s(m)(u))

√
nσn,m(u)hm+ 1

2

) dy.

11



Integrating by parts we can see that when m 6= 0, this expression converges a.s. to zero because

hmb
F,(m)
h (u)

a.s.→ bF (u)
∫∞
−∞ ϕ(m)(v) dv = 0 and∣∣∣[ qn.m(u)

√
nσn,m(u)hm+ 1

2

]′∣∣∣≤ Const

so we only have to consider the case when m = 0 and then

En,0 =

∫ 1−h

h

qn,0(u)
ḃFh (u)√
nhσn,0(u)

du

with

qn,0(u) =

∫ ∞
−∞

y φ(y)G(y +

√
nh(sn(u)− s(u))√

nhσn,0(u)
) dy.

Integrating by parts the last expression one obtains that En,0 converges in law to −
∫ 1

0
bF (u)ζso(u)du in

the sub-optimal case (resp. to −
∫ 1

0
bF (u)ζo(u)du in the optimal one) and the theorem plus the remarks

follow. �

7 Kullback Deviation

Consider the ”modified” Kullback deviation between the kernel estimator of the density ŝn and the true
density s verifying the conditions of section 3 and H2. The deviation is ’modified’ since we consider the
integration over the interval [h, 1− h] for h > 0 and not over [0, 1]. Let

K(ŝn, s) =

∫ 1−h

h

ŝn(u) ln(
ŝn(u)

s(u)
) du.

We suppose in this section that ϕ is even.
Let us show that this definition makes sense under the condition nh1+a → +∞ as h→ 0, for some a > 0.

For u ∈ [h, 1− h] we can decompose
ŝn(u)

s(u)
as

ŝn(u)

s(u)
= 1 +

1√
n

[ β̇n,h(u)− ḃn,h(u)

s(u)

]
+

1√
n

ḃn,h(u)

s(u)
+
sn(u)− s(u)

s(u)
,

by Lemma 1 and since s is bounded below we know that

sup{ 1√
n

∣∣∣ β̇n,h(u)− ḃn,h(u)

s(u)

∣∣∣, u ∈ [h, 1− h]} ≤ C1(ω)
ln(n)

hn
.

On the other hand we have the following inequality

sup{|sn(u)− s(u)

s(u)
|, u ∈ [h, 1− h]} ≤ Const h2

and since
∫∞
−∞ ϕ̇(v) dv = 0 we get

ḃn,h(u) =
1

h

∫ ∞
−∞

[bFn (u− hv)− bFn (u)] ϕ̇(v) dv.

Using the modulus of continuity for the B.B. we finally obtain that

sup{| 1√
n

ḃn,h(u)

s(u)
|, u ∈ [h, 1− h]} ≤ C2(ω)

1
√
nh

1
2+δ

.
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We have then shown that for u ∈ [h, 1− h],

ŝn(u)

s(u)
= 1 +Hn(u)

and

sup{|Hn(u)|, u ∈ [h, 1− h]} ≤ C(ω) [
ln(n)

hn
+ h2 +

1
√
nh

1
2+δ

]

which gives the required result if δ is small enough.
Let us now introduce some notation before proving the next theorem. Let

w2
k =
||ϕ||42

2
[

∫ 2

−2
θ2(ω) dω], c(u) =

(
s”(u)

s(u)

)′
and ã(u) =

1

2
C0K2 c(u)

(’ denotes the derivative)

Theorem 4 Under H1, H2 and the assumptions, nh2+a → +∞ as h→ 0, for some a > 0, and ϕ is an
even function,

n
√
h
[
K(ŝn, s)−

1

2

∫ 1−h

h

1

s(u)
E[ŝn(u) − s(u)]2 du−

∫ 1−h

h

(ŝn(u)− s(u)) du
]

D→ N(0, σ
′2
2 )

where

σ
′2
2 =

{ w2
k in the sub-optimal case

w2
k + 〈Kã, ã〉 in the optimal case

(see (16) for the definition of 〈Kã, ã〉)

Remark: The term
∫ 1−h
h

(ŝn(u) − s(u)) du tends to zero more slowly than the required normalization

n
√
h so it cannot be dropped.

Proof.

K(ŝn, s) =

∫ 1−h

h

ŝn(u) ln(1 +
ŝn(u)− s(u)

s(u)
) du

It is easy to show, using a Taylor expansion of order three for the logarithm, that

K(ŝn, s) =
1

2

∫ 1−h

h

(ŝn(u)− s(u))2

s(u)
du +

∫ 1−h

h

(ŝn(u)− s(u)) du +

− 1

2

∫ 1−h

h

(ŝn(u)− s(u))3

s2(u)
du +

1

3

∫ 1−h

h

ŝn(u)
( ŝn(u)− s(u)

s(u)

)3 1

(1 + θ(u, n, ω))3
du

where θ(u, n, ω) is a point between 0 and
ŝn(u)− s(u)

s(u)
, and then

n
√
h
[
K(ŝn, s)−

1

2

∫ 1−h

h

1

s(u)
E[ŝn(u)− s(u)]2 du−

∫ 1−h

h

(ŝn(u)− s(u)) du
]

(17)

=
1

2
√
h

∫ 1−h

h

1

s(u)

{[√
nh(ŝn(u)− s(u))

]2
− E(

[√
nh(ŝn(u)− s(u))

]2
)
}
du

− n
√
h

2

∫ 1−h

h

(ŝn(u)− s(u))3

s2(u)
du +

n
√
h

3

∫ 1−h

h

ŝn(u)
( ŝn(u)− s(u)

s(u)

)3 1

(1 + θ(u, n, ω))3
du

= (I) + (II) + (III).

By the results of the previous section we know that (I) → N(0, σ
′2
2 ) in law when n → ∞ (In fact, this

is not a straightforward application of Theorem 5 with G(x) = x2, because we don’t consider here the
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normalization
√
nhσn,0(u) and furthermore, we have the term 1

s(u) which does not appear in Theorem

5. However, the idea of the proof is the same and using Mehler’s formula (2) the variance is easily
computable because of the very simple form of G). Thus to finish it is sufficient to prove that (II) and
(III) tend to zero in probability when n→∞. For this it is enough to prove that E[(II)2]→ 0 and that
(III) tends to zero a.s., but

E[(II)2] ≤ Const
1

nh2

∫ 1−h

h
E[
√
nh(ŝn(u)− s(u))]6 du

and E[
√
nh(ŝn(u)− s(u))]6 ≤ Const then

E[(II)2] ≤ Const
1

nh2

and the last term tends to zero because of the hypothesis.
Let us look more closely at the last term of (17). We have already seen that

|ŝn(u)− s(u)| ≤ C3(ω) [
ln(n)

hn
+ h2 +

1
√
nh

1
2+δ

] ≤ C3(ω) a(h)

with a(h)→ 0 when h→ 0, then
|θ(u, n, ω)| ≤ C3(ω) a(h)

and
|ŝn(u)| ≤ d(ω).

Finally

n
√
h |ŝn(u)|

∣∣∣∣ ŝn(u)− s(u)

s(u)

∣∣∣∣3 ≤ C ′(ω) [
ln3(n)

n2h
5
2

+ nh
13
2 +

1√
nh1+3δ

]

and then under the hypothesis and for δ small enough, (III)→ 0 a.s. Hence the result follows. �

We consider also the super-optimal case; following the same arguments as before we get the following

Theorem 5 Under H1, H2, if s ∈ C3[0, 1], ϕ is an even function, nh5 → +∞ as h → 0 and nh8 →
0,then

2
√
n

K2h2

[
K(ŝn, s)−

1

2

∫ 1−h

h

1

s(u)
E[ŝn(u) − s(u)]2 du−

∫ 1−h

h

(ŝn(u)− s(u)) du
]

D→ = −
∫ 1

0

bF (u)c(u) du ≡ N(0, 〈Kc, c〉)

(Remember that c(u) =

(
s”(u)

s(u)

)′
).

8 Crossings of the Empirical Process

Denote by Nh
n (x) the number of crossings before time 1 of the process βn,h at level x. Having in mind

the result for the F-B.B. (see Corollary 1) we have the following

Theorem 6 Let f be a function in C2 with f̈ bounded. Under H1, H2 and if
ln(n)√
nh
→ 0 as h→ 0 then

Vh(f) = Λh

∫ ∞
−∞

f(x)Nh
n (x) dx−

∫ ∞
−∞

f(x)`hn(x) dx→ 0 in L2

where we define,
∫∞
−∞ f(x)`hn(x) dx as the ‘modified occupation measure’∫ ∞

−∞
f(x)`hn(x)dx =

∫ 1

0

f(βn,h(u))
√
s(u) du

14



(Remember that Λh =
√

πh
2 ||ϕ||

−1
2 )

Proof.
The Banach-Kac [2] [14] formula gives∫ ∞

−∞
f(x)Nh

n (x) dx =

∫ 1

0

f(βn,h(u))|β̇n,h(u)|du.

To study the behaviour of this r.v. we apply the previous results to the function g(x) = |x|, to get that
if h→ 0

√
h

∫ 1

0

|β̇n,h(u)|du → ||ϕ||2

√
2

π

∫ 1

0

√
s(u)du in L2

and then ∫ ∞
−∞

√
hNh

n (x) dx → ||ϕ||2

√
2

π

∫ ∞
−∞

`b(x) dx in L2.

We consider, since f is continuous, the following normalization for the integrated number of crossings

Λh

∫ ∞
−∞

f(x)Nh
n (x)dx = Λh

∫ 1

0

f(βn,h(u))|β̇n,h(u)|du.

Thus

E[Vh(f)]2 = E
[∫ 1

0

f(βn,h(u))Λh|β̇n,h(u)|du−
∫ 1

0

f(βn,h(u))
√
s(u)du

]2
≤Const

{
E
[∫ 1

0

[f(βn,h(u))− f(bn,h(u))]Λh|β̇n,h(u)|du
]2

+ E
[∫ 1

0

f(bn,h(u))Λh{|β̇n,h(u)| − |ḃn,h(u)|}du
]2

+ E
[∫ 1

0

f(bn,h(u))(Λh|ḃn,h(u)| −
√
s(u)) du

]2
+ E

[∫ 1

0

(f(bn,h(u))− f(βn,h(u))
√
s(u) du

]2}
Using the Lipschitz property (6), Hölder’s inequality for f and Lemma 1, the first and fourth term are

O(( ln(n)√
n

)2) and the second term is O(( ln(n)√
nh

)2). The third term is

E[

∫ 1

0

f(bFh (u))(Λh|ḃFh (u)| −
√
s(u)) du]2 ≤ hE[Zbh(f)]2 + E[

∫ 1

0

(f(bF (u))− f(bFh (u)))
√
s(u)) du]2

where Zbh(f) was defined in section 3; by Corollary 1, we know that hE[Zbh(f)]2 = O(h). Moreover,
working in the same manner as in that corollary for the second term we get that

E[

∫ 1

0

(f(bF (u))− f(bFh (u)))
√
s(u)) du]2 = o(h),

thus

E[Vh(f)]2 ≤ Const [(
ln(n)√
n

)2 + (
ln(n)√
nh

)2 + h + o(h)].

Hence the theorem holds. �
Remark: Using this result one has the following convergence

Λh

∫ ∞
−∞

f(x)Nh
n (x) dx

D→
∫ ∞
−∞

f(x)`b(x) dx.

We only sketch the proof: Let be ah(f) = Λh
∫∞
−∞ f(x)Nh

n (x) dx, ζh(f) =
∫∞
−∞ f(x)`hn(x)dx, Y (f) =∫∞

−∞ f(x)`b(x) dx, Yn(f) =
∫∞
−∞ f(x)`bn(x) dx and d a distance that metrizes the convergence in law.

We have the following inequality

d(ah(f), Y (f)) ≤ d(ah(f), ζh(f)) + d(ζh(f), Y (f))

By the previous result we know that d(ah(f), ζh(f))→ 0. It is easy to prove that ||ζh(f)− Yn(f)||2 → 0
and since d(ζh(f), Y (f)) = d(ζh(f), Yn(f)) ≤ ||ζh(f)− Yn(f)||2, the remark follows.
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Theorem 7 Under the hypothesis of Theorem 6,

ξn(f) =
1√
h

∫ ∞
−∞

f(x)
(

ΛhN
h
n (x)− `hn(x)

)
dx→V stably

where V is as in Corollary 1.

Proof. We decompose the expression for ξn(f) as:

ξn(f) =
1√
h

[∫ 1

0

f(βn,h(u))Λh|β̇n,h(u)|du−
∫ 1

0

f(βn,h(u))
√
s(u)du

]
=

1√
h

{∫ 1

0

[f(βn,h(u))− f(bn,h(u))]Λh|β̇n,h(u)|du+

∫ 1

0

f(bn,h(u))Λh{|β̇n,h(u)| − |ḃn,h(u)|}du

+

∫ 1

0

f(bn,h(u))(Λh|ḃn,h(u)| −
√
s(u)) du+

∫ 1

0

(f(bn,h(u)− f(βn,h(u))
√
s(u) du

}
= (I) + (II) + (III) + (IV )

We have already seen that

E(I)2 + E(II)2 + E(IV )2 ≤ Const
[
(
ln(n)√
nh

)2 + (
ln(n)√
nh

)2
]

Hence it only remains to consider (III), but

(III) =
1√
h

∫ 1

0

f(bn,h(u))(Λh|ḃn,h(u)| −
√
s(u)) du

D
=

1√
h

∫ 1

0

f(bFh (u))(Λh|ḃFh (u)| −
√
s(u)) du

Thus

(III)
D
=

1√
h

[∫ 1

0

f(bFh (u))Λh|ḃFh (u)| du−
∫ 1

0

f(bF (u))
√
s(u) du

]
+

1√
h

∫ 1

0

(
f(bF (u))− f(bFh (u))

)√
s(u) du

= (III)1 + (III)2

In the proof of the last theorem we showed that E[(III2)]2 = o(1). On the other hand, the term (III)1
is exactly Zbh(f) and converges stably to V when h tends to zero. Thus the theorem follows. �

9 Smoothed Empirical Process

We can obtain an extension of the previous result by considering the Smoothed Empirical Process:

β̃n,h(u) = βn,h(u) +
√
n[F̃n(u)− F (u)]

where F̃n(u) = E[F̂n(u)], F̂n(u) =

∫ u

−∞
ŝn(v)dv with F satisfying the conditions of section 3, s verifying

H2 and ϕ even. Note that β̃n,h has a bias. It is obvious that

β̃n,h(u) =
√
n[F̂n(u)− F (u)]

and hence this process is the same as that defined by Yukich in [17]. He proved that if
√
nh2 → 0 then

β̃n,h(u) → bF (u) in law. Moreover using Taylor’s development for
√
n(F̃n(u) − F (u)), he gets that, if

√
nh2 → a, then β̃n,h(u)

D→ bF (u) +
a

2
K2ṡ(u), where K2 =

∫ ∞
−∞

ϕ(v)v2dv. Working as in the previous
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section we can obtain the convergence results for Ñh
n (x), the number of crossings on [h, 1 − h] for the

process β̃n,h at level x, i.e. when
√
nh2 → a ≥ 0,

Λh

∫ ∞
−∞

f(x)Ñh
n (x) dx

D→
∫ 1

0

f(bF (u) +
a

2
K2ṡ(u))

√
s(u)du.

When
√
nh2 → +∞, using a Taylor development for 2

K2h2 (F̃n(u) − F (u)) 0 < u < 1, we get that this

term tends to ṡ(u). So it is natural to consider cnβ̃n,h (remember that cn = 2
K2
√
nh2 ) and to study the

convergence results for N?
n,h(x), the number of times in [h, 1− h] that the process cnβ̃n,h crosses level x.

We obtain the following.

Corollary 2 Suppose that f satisfies (6), s ∈ C2[0, 1] (instead of H2), H1 holds, ϕ is an even function
and
√
nh2 → +∞ as h→ 0 then

a)If nh5 → +∞,∫ ∞
−∞

f(x)N?
n,h(x)dx

P→
∫ 1

0

f(ṡ(u))|s̈(u)| du =

∫ ∞
−∞

f(x)N(ṡ, x) dx

where N(ṡ, x) stands for the number of crossings of level x by ṡ in [0, 1].

b) If
√
nh5 → b (b can take the value 0 and if it is the case we will suppose furthermore that H2 holds

and s ∈ C3[0, 1]),

√
nh5

∫ ∞
−∞

f(x)N?
n,h(x)dx

D→ 2

K2
||ϕ||2

∫ 1

0

f(ṡ(u))

√
2

π
d0,b(u)

√
s(u) du.

(See section 3 for the definition of d0,b(u) and note that d0,0(u) = 1).
Proof. The proof consists in applying the KMT theorem and Theorem 1 of [4]. �
Let us define the following modification of the occupation measure∫ ∞

−∞
f(x)˜̀h

n(x) dx =

∫ 1−h

h

f(β̃n,h(u))
√
s(u) du

and

ξ̃n(f) =
1√
h

∫ ∞
−∞

f(x)[ΛhÑ
h
n (x)− ˜̀h

n(x)] dx

(Remember that Ñh
n (x) is the number of times that the process β̃n,h crosses level x before time 1)

Corollary 3 Assume that f is in C2 and f̈ is bounded, under H1 and H2, if
ln(n)√
nh
→ 0 as h → 0,

s ∈ C3[0, 1] and ϕ is an even function, then
a) If

√
nh2 → 0 we obtain that

ξ̃n(f)→V stably

where V is the same r.v. that we obtained in Theorem 4.
b) On the other hand, if

√
nh2 → a then

ξ̃n(f)→Ṽ stably

where

L(Ṽ |F∞) = σ0

∫ 1

0

f(bF (u) +
aK2

2
ṡ(u))

√
s(u) dW̃ (u)

17



Proof. We recall that F∞ is the σ-algebra generated by {bF (u), 0 ≤ u ≤ 1}.

ξ̃n(f) =
1√
h

[

∫ 1−h

h

f(β̃n,h(u))Λh|
˙̃
βn,h(u)| du−

∫ 1−h

h

f(β̃n,h(u))
√
s(u) du]

=
1√
h

[

∫ 1−h

h

f(βn,h(u) + an(u))Λh|β̇n,h(u) + ȧn(u)| du−
∫ 1−h

h

f(βn,h(u) + an(u))
√
s(u) du]

where an(u) =
√
n[F̃n(u)− F (u)] =

√
n
∫∞
−∞ ϕ(v) [F (u− hv)− F (u)] dv. We decompose ξ̃n(f) as

ξ̃n(f) =
1√
h

[

∫ 1−h

h

f(bn,h(u) + an(u))Λh|ḃn,h(u) + ȧn(u)| du−
∫ 1−h

h

f(bn,h(u) + an(u))
√
s(u) du]

+
1√
h

∫ 1−h

h

[f(βn,h(u) + an(u))− f(bn,h(u) + an(u))]Λh|β̇n,h(u) + ȧn(u)| du

+
1√
h

∫ 1−h

h

f(bn,h(u) + an(u))Λh[|β̇n,h(u) + ȧn(u)| − |ḃn,h(u) + ȧn(u)|] du

+
1√
h

∫ 1−h

h

[f(bn,h(u) + an(u))− f(βn,h(u) + an(u))]
√
s(u) du

= (I) + (II) + (III) + (IV ).

Consider the last three terms. Using the Lipschitz property (6) for f , Hölder’s inequality, Lemma 1 and
the fact that, by using a Taylor development for F and s respectively, an(u) and ȧn(u) are bounded by√
nh2 on [h, 1− h], it is easy to see that E(II)2 and E(IV )2 are O(( ln(n)√

nh
)2) and E(III)2 is O(( ln(n)√

nh
)2).

ξ̃n(f) is then equivalent to (I) and

(I)
D
=

1√
h

∫ 1−h

h

f(bFh (u) + an(u)){Λh|ḃFh (u) + ȧn(u)| −
√
s(u)} du

=
1√
h

∫ 1−h

h

f(bFh (u) + an(u))Gh(u, ξbh(u)) du

+
1√
h

∫ 1−h

h

f(bFh (u) + an(u))[kh(u) E |
√
π

2
N + pn(u)| −

√
s(u)] du

+
1√
h

∫ 1−h

h

f(bFh (u) + an(u))kh(u)ξbh(u) E[N |
√
π

2
N + pn(u)|] du

= (I)1 + (I)2 + (I)3

where kh(u) =
√
hσ̇bh(u)||ϕ||−12 , pn(u) =

√
π

2

√
hȧn(u)√
hσ̇bh(u)

and

Gh(u, y) = kh(u)[|
√
π

2
y + pn(u)| − E |

√
π

2
N + pn(u)| − yE[N |

√
π

2
N + pn(u)|].

Consider the second term (I)2.

|kh(u) E |
√
π

2
N + pn(u)| −

√
s(u)| ≤ |kh(u)[E |

√
π

2
N + pn(u)| − 1]|+ |kh(u)−

√
s(u)|

We have already seen in section 5 that on [h, 1− h], |kh(u)−
√
s(u)| ≤ Const h. Furthermore, a simple

calculation shows that

[E |
√
π

2
N + pn(u)| − 1] =

√
π

2
[E |N + dn(u)| −

√
2

π
]

= 2

√
π

2
{dn(u)[Φ(0)− Φ(−dn(u))] + [φ(−dn(u))− φ(0)]}
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where dn(u) =
√

2
πpn(u), φ and Φ are the standard Gaussian density and distribution function respec-

tively. So we get that |E |
√

π
2N + pn(u)| − 1| ≤ Const h and therefore |I2| ≤ Const

√
h
∫ 1−h
h
|f(bFh (u) +

an(u))| du. We thus obtain that E[(I)2]2 ≤ Const h. Consider now the third term.

(I)3 =
1

||ϕ||2

∫ 1−h

h

f(bFh (u) + an(u))ḃFh (u) E[N |
√
π

2
N + pn(u)|] du.

By an elementary calculation we can see that

1√
h

E[N |
√
π

2
N + pn(u)|] =

√
π

2h

[∫ dn(u)

−dn(u)
z2φ(z) dz + 2dn(u)

∫ +∞

dn(u)

zφ(z) dz
]

this expression tends to zero in the sub-optimal case and tends towards
aK2s̈(u)

2||ϕ||2
√
s(u)

in the optimal case.

Moreover, the difference between
1√
h

E[N |
√
π

2
N + pn(u)|] and its limit is O((n

√
h)h4 +

√
nh2) in the

sub-optimal case and O(
√
h+h+ |

√
nh2−a|) in the optimal one. The convergence to zero, in probability,

for the term (I)3 has been proved for the sub-optimal case. Hence we must only consider the optimal
case, and then (I)3 is asymptotically equivalent to∫ 1−h

h

1

||ϕ||2
f(bFh (u) + an(u))

aK2

2||ϕ||2
s̈(u)√
s(u)

√
hḃFh (u) du.

Using the Lipschitz property (6) for f and the fact that sup0≤u≤1 ||bFh (u)− bF (u)||2 = O(h) and

sup
h≤u≤1−h

|an(u)− a

2
K2ṡ(u)| ≤ Const{|

√
nh2 − a|+

√
nh3},

we thus obtain that (I)3 is asymptotically equivalent to∫ 1−h

h

f(bF (u) +
a

2
K2ṡ(u))

s̈(u)√
s(u)

√
hḃFh (u) du.

By Theorem 1 in [4] this quantity tends to zero in probability when h tends to zero. Thus (I)3 tends

to zero in probability and ξ̃n(f) ∼ (I)1 = 1√
h

∫ 1−h
h

f(bFh (u) + an(u))Gh(u, ξbh(u)) du. following the same

arguments as in the proof of Corollary 1 (see remark 2 at the end of section 4), we finally get that the
last term tends stably to the required limit. �

We consider now the case where
√
nh2 → +∞ and we get, in the next corollary, the speed at which

the convergence takes place.

Corollary 4 Assume that f verifies (6), s ∈ C3[0, 1], H1 holds, ϕ is an even function and nh4 → +∞
as h→ 0, then
a) If nh6 → +∞ and |s̈| is bounded below on [0, 1], then

c−1n

[∫ ∞
−∞

f(x)N?
n,h(x) dx−

∫ 1−h

h

f(cnβ̃n,h(u))|cn
√
n( ˙̃Fn(u)− Ḟ (u))| du

]
D→
∫ 1

0

f(ṡ(u))sign(s̈(u))dbF (u)

b) If nh5−q2√
h
→ 0 (q ≥ 0), under H2, s ∈ C3[0, 1] and assuming that f is in C2 with bounded second

derivative,

1√
h

[
||ϕ||−12

√
nh5

∫ ∞
−∞

f(x)N?
n,h(x) dx− 2

K2

∫ 1−h

h

f(cnβ̃n,h(u))

√
2

π
d0,q(u)

√
s(u) du

]
D→

2

K2
||ϕ||−12

∫ 1

0

f(ṡ(u))

√
2

π
d1,q(u) dbF (u) +

2

K2

√
2

π

∫ 1

0

σq(u)f(ṡ(u))
√
s(u)dW̃ (u)

where W̃ is a B. M. independent of bF .
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Remark: In the special case where q = 0, d1,0(u) = 0 and the first term of the limit vanishes.
Proof. The proof consists, as before, in an application of the KMT theorem, Theorem 1 of [4], Theorem
1 and arguments similar to those used to prove Corollary 1. �
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