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Convergence of non-linear functionals of
smoothed empirical processes and kernel
density estimates

Corinne Berzin * José R. Leén | Joaquin Ortega

Abstract. We consider regularizations by convolution of the empirical process and study the asymp-
totic behaviour of non-linear functionals of this process. Using a result for the same type of non-linear
functionals of the Brownian Bridge, shown in a previous paper [4], and a strong approximation theo-
rem, we prove several results for the p-deviation in estimation of the derivatives of the density. We also
study the asymptotic behaviour of the number of crossings of the Smoothed Empirical Process defined
by Yukich [17] and of a modified version of the Kullback deviation.

KEY WORDS: Non-linear functionals, Empirical process, kernel density estimation, crossings, Kullback-
Leibler deviation, regularization by convolution.

1 Introduction

The problem of estimating the density s(x) of simple random sample X1, Xo, ..., X, is a classical problem
in non-parametric statistics. The most popular method is kernel estimation, introduced by Parzen and
Rosenblatt in the 50’s. The study of consistency properties and asymptotic normality of these estimators
was one of the important subjects of study during the following two decades.

Among these works was Bickel & Rosenblatt [5] where the authors use strong convergence results
to establish the asymptotic normality of the L? distance between the estimator and the real density.
This work, source of inspiration for many others, allows the substitution of the Empirical Process by
the Brownian Bridge in the functional under study, that is, the L? distance between the estimator and
the real density. This replacement can be controlled using the strong approximation theorem of Komlés,
Major and Tusnddy [8]. One of the important consequences of their result is that it gives L? confidence
bands and provides the tools for hypothesis tests for contiguity alternatives for functions close to the
density in the null hypothesis. Silverman [16] extends these methods to the estimation of the density’s
derivatives.

In this work we generalize Bickel & Rosenblatt’s result to kernel estimators of the density and of the
derivative of the density, not only for the L? norm but also for L? norms. The first work where this
problem was studied was Csorgd y Horvéth [7], also using the strong approximation method. From then
on there has been much work done trying to simplify the hypothesis for the density and the kernel, as,
for example, Horvéth [12], Beirlant & Mason [3] and finally the work of Giné, Mason & Zaitsev [9], where
a limit theorem uniform with respect to the regularization kernel is obtained. In the last three papers
mentioned the technique of Poissonization is used, which proves to be stronger than strong approximation.

Our method is interesting because, apart from allowing us to study the derivative of the density,
handles the asymptotic convergence of functionals of the type

1
/O G(Vnh(ly(u) — 1(u)))du
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where I, is an estimator of the density or its derivatives. The p norm case corresponds to G(z) = |z|P.
Using this viewpoint we can look at the asymptotics for a variant of the Kullback deviation. The results
are obtained passing to functionals of the Brownian Bridge via the strong approximation theorem and
then studying the asymptotic behaviour of these functionals using methods developed in a previous article
[4].

With these same methods we can also study the number of crossings of a level by the Smoothed
Empirical Process, defined by Yukich [17], as we explain in the next section, where we describe more
precisely our results.

2 Description of the Results

Let X5, Xs,..., X, be a random sample from the distribution F’ with density s(u), F,, be the empirical
distribution of the sample and 8 (u) = \/n(F,(u) — F(u)) be the empirical process. The kernel density
estimator is

A R 1 [ u—v
() = Sunw = 5 [ el* T dE)
— 00
where ¢ is the estimation kernel and h depends on n: h = h(n).
1.- Define
~ R 1 [ u—w P
Vi) ~ B = 3 [ o) sk )

Integrating by parts

Vnh[én (1) — B3 (u)] = VA Ban(u)

where Bn,h is the derivative of the (p-regularization of the empirical process 3, . If s has two continuous
and bounded derivatives it is known that the optimal window is h(n) = O(n~'/®). The window is
sub-optimal if h = o(nfl/ %), otherwise it is super-optimal. It is also known that

lim VnhlE(4, (1) — s(u)] = a(uw)

n—oo

where a(u) is a known function of the unknown density for an optimal window and «(u) = 0 for sub-
optimal windows.

Consider the function g,(z) = |z|? — E|N|?, p > 1 where N is a standard Gaussian r.v. The results
that we will show imply for sub-optimal windows the following theorem of Csorgé & Horvéth [7]:

1
%/0 “M(én(u) — s(u)[” — E[[Vnh(3,(u) — s(u))|1’]] du — N(0,v})

Indeed the integral above is equivalent to

L 1 \/Eﬁn,h(u)
vh /0 ! [Var(vVhf,n(u))]1/2

)| Var(Vh B, (w)[P/? du.

Using now the KMT theorem we can replace anh(u) by the derivative of the regularization of the F-B.B.
and get that the last integral converges to N (0, vg).

In section 6 we obtain results along this line for the derivatives of the density and for a general function
in place of |z|P for the sub-optimal and optimal cases.

Let BE(u) = /n(F,(u) — F(u)) be the empirical process and define

Un,n (1) = 8nn(u) — s(u).

If ¢ = 1j_1,4)/2 then

ot (u) = P20 h)Q:/EB” W= o)




as long as the density is sufficiently regular and & is chosen adequately. We want to study the asymptotic
behaviour of the sums

[nt] . [nt

*Zgn ,ml/n,h(%)) and Zf 5F mynh(%))

where g, is a sequence of functions that satisfy certain properties that will be made explicit later on.
These sums are generalizations of the so-called divisible statistics studied by Khmaladze [15] and they
correspond to the following integrals

/Ogn(u,\/%z/n)h(u))du and /0f(ﬁf(u))gn(u,\/%Vn)h(u))du. (1)

Using the Komlés, Major & Tusnady (KMT) strong approximation theorem ([8], see section 9 for the
statement) we show that if g,, — ¢ then

) t B t ) @
Jin [ g Vb () = [ lotu SN
[ FE @)onto Vst = [ 707 ) Elgtan /20

where bf'(u) is the F-Brownian bridge (F-B.B.), N is a standard Gaussian variable and the convergence
is in L2(Q) for the first limit and in law for the second. We also study the speed of convergence in both
cases. Using a similar result for the F-B.B. shown in a previous work [4 ], we get that there exists a

Brownian motion (B.M.) 1% independent of b'" and a positive function 04(.), which depends only on g

such that
15207/“ (BE () gn (u, Vhvy p (u)) — f(bF \/>N

- /0 FOF (u)dW (0 (w)).

with convergence in law. Making f = 1 one gets the same result for the first kind of integrals in (1). We
consider these problems for general kernel estimators of the density and also several applications of these
results which we now describe briefly.

2.- We consider in section 7 the modified Kullback deviation between the kernel estimator of the density
5, and s. Let

1—-h ~
K (5, ) = /h s () (2 gy,

We show that

1—h 1—h
nVh[K (3, ) — %/h ﬁ Elén(u) — s(u)]? du — /h (8, (u) — s(u)) dul

is equivalent, in the sub-optimal and optimal cases, to
1 1

— / 571 w) |[Vah(5a(u) = s)]? = EIVAh(3a(u) = s(u))]?] du

2\/E 0
which is similar to the previous result for p = 2 and converges to a normal distribution. We show a
similar result for the super-optimal case but with a different normalization.
3.- Define as in Yukich [17] the Smoothed Empirical Process:

Bn,h(u) = ﬁ(ﬁn(u) — F(u))

where F,(u) = [*_ 5,(v) dv.



Yukich proved that if \/nh® — 0 then f, »(u) converges in law (in notation g) to the F-B.B. b (u).
Moreover, using a Taylor expansion for /n(F,(u) — F(u)), where

Fo(u) = /OO o(v)F(u — hv) dv,

he shows that, if \/nh® — a, then B, 5 (u) 3 b (u) + gKgé(u), where Ky = / o(v)vidv.

Let N(z) be the number of times that the process (3, () crosses level z before time 1, and define
¢ (-) as a modification of the occupation measure for 3, (see Corollary 2 in section 9 for an exact
definition). By a formula of Banach-Kac [2, 14]

| r@ N s = [ Gn@)IB ol
—00 0

Let Ay, = (ﬁ)%, using results included in a previous work [4] we obtain in section 9 the following:
2
a) If \/nh? — 0 then

&nf) = % / O; £ (@) (AN (z) — O (2))dz BV

where V is a r.v. which, conditional on F,, the o-field generated by {b (u),0 < u < 1}, has the same
law as o fol FOOF (w)\/s(w)dW (u), W(-) is a B.M. independent of b (-) (see Theorem 3 in [4]) and o is
defined in the next section.

b) On the other hand if \/nh? — a then

00 1
M [ F@NE@ e B [ 08 ) + G Kas(w) Vs,
—00 0
Moreover, we show that éf;( f) converges weakly to a r.v. V such that

L(V/Fo) = 00/0 FOF () + § Fo3(u))/500) dTF (1),

¢) In section 9 we also treat the case y/nh* — +oc. In this situation we need a different normalization
sequence for the process 3, 1.

3 Hypothesis and notation

Let F' be a distribution function with bounded support and density s. To simplify the notation we shall
suppose that its support is [0,1] i.e. F(0) = 0 and F(1) = 1. The F-Brownian Motion is defined as
WE(t) = W(F(t)), where W is a standard B. M. With this definition one has E(W¥ (v )W ¥ (v)) = F(uA
v). The F-B.B. is defined as b%' (t) = W (t) — F(t)W (1) and then E(b¥ (u)bF (v)) = F(uAv)[l—F(uVv)].

For each ¢ and h > 0 we define the regularized processes bf (t) = ¢, b (t) and W (t) = op « WE(t)
where ¢y, (t) = %go(%) and * denotes the convolution. We use h instead of ¢ (as in [4]) for the regularization
parameter to be consistent with the usual notation in density estimation.

We shall use the Hermite polynomials, which can be defined by exp(tx — %) =3 Hn(z)%
They form an orthogonal system for the standard Gaussian measure ¢(x)dz and, if h € L*(¢(z)dz),
h(z) = S22 hnHy,(z) and 1Al13. = >nto n!h2. Mehler’s formula [6] gives a simple form to compute
the covariance between two L? functions of Gaussian r.v.’s: If (X,Y") is a Gaussian random vector having
correlation p then

ERCORY)] = 3 huantp™. 2)
n=0

We have the following hypothesis



H1) For the kernel ¢: _1 p(t)dt =1, ¢ >0, ¢ is absolutely continuous with support in [—1, 1]. Define
TOL LRC BOIINS. - )1 -
P(u) = ¢ x @(u) where g(u) = ¢(—u) and 0(u) = w(u)H@HQ_Q, u € R. Let Ky = ffoo o(v)v? dv.
Further conditions will be required for some applications.

(H2) For the function s: s € C?[0,1], 0 < s(x) for all z € [0, 1].

Let g(x,y) be a function in L?(¢(y)dy) a.s. continuous in the first variable and with polynomial
growth in the second variable (|g(z,y)| < K P(Jy|) for z in a set compact) that satisfies the following two
conditions:

i) Eg(z,N)=0,0<z.
ii) E[Ng(z, N)]=0,0 < x.

Define g(x,y) = > r cx(2)Hy(y) the Hermite expansion of g, where we suppose that Vz > 0, 3k > 2
such that ¢, (z) > 0, (6% (u))? = Var(bf' (u)) and

gn(u,y) = g(Vh & (u),y), (3)
and for 0 <t <1

- 1 ~ by (u
Define also t
o2(t) = | k(u)du
(t) /0 (u)d )
where

r(u) = le s(u 9 w) dw
() = 32 M/l )| el
= [ Bla/sT@liglle X)av/5C0)ll2.0w)X + v/ T= )Y

and XY are independent, standard Gaussian variables. We shall write

. —+oo
lg(u, ) = Tl M: dy,q(u)Hy (2
8= 5 Al | 2

and ) oo
o2(u) = / >y e (),
T4 n=2

for u € [0,1], z € R and ¢ > 0 (note that 03(u) doesn’t depend on u so we will note o3 (u) = o3).
2

Also define Cp = W

We have bf () = %ff/oz bE'(t — hy) do(y). We introduce

2=t [ @M @) - ¢ @) da withAh=\/27|¢||21,

where N,IZF (z) is the number of times that the process bf (-) crosses level z before time 1 and ébF(-) is a
modification of the local time for the F-B.B. on [0, 1] that satisfies, for any continuous function f,

e’} 1
[ F(2)0"" (z) dz = /0 FOOF (w)\/3(w) du

In what follows we shall drop out the indices F’ when no confusion is possible. Throughout the paper,
Const shall stand for a generic constant, whose value may change during a proof, N denotes a standard
Gaussian r.v.



3.1 Stable Convergence

We shall use the notion of stable convergence, which we describe now following [1, 11] and [13].

Let X, be a sequence of r. v.’s defined over (Q, F, P) and taking values in C[0, 1], and let G C F be a
sub-o-field. Let X be another r. v. defined over an extension (€2, F, P) of the original probability space,
with values in C[0,1]. The sequence X,, converges G-stably to X if

m E(Yh(X,)) = E(Yh(X)),

for all bounded and continuous functions h : C[0,1] — R and all G-measurable and bounded r.v. Y.
Stable convergence is invariant under absolutely continuous changes of the measure.

4 Preliminary Results

We shall say that a function f is locally Lipschitz if
[f (@) = f()| < [Pz, y)|lx =y (6)

where P is a polynomial. .
We need two results from [4] which we state for completeness.

Theorem 1 Under H1, H2, i) and ii)
Sh(6) =W (o (1))

stably in C[0,1] where W is a B.M. and 02(t) is given by (5). Furthermore the vector process (bE(),S88(+)
converges weakly in C[0,1] x C[0,1] towards (b¥'(-), W (c%(+))) and the processes b¥'(-) and W (a?(-)) are
independent.

Corollary 1 Under H1, H2 and if f € C? with f bounded, ZP(f) converges stably as h — 0 towards
arwv. V€ L*Q) and the conditional distribution L(V|Fs) is Gaussian with zero mean and random

variance equal to o3 fol F2(F (uw))s(u)du.

(02 has been defined in previous section 3).

Remark 1. Conditionally on F, V has the same distribution as og fol FOF (w) /s(u) dW(u) (remem-
ber that F is the o-field generated by {b¥(u),0 < u < 1}).

Remark 2. Although the theorem has been stated assuming that in the definition of S%(t), gn(u,y) is
of the form g(vho? (u),y), (see (3) and (4)), a slight modification of the proof shows that the result is
true for other forms of the function gy, (u,y) that will appear in sections 6 and 9.

5 Convergence in L? for the Empirical Process

Let B (u) = /n(F,(u) — F(u)) be the empirical process associated to a n-sample X1, ..., X,, of the
continuous distribution F', where Fj, is the corresponding empirical d. f. and F satisfies the conditions
of section 3. The transformation U; = F(X;),i = 1,...,n gives a n-sample of the uniform distribution

U[0,1]. If E,(v) is the associated empirical distribution function, the corresponding empirical process is
an(v) = v/n (E,(v) —v), 0 <v < 1. Note that a,(F(u)) = 35 (u) and if b(t) denotes the standard B.B.

sup /7 fon (t) = b(t)| = v || By — b7l

t€[0,1]

The following approximation theorem is due to Komlds, Major and Tusnddy (1975) [8].
Theorem [KMT]For any integer n there exists some B.B. b, such that for some absolute positive con-
stants C, A,~y the following inequality holds:

P(tg%pl] Vnlag(t) = bu(t)] > = + Cln(n)) < Aexp(—yz)



for any positive x. Consequently

sup Jan(t) — by(5)] = (2

= a.s.
t€[0,1] Vn )

1 [ —
Let Bp.n(u) = E/ <p(u - U) 1 (v)dv, with ¢ verifying H1, be the regularized empirical process,

and denote by ,Bnh(u) its derivative. Defining bf'(:) = b, (F()), bpn = by x 5, and using the KMT
theorem, it is easy to see that

1B — brnlloe < Const hi%) and || — bunlloo < Const 121\(;%)
where the constant is random.
Lemma 1 Forp>1,
E(Wn|Br —bhlle)? < Const (In(n))? (7)
(\fHﬁn h—bn h||<>0)p < Const (In(n))? (8)
E(V||Bnn = bnnllse)? < Const h™?(In(n))” (9)

Proof. We only consider the case p = 2, the proof is similar for general p. Define Y,,(u) = v/n|B8L (u) —
bE(u)| and let Ay = {||Ynllee > A+ Cln(n)}, where A > 0 and C is the constant in the KMT theorem.
We have

E(IIYal3) = E([Yall%145) + E([Yal[314,) < (A + Cln(n))* + E(||Yal[%14,) (10)

Call G,, the distribution function of ||Yy,||, then, integrating by parts and using KMT

E(IYal21a,) = /:C G
= ()\+Cln(n))2(1—Gn()\—i—Cln(n)))—F/oo 2u(l — Gp(u)) du (11)
A+C'1In(n)

but by the inequality in the KMT theorem

— Gn(A+Cln(n)) < Ae™ 7, 1— Gn(u) < Ae—(u=Cln(n))

thus
(11) < A+ Cla(n)2e ™ + QA/ o= (u=Cn(m) g
A+C'In(n)
< Const(in(n))? + Const n™® (A + Cln(n))e~1-E ) 4 =7 (=Clato)
< Const(In(n))? (12)

Using (12) in (10) we get (7). We shall now prove (9), the proof of (8) is similar but simpler.

B(n||Bnn = bunll%) = nsupl/ 5(S ) (BE () — bE () dy?)

IN

B(n (sup / 900 |35 (o — uh) — b (o — ub)| du)

(In(n))?
-

IN

Const 5 E[[Ys |2, < Const



In(n)
Vhn

1 _ 1
i [ oAb n(w)du= [ Bla(V/S@NIell)du in L?
0 0

n—oo

Theorem 2 Let g be an even function verifying (6), under H1 and H2 and if —0ash—0,

Proof. We have

E[/O g(\/ﬁﬁ.n,h(u))du—/o E{g(\/s(u)HapHgN)}du}ggConstE[/O g(\/ﬁﬁ'n,h(u))du—/ g(\/m)n,h(u))du]2
1
+ Const B[ | o(v/hb, 1 (u))du - / Elg(V/5@llollaN)}du?  (13)

Using the Lipschitz property for g, Holder’s inequality and lemma 1 the first term is bounded by

(in(n))?

n

Const

Up to a constant the second term is equal to

1
B [ oV )~ B/l duSConstE[/o (9(eh Vot () — g(€hwlollan/5000) dul?
+ Const B[ (9(€hwllellav/5(0) = Bla(lel /51 )

For the first of these two terms, use the fact that

|\F0h —|l¢ll2v/s(u)] < Const h

for h < u < 1— h, the Lipschitz property and Holder’s inequality to obtain that it is bounded by Const h2.
For the second term we consider the function

9(u,y) = g(yllellz/s(w) = Blg(v/s(u)[¢l[2N)]-

It verifies i) and ii), hence by Theorem 1 the second term is O(h). We thus obtain that

(13) < Const (1nl57;))2 +0(h)

and the theorem holds. W

6 Estimation of a Density’s Derivatives

n [7] Csérgd and Horvéth consider the asymptotic behaviour of the p-th order risk for the kernel estimator
of a density. In previous works the case p = 2 was established for sub-optimal windows by Bickel &
Rosenblatt [5] and in all generality by Hall [10].

With our method we can consider the same problem as Csorg$ and Horvath but with a general G
instead of G(u) = |u|P and for the estimation of the derivatives of the density.
Assume that s is in C™*2[0, 1] and satisfies the conditions of section 3. Define the estimator for the

mth-derivative as in [16] by
s0m) (4= Xk
Sn u hm+1 Z )

with ¢ even and in C™*1. We shall use the notation s%m)(u) = E[é;m) (u)]. Tt is easy to show, using a

Taylor expansion of order m + 2 for s, that for 0 < u < 1 the bias is

(=)™ s / ) ()25 (9
m+2)!" v

B3 (u) — s (u)] =



where 6, depends on u, v and n. Thus h’Q(E[églm) (u) — 5™ (u)]) = K542 (u)/2 as n goes to infinity
(remember that K = [*_v? ¢(v) dv). The variance term can also be calculated, giving

a2 B ) =@ = [ Rt ko= o™ ) s ) do?
5 [ @) s = 6™ st
e nh? o2 (u) —  [|e™)]|2s(u) as n — oc.

n,m

Let now G be a locally Lipschitz function (see (6) for the definition), we want to study

7m) % /1h{G(§£Lm)(u) - S(m)(u)) B EG(éng)(u) — s(m)(u)>}du
n i, _

Un7m(u) Un,m(u)

It is well known, and can also be shown using the previous expressions for the bias and variance, that
. . . . . . 5

the optimal estimation window for the mean square error is h = O(n=Y/?™+5) ie. \/nh™*2 — C,, and

in this case

V™ (5 () — 50 ()
\/ﬁher%an,m(U)

as n — oo. The window is sub-optimal if b = o(n~='/27+5),
Let us introduce some notation before stating the next result.

N K5C,,s(mH2) ()
R TET RV -

00 +00 2 2
om =Ml [ B@owCw ] ([ o))
k=2 > -

with
() = [ [ ™ () o™y +w) dy 6™,
1 oo 1 +o00 2 2
= | S m [ BwswG e a] [ i) dslau.
+oe 3(u)
so(u) = —2G(2) 9(z)dz )
Golw) = [ =262 0(2) 2] o T
+OO . .
Gl = [ Gl oy = fotw)) s (0= o) 2olwnte) = folwnte) = (v = fo(w)i(w)] dy
where

1 (u) = [l [35(u) (15)
(see (14) for the definition of f,,). We also define the following integral operator

(Ka,a)z/o /0 FuAv)(1 = F(uVv))a(u)a(v) dudv (16)

Theorem 3 Let G be a function verifying (6), under H1, H2, if s € C"+3)[0,1], ¢ is an even function
In(n)
V/nh

and

— 0 as h — 0, then

1 B N(0,0%,,)

where if m # 0
2

2 _ [ Osoom in the sub-optimal case
UG,m - 2

Oom in the optimal case
and if m=10
o2 = { Ufoém + (K50, Cso) m the subjoptimal case
’ 0o.m T (Ko, Co) in the optimal case



Remark 1: For m = 0 and G(u) = |u|P the result was proved by Csérgé & Horvath in [7]. Note that, if
G is even, (so(u) = 0 and then (K (s, (s0) = 0.

Remark 2: In the sub-optimal case, if m = 0 and G is even we can drop the hypothesis that s € C™*3 ¢
[0,1] and use the less restrictive condition s € C™*2 € [0, 1].
The same conclusion holds if m # 0.

Proof.
_ m+1 p(m+1) a1 m "
o= LS 1] Rl i C B U R ORI Oy
" Vh \fJnm( Jhmts Vo m (W)™t 2
,E{G{ e ﬂi”;*l)( ) + \/ﬁher%(Sszm)(u)S(m)(u))}}}du
VG (w) s V10 m (W)
where . N
B = s [ B W) do
thus

BB ) = o [ s e = Vi [ @] o)

and then hm“‘%ﬂfﬁﬂ)(u) has the same form as \/Eﬂgh(u) replacing ¢ by o™+, We have:

oo L[ W)t (s () — 50 ()
In \[/ ¢ \/ﬁUn,m(u)hm+% i \/ﬁan,m(u)hm—i_% }
hm+%b(m+1)(u) \/ﬁhm-l-%(&(’bm) (u) — g(m) (u))
_E{G[\fo'n m( )her% * \/ﬁan,m(u)hm+% }}}du
. / B hm+%ﬂ£7;*1><u> ﬁhm%(sﬁ:")(u)—smnu))}
Vi N VI m(Wh™ 2
] a0 () L Vb (s () fs(m)(U))H "
\FO'n m( )hm+2 \/ﬁgn,m(u)hm+%
/1 h hm+éb§;j;j1>(u)l .\ kg (58 (u) — sim(u))]
\f \/>O'n m(w)h 2 VNonm (Wh" 2
m+1 g(m+1) m+1/ (m)
_E{G[h Bun (W) b (5 () — 5 ““”H}m

\/ﬁan,m( )hm+§ \fan m(u)h™ mt3
= (H)+{ID)+ UII)

We need the following lemma, which is similar to Lemma 1.

Lemma 2 Forp>1,

In(n
=l

E(G/r[IBU T 0 ]le)? < Const(

Proof. The proof is similar to that of Lemma 1, putting ¢+ instead of ¢ . B

In(n) In
Vnh

Using the Lipschitz property (6) for G and Lemma 2, we can show that |(III)] < Const

In (n) )2
NG

the same manner we obtain E[(IT)?] < Const (——

10



We have then proved that asymptotically L(lm) ~ (I) and also

19

0 2 [T Gl T )

VNG (W)h™F 2

)
m nhm+3 (58 (w) — s (u
~ Efefamm + ﬁinM( )>hm+2 DY

1 1-h .
- = / Ga(u, 0™ (w)) du + By
h
where LR 1
£hm) () — hmt 3D ()
h VO (W)W 2
F(m+1), \ 1  m F
) = s [ ATV @)
Then
m+% (m) _ o(m)
Gl y) = Gy + Y22 on () =57 (w)
\/ﬁo'n,m(u)herE
—E{G(N—F VihmtE (58 () —s(m)(u)))} —yE{NG<N+ Vh ™3 (s (u) — S(m)(u))>]
\/ﬁan,m(u)her% \/ﬁon,m(u)hMJr%
and
_ / b ) B[ NG(N + \/ﬁhm%(s;m)(u)smnu)))} "
Enm \F \/ﬁan,m(u)her%
Note that

hm+%bf’(m+1 —Vh= / (D ()b (u — hv) dv = Vhbf, (u)

and then h’”“‘%bf’(mﬂ)(u) is of the same form as vAb! (u), using (™) instead of ¢, and

N(0,1)

Observe that Gy (u,y) is not of the form g(v/hd?(u),y) but as we remarked at the end of section 4,
Theorem 1 is still true and

1— h b,
= / (u, €20 (w)) du — N(0,0%,,)

where
2 { 0%m in the sub-optimal case
9Gm = 0% in the optimal case
On the other hand Fr(mat)
1-h m
h™b, u)
En,m :/ Qn,m( ) (+L
h \Fan m( Jhmtz
and )
= fh’” (s (u) — 5™ (u))
nm\U) = dy.
nn) = [ vot) Gy + BT gy

11



Integrating by parts we can see that when m # 0, this expression converges a.s.

hmbf’(m) (u) “3 bF (u) ffooo 90(7") (v)dv =0 and

< Const

‘[¢m521§2m+%y

so we only have to consider the case when m = 0 and then

1-h I F
by, (u)
E,, :/ Gn,o(u —h T gy
0= f, el e )

with

tou) = /°° V(s (u) = s(u)) ) dy

v o(y) Gy + Viahon o)

to zero because

Integrating by parts the last expression one obtains that FE,, o converges in law to — fol b (u)Cso(u)du in

the sub-optimal case (resp. to — fol b¥ ()¢, (u)du in the optimal one) and the theorem plus the remarks

follow. W

7 Kullback Deviation

Consider the ”"modified” Kullback deviation between the kernel estimator of the density §,, and the true
density s verifying the conditions of section 3 and H2. The deviation is 'modified’ since we consider the

integration over the interval [h,1 — h| for A > 0 and not over [0, 1]. Let

1-h A
KXén,s)::ji oo () (22 gy

We suppose in this section that ¢ is even.

Let us show that this definition makes sense under the condition nh'*® — 400 as h — 0, for some a > 0.

For u € [h,1 — h] we can decompose as

$n(u) 1 {Bnh(u) — bn,h(u)} n 1 bnh(u) n Sn(u) — s(u)

s(w) NGO s(w) Vi s(u)

by Lemma 1 and since s is bounded below we know that

L Bn,h(u) - bn,h(u)
AN

On the other hand we have the following inequality

(u) — s(u)

Luemg—m}gcm@

|,u € [h,1—h]} < Const h?

and since [ ¢(v)dv =0 we get
. 1 [ )
bnla) = [ B ) = BE () o) do
— 00

Using the modulus of continuity for the B.B. we finally obtain that

1 by (u) y B L
Sup{|\/ﬁ s(u) |7 E[h,]. h}}SCQ( )

12




We have then shown that for u € [h,1 — h],

Sp(u) "
s(u) =1+ Ha(w)
and I
sup{|Hy,(u)|,u € [h,1 — h]} < C(w) [% +h%+ W]

which gives the required result if § is small enough.
Let us now introduce some notation before proving the next theorem. Let

at =1 [ Pyl = (55) and atw =Gkt

(’ denotes the derivative)

Theorem 4 Under H1, H2 and the assumptions, nh?>T® — 400 as h — 0, for some a > 0, and ¢ is an
even function,

Vi 1 ri=h 1 ) 1-h
RKC(5n, ) — = — El.(w) — du— 5, (1) — s(u)) d
ARG =5 [ Bl = sPdue [ ) = s(w)au]
B N(0,02)
where
g { w? in the sub-optimal case
72 T w2 + (Ka,a) in the optimal case

(see (16) for the definition of (Ka,a))

Remark: The term [, hl 7h(§n(u) — s(u)) du tends to zero more slowly than the required normalization

nv h so it cannot be dropped.
Proof.

1-h A
K (5, s) = /h sn(u)In(1 +

It is easy to show, using a Taylor expansion of order three for the logarithm, that

6o = LG s T ) du
Knn) = 5 [ P [ ) = s(w)du +

LG —s@)® 1) — sy 1
2/h s2(u) du + 3/h Sn(U)( s(u) ) (14 6(u,n,w))?

3 (u) — 5(w)

where 6(u,n,w) is a point between 0 and 5n o)
s(u

du

, and then

1-h

()~ s du~ [ (5w - s(w)dl (17)

h

3
>
Lo
a
o
3
w
S~—
N
:\
v
—
<
S—
=

{[Van(zaw) — s(u)] "~ B(Van(e,(w) - s@)] )} du

1

s(u) ) (1+6(u,n,w))3 du

= (H+ )+ {II).

By the results of the previous section we know that (I) — N(0,0,2) in law when n — oo (In fact, this
is not a straightforward application of Theorem 5 with G(z) = 2, because we don’t consider here the

13



ﬁ which does not appear in Theorem

normalization vnha, o(u) and furthermore, we have the term
5. However, the idea of the proof is the same and using Mehler’s formula (2) the variance is easily
computable because of the very simple form of G). Thus to finish it is sufficient to prove that (II) and
(III) tend to zero in probability when n — oo. For this it is enough to prove that E[(I1)?] — 0 and that
(I1I) tends to zero a.s., but

nh?

1 < Lo Vnh(s 64
E[(IT)?] < Const T/h E[Vnh(§,(u) — s(u))]® du
and E[vVnh(3,(u) — s(u))]® < Const then

1
IT)% < Const —
EI(I1)?] < Const —
and the last term tends to zero because of the hypothesis.
Let us look more closely at the last term of (17). We have already seen that

In(n) Lh2a 1

5n(u) = s(u)| < Caw) [ WEE

] < Cs(w)a(h)

with a(h) — 0 when h — 0, then
|0(u,n,w)| < C3(w) a(h)

and
|$n (u)] < d(w).
Finally 3
Sn(u) — s(u n®(n 13
R lsa] [2 =) < o 0 4 L

and then under the hypothesis and for § small enough, (I7I) — 0 a.s. Hence the result follows. B

We consider also the super-optimal case; following the same arguments as before we get the following

Theorem 5 Under H1, H2, if s € C3[0,1], ¢ is an even function, nh® — +o0 as h — 0 and nh® —
0,then

2./n 1

Tolt? [K(én,s) ~3 /hlh le E[én(u) —  s(u))*du— /hlh(én(u) — s(u)) du]

US|

— _/0 bE (u)e(u) du = N(0, (Ke, c))

(Remember that c(u) = ( S:(SL)))/).

8 Crossings of the Empirical Process

Denote by N/ (z) the number of crossings before time 1 of the process (3, at level z. Having in mind
the result for the F-B.B. (see Corollary 1) we have the following

In(n)
Vnh

Vu(f) =Ah/_oo f(x)N,}Z(:c)d:v—/_oo fx)h(z)yde -0 in L2

Theorem 6 Let f be a function in C? with f bounded. Under H1, H2 and if — 0 as h = 0 then

where we define, ffooo f(x)h(x)dz as the ‘modified occupation measure’

/ " fa)h @) = / £ (Bon () /5(u) du

— 00

14



(Remember that Ay, =/ Z2{|p[|5 1)
Proof.
The Banach-Kac [2] [14] formula gives

| @ Vi@ e = [ Gna) il
—00 0

To study the behaviour of this r.v. we apply the previous results to the function g(z) = |z|, to get that

ifh—0 ) )
i [l ol 2 [ VoG n 12

/ \/EN,’Z(:c)dx%kaQ\/z/ (x)dz in L2

We consider, since f is continuous, the following normalization for the integrated number of crossings

and then

Ah/ i dz_Ah/ F (B (1)) (1) .

Thus

BV (/) =B / F(Bn ) Ml )t —  F(Bnw)/5ahd]
< Conse B[ | 103 0) = S0 ]+ B[ | 05000l = 0]
+E[/01f(bn,h(u))(/\hi)n,h(u)|\/@)du}2+E[/Ol(f(bn7h(u)) FBun(u qu]}

Using the Lipschitz property (6), Holder’s inequality for f and Lemma 1, the first and fourth term are

O((h\‘}g) )?) and the second term is O((l\r}(r% )?). The third term is

1 1
E[/O FOF () (Ao}, (w)] = /s(u)) du]* < RE[Z; ()] +E[/O (FO7 () = f(br, (u))) V/5(u)) du]?

where Zb(f) was defined in section 3; by Corollary 1, we know that hE[Z}(f)]?> = O(h). Moreover,
working in the same manner as in that corollary for the second term we get that

1
E[/O (fOF () = f(by (w))) v/5(u)) du]* = o(h),

thus
EVA(/)P? < Const [(“j?f n <1j}%)>2 bt o(h)

Hence the theorem holds. B
Remark: Using this result one has the following convergence

Ah/fN’L /ff”

We only sketch the proof Let be ah = An [T f(@)NE (@) dz, u(f) = [T f@)lh(z)dz, Y(f) =

75 f@)tt (@) d, Yo (f) = [75, f( )dz and d a dlstance that metrlzes the convergence in law.
We have the followmg mequahty

d(an(f),Y (1)) < d(an(f), Cn(f)) + d(Cn(f), Y (f))

d(a
By the previous result we know that d(apn(f),Cn(f)) — 0. It is easy to prove that ||Cn(f) — Yo (f)|l2 = 0
and since d(¢n(f), Y (f)) = d(Cn(f), Yo () < |ICh(f) — Yo (f)]|2, the remark follows.
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Theorem 7 Under the hypothesis of Theorem 6,

&nl( f/ AhNh( )—éig(x))d:HV stably

where V' is as in Corollary 1.

Proof. We decompose the expression for &, (f) as:

&) = T/fﬁnh 1) AnlBun (u \du—/mnh /sG]

- %{/ [ B (1)) = F (b)) Anl |du+/ £ e () A o ()] — P ()l

/ ()l (0)] = V5T [ () = B (10) /5 )
(III) + (IV)

We have already seen that

E(I)? + E(IT)? + E(IV)? < Const [(%)2 + (ln(n) )2}

Hence it only remains to consider (I11), but

1 1
(I11) = %/0 F (b () (An by ()] = V/5(w)) du 2 %/0 F (05 () (Ao} (w)] = v/5(w)) du

Thus

119

(IT1)

L[ g0t [ 508wyt al
/ F0F () — £6F () v/(u) ds

= (IID)y + (II),

In the proof of the last theorem we showed that E[(I1]2)]?> = o(1). On the other hand, the term (I11);
is exactly Z?(f) and converges stably to V when h tends to zero. Thus the theorem follows. B

9 Smoothed Empirical Process

We can obtain an extension of the previous result by considering the Smoothed Empirical Process:

Bn,h(u) = ﬁn,h(u) + \/ﬁ[ﬁn(u) — F(u)]

where F,(u) = B[E, (u)], F,(u) = / $n(v)dv with F satisfying the conditions of section 3, s verifying

H2 and ¢ even. Note that Bn,h has a bias. It is obvious that

B () = V/[Ey(u) = F(u)]

and hence this process is the same as that defined by Yukich in [17]. He proved that if \/nh* — 0 then
Br.n(u) — b (u) in law. Moreover ublng Taylor’s development for /n(F,(u) — F(u)), he gets that, if

Vnh? = a, then B, 1, (u) 2 bE (u) + Kzs( ), where Ky = / o(v)v?dv. Working as in the previous

—0o0
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section we can obtain the convergence results for N!(z), the number of crossings on [h,1 — h] for the
process 5 at level x, i.e. when v/nh? — a > 0,

Ay, /_Z f(@) N, () da 3/0 FOOF (u) + %Kzé(u))Mdu.

When /nh? — 400, using a Taylor development for ﬁ(ﬁn(u) — F(u)) 0 < w < 1, we get that this

term tends to $(u). So it is natural to consider Can,h (remember that ¢, = and to study the

—2 )
Kov/nh?

convergence results for N ; (), the number of times in [h, 1 — h] that the process ¢, 3, crosses level .
We obtain the following.

Corollary 2 Suppose that f satisfies (6), s € C?[0,1] (instead of H2), H1 holds, ¢ is an even function
and \/nh? — 400 as h — 0 then

a)If nh® — +o0,

[ T H@N (@) B / F(3(0))| ()| du = / " f@)N (. x) da

where N($,x) stands for the number of crossings of level x by $ in [0, 1].
b) If Vnh® — b (b can take the value 0 and if it is the case we will suppose furthermore that H2 holds
and s € C3[0,1]),

> 1
Noves [ N B gl /0 f<5(u))\/fd0,b(u)mdu,

(See section 3 for the definition of dy(u) and note that dgo(u) = 1).
Proof. The proof consists in applying the KMT theorem and Theorem 1 of [4]. B
Let us define the following modification of the occupation measure

%) 1—h
/_ @) () da = /h F B () /() du

and

1 e ~ ~
n(f) =— ) [A N (z) — 08 (2)] da
&N == [ 1M - )
(Remember that N (z) is the number of times that the process f3,, 5 crosses level z before time 1)

In(n)

Corollary 3 Assume that f is in C% and f is bounded, under H1 and H2, if Jih
n

— 0 as h — 0,

s € C3[0,1] and ¢ is an even function, then
a) If \/nh? — 0 we obtain that

Enl(f)—=V stably

where V is the same r.v. that we obtained in Theorem 4.
b) On the other hand, if \/nh? — a then

En(f)=V  stably

where
! alig . =5
LTI =0 [ FOF () + S50 5l W (a)

17



Proof. We recall that F, is the o-algebra generated by {b¥ (u),0 < u < 1}.

~ 1

1—h N . 1—h
&) = ﬁ[/h F B (@) A B ()] s — /h £ Bron()) /() ]
1 1—h . ] 1—h
= ﬁ[/h F B (w) + @ (W) Ap| B p () + ap(u)] du — /h F (B (w) + an (w)/s(u) du]
where ay(u) = v/AlFn () — F(u)] = vt [ o(v) [F(u — hv) — F(u)] dv. We decompose &,(f) as
1—-h

1-h _ .
&nlf) = ﬁ[/h f(bn,h(u) + an(u))Ah|bn,h(“) + an(u)| du — / f(b )+ an(u))y/s(u) dul

h

1—h
+% /h [f(ﬁn,h(u) + an(U)) — f(bn,h(u) + a”(u))]AhWn,h(’UJ) + dn(u)| du
1-h
v / £ (b (1) + an () An[| 1 (0) + ()] = [ (12) + i (1) ] dus
1— h
/ b () 4 an(w)) = F(Bun () + an(u)]y/s(u) du

= (I)+ )+ (III) + (IV).

Consider the last three terms. Using the Lipschitz property (6) for f, Holder’s inequality, Lemma 1 and
the fact that, by using a Taylor development for F' and s respectively, a,(u) and a,(u) are bounded by

Vnh? on [h,1— h], it is easy to see that E(II)? and E(IV)? are O((1282)2) and E(I11)? is O((2)2).

~ Vnh v/nh
&n(f) is then equivalent to () and
’D 1 17h .
() = ﬁ/h F (b5, (u) + an (W) {Anlbf (1) + an(w)] = V/s(u)} du
= by (u) 4+ an(u))Gr(u, & (u)) du
= [ S05 ) + anw) G, (w)
1 [k p
—/ FOOF (u) + an(u)) khuE|\/7N+pnu|— Vs(u)] du
1-h
\f/ bF ) + an(w)kn(u fh N|\/>N+pn
= D+ D2+ T)s
Vhay, (u)
where k&, (u) = Vhe? (u SL pn(u) = il n and
n(w) nllellz ™ pn(u) 2 Vho! (u)
T ™ T
G = kn )l 0+ 0] = B3 +pa(a0] — y EINI 5N+ g
Consider the second term (I)s.
) E 13N+ paw)] = Vol < o E|\fN+pn ) =10+ Vi) — /3G
We have already seen in section 5 that on [h,1 — h], |k, (u) — v/s(u)| < Const h. Furthermore, a simple

calculation shows that

13N+ pu)] -1 @Ewwn(un—ﬂ]

_ \/f{dnw)[@(m B dn ()] + [6(—dn(w) — H(O)]}
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where d,,( \/7 pn(u), ¢ and & are the standard Gaussian density and distribution function respec-

tively. So we get that [E|\/ZN + pn(u )\ — 1] < Const h and therefore |I5] < Const \ff |f (bF (u) +
an(u))| du. We thus obtain that E[()2]? < Const h. Consider now the third term.

*i o B anp U .F’LL E u U
D= 2 [ O @)+ el ) BN 5 + o] a

By an elementary calculation we can see that

dyp, (u) +00
1 E[N|\/§N+pn(u)|] = %U_d ( )22¢(z)dz+2dn(u)/d ( )zqs(z)dz}

Ko i

this expression tends to zero in the sub-optimal case and tends towards agis(u) in the optimal case.
2[[epll2v/s(u)

Moreover, the difference between — N\/>N + pn(u)|] and its limit is O((nvVh)h* 4+ \/nh?) in the

sub-optimal case and O(Vh+h+|y/n h2 —al) in the optimal one. The convergence to zero, in probability,
for the term (I)s has been proved for the sub-optimal case. Hence we must only consider the optimal
case, and then (I)3 is asymptotically equivalent to

= o (u akKy  5(u) VP () du
/h Tiglls T O () an () g — s VR () du

Using the Lipschitz property (6) for f and the fact that supy<,<; ||bf, (1) — b" (u)|[2 = O(h) and

sup  |an(u) — gKgé(uﬂ < Const{|v/nh? — a| + v/nh3},

h<u<l—h

we thus obtain that (I)s is asymptotically equivalent to

h F a.. . 8(u) iF
/h £ (u)+2K28(u))m\/ﬁbh(u)du

By Theorem 1 in [4] this quantity tends to zero in probability when h tends to zero. Thus (I)s tends
to zero in probability and &,(f) ~ (I); = ﬁ f;fh FOOF (u) + an(u)Gh(u, € (u)) du. following the same
arguments as in the proof of Corollary 1 (see remark 2 at the end of section 4), we finally get that the
last term tends stably to the required limit. W

We consider now the case where /nh? — 400 and we get, in the next corollary, the speed at which
the convergence takes place.

Corollary 4 Assume that f verifies (6), s € C3[0,1], H1 holds, ¢ is an even function and nh* — +o0
as h — 0, then
a) If nh® — +o00 and |3| is bounded below on [0, 1], then

1-h .
[/ f(z (z)dz — f(enBnn(w))|env/n(Fo(u) — |du] —>/ f(8(w))sign(3(u))db™ (u)

h

b) If nh? _q — 0 (g >0), under H2, s € C3[0,1] and assuming that f is in C? with bounded second
demvatwe

oo 1-h B
\}E[IWI?W [ r@nz@ a2 [ ey 2 oyt s(u)dulﬂ

el [ ety 2 w22 [ oyt et vGai

where W is a B. M. independent of b* .
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Remark: In the special case where ¢ = 0, dy o(u) = 0 and the first term of the limit vanishes.
Proof. The proof consists, as before, in an application of the KMT theorem, Theorem 1 of [4], Theorem
1 and arguments similar to those used to prove Corollary 1. B
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