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, and a strong approximation theorem, we prove several results for the p-deviation in estimation of the derivatives of the density. We also study the asymptotic behaviour of the number of crossings of the Smoothed Empirical Process defined by Yukich [17] and of a modified version of the Kullback deviation.

Introduction

The problem of estimating the density s(x) of simple random sample X 1 , X 2 , . . . , X n is a classical problem in non-parametric statistics. The most popular method is kernel estimation, introduced by Parzen and Rosenblatt in the 50's. The study of consistency properties and asymptotic normality of these estimators was one of the important subjects of study during the following two decades.

Among these works was Bickel & Rosenblatt [START_REF] Bickel | On some global measures of the deviation of density function estimates[END_REF] where the authors use strong convergence results to establish the asymptotic normality of the L 2 distance between the estimator and the real density. This work, source of inspiration for many others, allows the substitution of the Empirical Process by the Brownian Bridge in the functional under study, that is, the L 2 distance between the estimator and the real density. This replacement can be controlled using the strong approximation theorem of Komlós, Major and Tusnády [START_REF] Cs | Strong Approximations in Probability and Statistics[END_REF]. One of the important consequences of their result is that it gives L 2 confidence bands and provides the tools for hypothesis tests for contiguity alternatives for functions close to the density in the null hypothesis. Silverman [START_REF] Silverman | Weak and strong uniform consistency of the kernel estimate of a density and its derivatives[END_REF] extends these methods to the estimation of the density's derivatives.

In this work we generalize Bickel & Rosenblatt's result to kernel estimators of the density and of the derivative of the density, not only for the L 2 norm but also for L p norms. The first work where this problem was studied was Csörgő y Horváth [START_REF] Horv Áth | Central limit theorems for L p -norms of density estimators[END_REF], also using the strong approximation method. From then on there has been much work done trying to simplify the hypothesis for the density and the kernel, as, for example, Horváth [START_REF] Áth | On L p -norms of multivariate density estimators[END_REF], Beirlant & Mason [START_REF] Beirlant | On the asymptotic normality of L p -norms of empirical functionals[END_REF] and finally the work of Giné, Mason & Zaitsev [START_REF] Gin | The L 1 -norm Density Estimator Process[END_REF], where a limit theorem uniform with respect to the regularization kernel is obtained. In the last three papers mentioned the technique of Poissonization is used, which proves to be stronger than strong approximation.

Our method is interesting because, apart from allowing us to study the derivative of the density, handles the asymptotic convergence of functionals of the type

1 0 G( √ nh( ln (u) -l(u)))du
where ln is an estimator of the density or its derivatives. The p norm case corresponds to G(x) = |x| p . Using this viewpoint we can look at the asymptotics for a variant of the Kullback deviation. The results are obtained passing to functionals of the Brownian Bridge via the strong approximation theorem and then studying the asymptotic behaviour of these functionals using methods developed in a previous article [START_REF] Le | Non-linear functionals of the brownian bridge and their applications[END_REF].

With these same methods we can also study the number of crossings of a level by the Smoothed Empirical Process, defined by Yukich [START_REF] Yukich | A note on limit theorems for perturbed empirical processes[END_REF], as we explain in the next section, where we describe more precisely our results.

Description of the Results

Let X 1 , X 2 , . . . , X n be a random sample from the distribution F with density s(u), F n be the empirical distribution of the sample and β F n (u) = √ n(F n (u) -F (u)) be the empirical process. The kernel density estimator is

ŝn (u) = ŝn,h (u) = 1 h ∞ -∞ ϕ( u -v h ) dF n (v)
where ϕ is the estimation kernel and h depends on n: h = h(n).

1.-Define √ n[ŝ n (u) -E(ŝn(u))] = 1 h ∞ -∞ ϕ( u -v h ) dβ F n (v)
Integrating by parts

√ nh[ŝ n (u) -E(ŝn(u))] = √ h βn,h (u)
where βn,h is the derivative of the ϕ-regularization of the empirical process β n,h . If s has two continuous and bounded derivatives it is known that the optimal window is h(n) = O(n -1/5 ). The window is sub-optimal if h = o(n -1/5 ), otherwise it is super-optimal. It is also known that

lim n→∞ √ nh[E(ŝ n (u)) -s(u)] = α(u)
where α(u) is a known function of the unknown density for an optimal window and α(u) ≡ 0 for suboptimal windows. Consider the function g p (x) = |x| p -E |N | p , p ≥ 1 where N is a standard Gaussian r.v. The results that we will show imply for sub-optimal windows the following theorem of Csörgő & Horváth [START_REF] Horv Áth | Central limit theorems for L p -norms of density estimators[END_REF]:

1 √ h 1 0 | √ nh(ŝ n (u) -s(u))| p -E[| √ nh(ŝ n (u) -s(u))| p ] du → N (0, v 2 p )
Indeed the integral above is equivalent to

1 √ h 1 0 g p ( √ h βn,h (u) [Var( √ h βn,h (u))] 1/2 )| Var( √ h βn,h (u))| p/2 du.
Using now the KMT theorem we can replace βn,h (u) by the derivative of the regularization of the F-B.B. and get that the last integral converges to N (0, v 2 p ). In section 6 we obtain results along this line for the derivatives of the density and for a general function in place of |x| p for the sub-optimal and optimal cases.

Let

β F n (u) = √ n(F n (u) -F (u)
) be the empirical process and define

ν n,h (u) = ŝn,h (u) -s(u). If ϕ = 1 [-1,1] /2 then √ nhν n,h (u) = β F n (u + h) -β F n (u -h) 2 √ h + o(1)
as long as the density is sufficiently regular and h is chosen adequately. We want to study the asymptotic behaviour of the sums

1 n [nt] i=1 g n ( i n , √ nhν n,h ( i n )) and 1 n [nt] i=1 f (β F n ( i n ))g n ( i n , √ nhν n,h ( i n ))
where g n is a sequence of functions that satisfy certain properties that will be made explicit later on. These sums are generalizations of the so-called divisible statistics studied by Khmaladze [START_REF] Khmaladze | Martingale limit theorems for divisible statistics[END_REF] and they correspond to the following integrals

t 0 g n (u, √ nhν n,h (u))du and t 0 f (β F n (u))g n (u, √ nhν n,h (u))du. ( 1 
)
Using the Komlós, Major & Tusnády (KMT) strong approximation theorem ( [START_REF] Cs | Strong Approximations in Probability and Statistics[END_REF], see section 9 for the statement) we show that if g n → g then

lim n→∞ t 0 g n (u, √ nhν n,h (u))du = t 0 E[g(u, s(u) 2 N )]du lim n→∞ t 0 f (β F n (u))g n (u, √ nhν n,h (u))du = t 0 f (b F (u))E[g(u, s(u) 2 N )]du
where b F (u) is the F-Brownian bridge (F-B.B.), N is a standard Gaussian variable and the convergence is in L 2 (Ω) for the first limit and in law for the second. We also study the speed of convergence in both cases. Using a similar result for the F-B.B. shown in a previous work [START_REF] Le | Non-linear functionals of the brownian bridge and their applications[END_REF], we get that there exists a Brownian motion (B.M.) W independent of b F and a positive function σ g (.), which depends only on g such that

lim n→∞ 1 √ h t 0 {f (β F n (u))g n (u, √ nhν n,h (u)) -f (b F (u))E[g(u, s(u) 2 N )]}du = t 0 f (b F (u))d W (σ g (u)).
with convergence in law. Making f ≡ 1 one gets the same result for the first kind of integrals in [START_REF] Aldous | On mixing and stability of limit theorems[END_REF]. We consider these problems for general kernel estimators of the density and also several applications of these results which we now describe briefly.

2.-We consider in section 7 the modified Kullback deviation between the kernel estimator of the density ŝn and s. Let

K(ŝ n , s) = 1-h h ŝn (u) ln( ŝn (u) s(u) ) du.
We show that

n √ h[K(ŝ n , s) - 1 2 1-h h 1 s(u) E[ŝn(u) -s(u)] 2 du - 1-h h (ŝ n (u) -s(u)) du]
is equivalent, in the sub-optimal and optimal cases, to

1 2 √ h 1 0 s -1 (u) [ √ nh(ŝ n (u) -s(u))] 2 -E[ √ nh(ŝ n (u) -s(u))] 2 du
which is similar to the previous result for p = 2 and converges to a normal distribution. We show a similar result for the super-optimal case but with a different normalization.

3.-Define as in Yukich [START_REF] Yukich | A note on limit theorems for perturbed empirical processes[END_REF] the Smoothed Empirical Process:

βn,h (u) = √ n( Fn (u) -F (u))
where Fn (u) = u -∞ ŝn (v) dv. 

(u) = ∞ -∞ ϕ(v)F (u -hv) dv, he shows that, if √ nh 2 → a, then βn,h (u) D → b F (u) + a 2 K 2 ṡ(u), where K 2 = ∞ -∞ ϕ(v)v 2 dv.
Let Ñ h n (x) be the number of times that the process βn,h (•) crosses level x before time 1, and define ˜ h n (•) as a modification of the occupation measure for βn,h (see Corollary 2 in section 9 for an exact definition). By a formula of Banach-Kac [START_REF] Banach | Sur les lignes rectifiables et les surfaces dont l'aire est finie[END_REF][START_REF] Kac | On the average number of real roots of a random algebraic equation[END_REF] 

∞ -∞ f (x) Ñ h n (x) dx = 1 0 f ( βn,h (u))| ˙ β n,h (u)|du. Let Λ h = ( πh 2||ϕ|| 2 
2 ) 1 2 , using results included in a previous work [START_REF] Le | Non-linear functionals of the brownian bridge and their applications[END_REF] we obtain in section 9 the following:

a) If √ nh 2 → 0 then ξh n (f ) = 1 √ h ∞ -∞ f (x)(Λ h Ñn (x) -˜ h n (x))dx D → V
where V is a r.v. which, conditional on F ∞ , the σ-field generated by {b F (u), 0 ≤ u ≤ 1}, has the same law as σ 0

1 0 f (b F (u)) s(u)d W (u), W (•) is a B.M. independent of b F (•) (see Theorem 3 in [4]
) and σ 0 is defined in the next section. b) On the other hand if

√ nh 2 → a then Λ h ∞ -∞ f (x) Ñ h n (x) dx D → 1 0 f (b F (u) + a 2 K 2 ṡ(u)) s(u)du.
Moreover, we show that ξh n (f ) converges weakly to a r.v. Ṽ such that

L( Ṽ /F ∞ ) = σ 0 1 0 f (b F (u) + a 2 K 2 ṡ(u)) s(u) d W (u).
c) In section 9 we also treat the case √ nh 2 → +∞. In this situation we need a different normalization sequence for the process βn,h .

Hypothesis and notation

Let F be a distribution function with bounded support and density s. To simplify the notation we shall suppose that its support is [0, 1] i.e. F (0) = 0 and F (1) = 1. The F-Brownian Motion is defined as

W F (t) = W (F (t)), where W is a standard B. M. With this definition one has E(W F (u)W F (v)) = F (u ∧ v). The F-B.B. is defined as b F (t) = W F (t) -F (t)W (1) and then E(b F (u)b F (v)) = F (u ∧ v)[1 -F (u ∨ v)].
For each t and h > 0 we define the regularized processes b

F h (t) = ϕ h * b F (t) and W F h (t) = ϕ h * W F (t) where ϕ h (t) = 1 h ϕ( t h
) and * denotes the convolution. We use h instead of ε (as in [START_REF] Le | Non-linear functionals of the brownian bridge and their applications[END_REF]) for the regularization parameter to be consistent with the usual notation in density estimation.

We shall use the Hermite polynomials, which can be defined by exp(tx

-t 2 2 ) = ∞ n=0 H n (x) t n n! .
They form an orthogonal system for the standard Gaussian measure φ(x)dx and, if h

∈ L 2 (φ(x) dx), h(x) = ∞ n=0 ĥn H n (x) and ||h|| 2 2,φ = ∞ n=0 n! ĥ2 n .
Mehler's formula [START_REF] Breuer | Central Limit Theorems for non-linear functionals of Gaussian fields[END_REF] gives a simple form to compute the covariance between two L 2 functions of Gaussian r.v.'s: If (X, Y ) is a Gaussian random vector having correlation ρ then

E[h(X)k(Y )] = ∞ n=0 ĥn kn n!ρ n .
(

) 2 
We have the following hypothesis (H1) For the kernel ϕ:

1 -1 ϕ(t) dt = 1, ϕ ≥ 0, ϕ is absolutely continuous with support in [-1, 1]. Define ψ(u) = ϕ * φ(u) where φ(u) = ϕ(-u) and θ(u) = ψ(u)||ϕ|| -2 2 , u ∈ R. Let K 2 = ∞ -∞ ϕ(v) v 2 dv
. Further conditions will be required for some applications.

(H2) For the function s: s ∈ C 2 [0, 1], 0 < s(x) for all x ∈ [0, 1].

Let g(x, y) be a function in L 2 (φ(y)dy) a.s. continuous in the first variable and with polynomial growth in the second variable (|g(x, y)| ≤ K P (|y|) for x in a set compact) that satisfies the following two conditions:

i) E g(x, N ) = 0, 0 ≤ x. ii) E [N g(x, N )] = 0, 0 ≤ x. Define g(x, y) = ∞ k=2 c k (x)H k (y) the Hermite expansion of g, where we suppose that ∀x > 0, ∃k ≥ 2 such that c k (x) > 0, ( σb h (u)) 2 = Var( ḃF h (u))
and

g h (u, y) = g( √ h σb h (u), y), (3) 
and for 0 ≤ t ≤ 1

S b F h (t) = 1 √ h t 0 g h (u, ξ b h (u))du with ξ b h (u) = ḃF h (u) σb h (u) (4) 
Define also

σ 2 (t) = t 0 κ(u) du (5) 
where

κ(u) = ∞ k=2 k!c 2 k ( s(u)||ϕ|| 2 ) 2 -2 θ k (w) dw = 2 -2 E[g( s(u)||ϕ|| 2 , X)g( s(u)||ϕ|| 2 , θ(w)X + 1 -θ 2 (w)Y )] dw
and X,Y are independent, standard Gaussian variables. We shall write

l q (u, x) = π 2 x + qK 2 s(u) 2 s(u)||ϕ|| 2 = +∞ k=0 d k,q (u)H k (x)
and

σ 2 q (u) = 2 -2 ∞ n=2 d 2 n,q (u)n!θ n (w)dw, for u ∈ [0, 1],
x ∈ R and q ≥ 0 (note that σ 2 0 (u) doesn't depend on u so we will note

σ 2 0 (u) = σ 2 0 ). Also define c n = 2 K 2 √ nh 2 . We have ḃF h (t) = 1 h t/h -∞ b F (t -hy) dϕ(y). We introduce Z b F h (f ) = h -1 2 ∞ -∞ f (x)[Λ h N b F h (x) -b F (x)] dx with Λ h = πh 2 ||ϕ|| -1 2 ,
where

N b F h (x) is the number of times that the process b F h (•) crosses level x before time 1 and b F (•) is a modification of the local time for the F-B.B. on [0, 1] that satisfies, for any continuous function f , ∞ -∞ f (x) b F (x) dx = 1 0 f (b F (u)) s(u) du
In what follows we shall drop out the indices F when no confusion is possible. Throughout the paper, Const shall stand for a generic constant, whose value may change during a proof, N denotes a standard Gaussian r.v.

Stable Convergence

We shall use the notion of stable convergence, which we describe now following [START_REF] Aldous | On mixing and stability of limit theorems[END_REF][START_REF] Hall | Martingale Limit Theory and its Applications[END_REF] and [START_REF] Jacod | On continuous conditional Gaussian martingales and stable convergence in law[END_REF].

Let X n be a sequence of r. v.'s defined over (Ω, F, P ) and taking values in C[0, 1], and let G ⊂ F be a sub-σ-field. Let X be another r. v. defined over an extension ( Ω, F, P ) of the original probability space, with values in

C[0, 1]. The sequence X n converges G-stably to X if lim n E(Y h(X n )) = Ē(Y h(X)),
for all bounded and continuous functions h : C[0, 1] → R and all G-measurable and bounded r.v. Y .

Stable convergence is invariant under absolutely continuous changes of the measure.

Preliminary Results

We shall say that a function f is locally Lipschitz if

|f (x) -f (y)| ≤ |P (x, y)||x -y| (6) 
where P is a polynomial. . We need two results from [START_REF] Le | Non-linear functionals of the brownian bridge and their applications[END_REF] which we state for completeness.

Theorem 1 Under H1, H2, i) and ii)

S b h (t)→ W (σ 2 (t)) stably in C[0, 1]
where W is a B.M. and σ 2 (t) is given by ( 5). Furthermore the vector process

(b F h (•), S b h (•)) converges weakly in C[0, 1] × C[0, 1] towards (b F (•), W (σ 2 (•))) and the processes b F (•) and W (σ 2 (•)) are independent. Corollary 1 Under H1, H2 and if f ∈ C 2 with f bounded, Z b h (f ) converges stably as h → 0 towards a r.v. V ∈ L 2 (Ω) and the conditional distribution L(V |F ∞ ) is Gaussian with zero mean and random variance equal to σ 2 0 1 0 f 2 (b F (u))s(u)du. (σ 2
0 has been defined in previous section 3). Remark 1. Conditionally on F ∞ , V has the same distribution as σ 0

1 0 f (b F (u)) s(u) d W (u) (remem- ber that F ∞ is the σ-field generated by {b F (u), 0 ≤ u ≤ 1}). Remark 2.
Although the theorem has been stated assuming that in the definition of S b h (t), g h (u, y) is of the form g( √ h σb h (u), y), (see ( 3) and ( 4)), a slight modification of the proof shows that the result is true for other forms of the function g h (u, y) that will appear in sections 6 and 9.

5 Convergence in L 2 for the Empirical Process

Let β F n (u) = √ n(F n (u) -F (u)
) be the empirical process associated to a n-sample X 1 , . . . , X n of the continuous distribution F , where F n is the corresponding empirical d. f. and F satisfies the conditions of section 3. The transformation

U i = F (X i ), i = 1, . . . , n gives a n-sample of the uniform distribution U[0, 1]. If E n (v) is the associated empirical distribution function, the corresponding empirical process is α n (v) = √ n (E n (v) -v), 0 ≤ v ≤ 1. Note that α n (F (u)) = β F n (u) and if b(t) denotes the standard B.B. sup t∈[0,1] √ n |α n (t) -b(t)| = √ n ||β F n -b F || ∞
The following approximation theorem is due to Komlós, Major and Tusnády (1975) [START_REF] Cs | Strong Approximations in Probability and Statistics[END_REF]. Theorem [KMT]For any integer n there exists some B.B. b n such that for some absolute positive constants C, Λ, γ the following inequality holds:

P ( sup t∈[0,1] √ n|α n (t) -b n (t)| ≥ x + C ln(n)) ≤ Λ exp(-γx)
for any positive x. Consequently 

sup t∈[0,1] |α n (t) -b n (t)| = O( ln(n) √ n ) a.s. Let β n,h (u) = 1 h ∞ -∞ ϕ( u -v h )β F n (v)
||β n,h -b n,h || ∞ ≤ Const ln(n) √ n and || βn,h -ḃn,h || ∞ ≤ Const ln(n) h √ n ,
where the constant is random.

Lemma 1 For p ≥ 1, E( √ n ||β F n -b F n || ∞ ) p ≤ Const (ln(n)) p (7) E( √ n ||β n,h -b n,h || ∞ ) p ≤ Const (ln(n)) p (8) E( √ n || βn,h -ḃn,h || ∞ ) p ≤ Const h -p (ln(n)) p (9) 
Proof. We only consider the case p = 2, the proof is similar for general p.

Define Y n (u) = √ n|β F n (u) - b F n (u)| and let A λ = {||Y n || ∞ ≥ λ + C ln(n)}, where λ ≥ 0 and C is the constant in the KMT theorem. We have E(||Yn|| 2 ∞ ) = E(||Yn|| 2 ∞ 1 A c λ ) + E(||Yn|| 2 ∞ 1 A λ ) ≤ (λ + C ln(n)) 2 + E(||Yn|| 2 ∞ 1 A λ ) (10) 
Call G n the distribution function of ||Y n || ∞ , then, integrating by parts and using KMT E(||Yn||

2 ∞ 1 A λ ) = ∞ λ+C ln(n) u 2 dG n (u) = (λ + C ln(n)) 2 (1 -G n (λ + C ln(n))) + ∞ λ+C ln(n) 2u(1 -G n (u)) du (11) 
but by the inequality in the KMT theorem

1 -G n (λ + C ln(n)) ≤ Λe -γλ ; 1 -G n (u) ≤ Λe -γ(u-C ln(n)) thus (11) ≤ Λ(λ + C ln(n)) 2 e -γλ + 2Λ ∞ λ+C ln(n) ue -γ(u-C ln(n)) du ≤ Const(ln(n)) 2 + Const n γC (λ + C ln(n))e -γ(λ-C ln(n)) + e -γ(λ-C ln(n)) ≤ Const(ln(n)) 2 (12) 
Using ( 12) in [START_REF] Hall | Central limit theorem for integrated square error of multivariate nonparametric density estimators[END_REF] we get [START_REF] Horv Áth | Central limit theorems for L p -norms of density estimators[END_REF]. We shall now prove (9), the proof of ( 8) is similar but simpler.

E(n || βn,h -ḃn,h || 2 ∞ ) = E(n sup x | ∞ -∞ 1 h 2 φ( x -y h )(β F n (y) -b F n (y)) dy| 2 ) ≤ E(n (sup x ∞ -∞ 1 h | φ(u)| |β F n (x -uh) -b F n (x -uh)| du) 2 ) ≤ Const 1 h 2 E ||Y n || 2 ∞ ≤ Const (ln(n)) 2 h 2 .
Theorem 2 Let g be an even function verifying [START_REF] Breuer | Central Limit Theorems for non-linear functionals of Gaussian fields[END_REF], under H1 and H2 and if

ln(n) √ hn → 0 as h → 0, lim n→∞ 1 0 g( √ h βn,h (u))du = 1 0 E{g( s(u)N ||ϕ|| 2 )}du in L 2
Proof. We have

E[ 1 0 g( √ h βn,h (u))du - 1 0 E{g( s(u)||ϕ|| 2 N )}du] 2 ≤Const E[ 1 0 g( √ h βn,h (u))du - 1 0 g( √ h ḃn,h (u))du] 2 + Const E[ 1 0 g( √ h ḃn,h (u))du - 1 0 E{g( s(u)||ϕ|| 2 N )}du] 2 (13) 
Using the Lipschitz property for g, Hölder's inequality and lemma 1 the first term is bounded by

Const (ln(n)) 2 nh .
Up to a constant the second term is equal to

E[ 1 0 g( √ h ḃF h (u)) -E(g( s(u)||ϕ|| 2 N )] 2 du ≤ Const E[ 1 0 (g(ξ b h (u) √ h σb h (u)) -g(ξ b h (u)||ϕ|| 2 s(u))) du] 2 + Const E[ 1 0 (g(ξ b h (u)||ϕ|| 2 s(u)) -E[g(||ϕ||2 s(u)N )]) du] 2 .
For the first of these two terms, use the fact that

| √ h σb h (u) -||ϕ|| 2 s(u)| ≤ Const h
for h ≤ u ≤ 1-h, the Lipschitz property and Hölder's inequality to obtain that it is bounded by Const h 2 .

For the second term we consider the function

g(u, y) = g(y||ϕ|| 2 s(u)) -E[g( s(u)||ϕ|| 2 N )].
It verifies i) and ii), hence by Theorem 1 the second term is O(h). We thus obtain that

(13) ≤ Const (ln(n)) 2 hn + O(h)
and the theorem holds.

Estimation of a Density's Derivatives

In [START_REF] Horv Áth | Central limit theorems for L p -norms of density estimators[END_REF] Csörgő and Horváth consider the asymptotic behaviour of the p-th order risk for the kernel estimator of a density. In previous works the case p = 2 was established for sub-optimal windows by Bickel & Rosenblatt [START_REF] Bickel | On some global measures of the deviation of density function estimates[END_REF] and in all generality by Hall [START_REF] Hall | Central limit theorem for integrated square error of multivariate nonparametric density estimators[END_REF].

With our method we can consider the same problem as Csörgő and Horváth but with a general G instead of G(u) = |u| p and for the estimation of the derivatives of the density.

Assume that s is in C m+2 [0, 1] and satisfies the conditions of section 3. Define the estimator for the mth-derivative as in [START_REF] Silverman | Weak and strong uniform consistency of the kernel estimate of a density and its derivatives[END_REF] by

ŝ(m) n (u) = 1 nh m+1 n k=1 ϕ (m) ( u -X k h )
with ϕ even and in C m+1 . We shall use the notation s

(m) n (u) = E[ŝ (m) n (u)].
It is easy to show, using a Taylor expansion of order m + 2 for s, that for 0 < u < 1 the bias is

E[ŝ (m) n (u) -s (m) (u)] = (-1) m+2 (m + 2)! h 2 ∞ -∞ ϕ (m) (v)u m+2 s (m+2) (θ 1 ) dv,
where θ 1 depends on u, v and n. Thus

h -2 (E[ŝ (m) n (u) -s (m) (u)]) → K 2 s (m+2) (u)/2 as n goes to infinity (remember that K 2 = ∞ -∞ v 2 ϕ(v) dv).
The variance term can also be calculated, giving

nh 2m+1 E(ŝ (m) n (u) -s (m) n (u)) 2 = ∞ -∞ [ϕ (m) (v)] 2 s(u -hv) dv -h[ ∞ -∞ ϕ (m) (v) s(u -hv) dv] 2 → ∞ -∞ (ϕ (m) (v)) 2 dv s(u) = ||ϕ (m) || 2 2 s(u) i.e. nh 2m+1 σ 2 n,m (u) → ||ϕ (m) || 2 2 s(u)
as n → ∞. Let now G be a locally Lipschitz function (see [START_REF] Breuer | Central Limit Theorems for non-linear functionals of Gaussian fields[END_REF] for the definition), we want to study

I (m) n = 1 √ h 1-h h G ŝ(m) n (u) -s (m) (u) σ n,m (u) -E G ŝ(m) n (u) -s (m) (u) σ n,m (u) du.
It is well known, and can also be shown using the previous expressions for the bias and variance, that the optimal estimation window for the mean square error is

h = O(n -1/2m+5 ) i.e. √ nh m+ 5 2 → C m and in this case √ nh m+ 1 2 (s (m) n (u) -s (m) (u)) √ nh m+ 1 2 σ n,m (u) → f m (u) = K 2 C m s (m+2) (u) 2||ϕ (m) || 2 s(u) (14) 
as n → ∞. The window is sub-optimal if h = o(n -1/2m+5 ).

Let us introduce some notation before stating the next result.

σ 2 so,m = ∞ k=2 k! 1 k! +∞ -∞ H k (y)φ(y)G(y) dy 2 [ 2 -2 θ k m (ω) dω] with θ m (ω) = ∞ -∞ ϕ (m) (y) ϕ (m) (y + ω) dy ||ϕ (m) || -2 2 , σ 2 o,m = 1 0 ∞ k=2 k! 1 k! +∞ -∞ H k (y)φ(y)G(y + f m (u)) dy 2 [ 2 -2 θ k m (ω) dω] du, ζ so (u) = [ +∞ -∞ -z G(z) φ(z) dz] ṡ(u) 2 s(u)||ϕ|| 2 s(u) , ζ o (u) = +∞ -∞ G(y) φ(y -f 0 (u)) 1 η 2 (u) (y -f 0 (u)) 2 ḟ0 (u)η(u) -ḟ0 (u)η(u) -(y -f 0 (u)) η(u) dy where η 2 (u) = ||ϕ|| 2 2 s(u) (15) 
(see [START_REF] Kac | On the average number of real roots of a random algebraic equation[END_REF] for the definition of f m ). We also define the following integral operator

Ka, a = 1 0 1 0 F (u ∧ v)(1 -F (u ∨ v))a(u)a(v) du dv (16) 
Theorem 3 Let G be a function verifying [START_REF] Breuer | Central Limit Theorems for non-linear functionals of Gaussian fields[END_REF], under H1, H2, if s ∈ C (m+3) [0, 1], ϕ is an even function and ln(n) √ nh → 0 as h → 0, then

I (m) n D → N (0, σ 2 G,m ) where if m = 0 σ 2 G,m = σ 2 so,m
in the sub-optimal case σ 2 o,m in the optimal case and if m = 0

σ 2 G,m = σ 2 so,m + Kζ so , ζ so in the sub-optimal case σ 2 o,m + Kζ o , ζ o in the optimal case
Remark 1: For m = 0 and G(u) = |u| p the result was proved by Csörgő & Horváth in [START_REF] Horv Áth | Central limit theorems for L p -norms of density estimators[END_REF]. Note that, if G is even, ζ so (u) = 0 and then Kζ so , ζ so = 0.

Remark 2: In the sub-optimal case, if m = 0 and G is even we can drop the hypothesis that s ∈ C m+3 ∈ [0, 1] and use the less restrictive condition s ∈ C m+2 ∈ [0, 1]. The same conclusion holds if m = 0. Proof.

I (m) n = 1 √ h 1-h h G h m+ 1 2 β (m+1) n,h (u) √ nσ n,m (u)h m+ 1 2 + √ nh m+ 1 2 (s (m) n (u) -s (m) (u)) √ nσ n,m (u)h m+ 1 2 -E G h m+ 1 2 β (m+1) n,h (u) √ nσ n,m (u)h m+ 1 2 + √ nh m+ 1 2 (s (m) n (u) -s (m) (u)) √ nσ n,m (u)h m+ 1 2 du where β (m+1) n,h (u) = 1 h m+2 ∞ -∞ ϕ (m+1) ( u -v h )β F n (v) dv thus h m+ 1 2 β (m+1) n,h (u) = 1 h √ h ∞ -∞ ϕ (m+1) ( u -v h )β F n (v) dv = √ h 1 h ∞ -∞ ϕ (m+1) (v)β F n (u -hv) dv and then h m+ 1 2 β (m+1) n,h
(u) has the same form as √ h βF n,h (u) replacing φ by ϕ (m+1) . We have:

I (m) n = 1 √ h 1-h h G h m+ 1 2 b (m+1) n,h (u) √ nσ n,m (u)h m+ 1 2 + √ nh m+ 1 2 (s (m) n (u) -s (m) (u)) √ nσ n,m (u)h m+ 1 2 -E G h m+ 1 2 b (m+1) n,h (u) √ nσ n,m (u)h m+ 1 2 + √ nh m+ 1 2 (s (m) n (u) -s (m) (u)) √ nσ n,m (u)h m+ 1 2 du + 1 √ h 1-h h G h m+ 1 2 β (m+1) n,h (u) √ nσ n,m (u)h m+ 1 2 + √ nh m+ 1 2 (s (m) n (u) -s (m) (u)) √ nσ n,m (u)h m+ 1 2 -G h m+ 1 2 b (m+1) n,h (u) √ nσ n,m (u)h m+ 1 2 + √ nh m+ 1 2 (s (m) n (u) -s (m) (u)) √ nσ n,m (u)h m+ 1 2 du + 1 √ h 1-h h E G h m+ 1 2 b (m+1) n,h (u) √ nσ n,m (u)h m+ 1 2 + √ nh m+ 1 2 (s (m) n (u) -s (m) (u)) √ nσ n,m (u)h m+ 1 2 -E G h m+ 1 2 β (m+1) n,h (u) √ nσ n,m (u)h m+ 1 2 + √ nh m+ 1 2 (s (m) n (u) -s (m) (u)) √ nσ n,m (u)h m+ 1 2 du = (I) + (II) + (III)
We need the following lemma, which is similar to Lemma 1.

Lemma 2 For p ≥ 1, E( √ n ||β (m+1) n,h -b (m+1) n,h || ∞ ) p ≤ Const ( ln(n) h m+1 ) p
Proof. The proof is similar to that of Lemma 1, putting ϕ (m+1) instead of φ .

Using the Lipschitz property (6) for G and Lemma 2, we can show that

|(III)| ≤ Const ln(n) √ nh . In the same manner we obtain E[(II) 2 ] ≤ Const ( ln(n) √ nh ) 2 .
We have then proved that asymptotically I (m) n ∼ (I) and also (I)

D = 1 √ h 1-h h G ξ b,(m) h (u) + √ nh m+ 1 2 (s (m) n (u) -s (m) (u)) √ nσ n,m (u)h m+ 1 2 -E G ξ b,(m) h (u) + √ nh m+ 1 2 (s (m) n (u) -s (m) (u)) √ nσ n,m (u)h m+ 1 2 du = 1 √ h 1-h h G h (u, ξ b,(m) h (u)) du + E n,m
where ξ b,(m) h

(u) = h m+ 1 2 b F,(m+1) h (u) √ nσ n,m (u)h m+ 1 2 b F,(m+1) h (u) = 1 h m+2 ∞ -∞ ϕ (m+1) ( u -v h ) b F (v) dv.
Then

G h (u, y) = G(y + √ nh m+ 1 2 (s (m) n (u) -s (m) (u)) √ nσ n,m (u)h m+ 1 2
)

-E G N + √ nh m+ 1 2 (s (m) n (u) -s (m) (u)) √ nσ n,m (u)h m+ 1 2 -y E N G N + √ nh m+ 1 2 (s (m) n (u) -s (m) (u)) √ nσ n,m (u)h m+ 1 2 and E n,m = 1 √ h 1-h h ξ b,(m) h (u) E N G N + √ nh m+ 1 2 (s (m) n (u) -s (m) (u)) √ nσ n,m (u)h m+ 1 2 du.
Note that

h m+ 1 2 b F,(m+1) h (u) = √ h 1 h ∞ -∞ ϕ (m+1) (v)b F (u -hv) dv = √ h ḃF h (u)
and then h m+ 12 b F,(m+1) h

(u) is of the same form as √ h ḃF h (u), using ϕ (m) instead of ϕ, and

ξ b,(m) h (u) = ḃF h (u) σb h (u) D = N (0, 1)
Observe that G h (u, y) is not of the form g( √ h σb h (u), y) but as we remarked at the end of section 4, Theorem 1 is still true and

1 √ h 1-h h G h (u, ξ b,(m) h (u)) du → N (0, σ 2 G,m )
where

σ 2 G,m = σ 2 so,m
in the sub-optimal case σ 2 o,m in the optimal case On the other hand

E n,m = 1-h h q n,m (u) h m b F,(m+1) h (u) √ nσ n,m (u)h m+ 1 2 du and q n,m (u) = ∞ -∞ y φ(y) G(y + √ nh m+ 1 2 (s (m) n (u) -s (m) (u)) √ nσ n,m (u)h m+ 1
Integrating by parts we can see that when m = 0, this expression converges a.s. to zero because

h m b F,(m) h (u) a.s. → b F (u) ∞ -∞ ϕ (m) (v) dv = 0 and q n.m (u) √ nσ n,m (u)h m+ 1 2
≤ Const so we only have to consider the case when m = 0 and then

E n,0 = 1-h h q n,0 (u) ḃF h (u) √ nhσ n,0 (u) du with q n,0 (u) = ∞ -∞ y φ(y) G(y + √ nh(s n (u) -s(u)) √ nhσ n,0 (u) ) dy.
Integrating by parts the last expression one obtains that E n,0 converges in law to -

1 0 b F (u)ζ so (u)du in the sub-optimal case (resp. to - 1 0 b F (u)ζ o (u)
du in the optimal one) and the theorem plus the remarks follow.

Kullback Deviation

Consider the "modified" Kullback deviation between the kernel estimator of the density ŝn and the true density s verifying the conditions of section 3 and H2. The deviation is 'modified' since we consider the integration over the interval [h, 1 -h] for h > 0 and not over [0, 1]. Let

K(ŝ n , s) = 1-h h ŝn (u) ln( ŝn (u) s(u) ) du.
We suppose in this section that ϕ is even.

Let us show that this definition makes sense under the condition nh 1+a → +∞ as h → 0, for some a > 0.

For u ∈ [h, 1 -h] we can decompose ŝn (u) s(u) as ŝn (u)

s(u) = 1 + 1 √ n βn,h (u) -ḃn,h (u) s(u) + 1 √ n ḃn,h (u) s(u) + s n (u) -s(u) s(u) ,
by Lemma 1 and since s is bounded below we know that

sup{ 1 √ n βn,h (u) -ḃn,h (u) s(u) , u ∈ [h, 1 -h]} ≤ C 1 (ω) ln(n) hn .
On the other hand we have the following inequality

sup{| s n (u) -s(u) s(u) |, u ∈ [h, 1 -h]} ≤ Const h 2 and since ∞ -∞ φ(v) dv = 0 we get ḃn,h (u) = 1 h ∞ -∞ [b F n (u -hv) -b F n (u)] φ(v) dv.
Using the modulus of continuity for the B.B. we finally obtain that

sup{| 1 √ n ḃn,h (u) s(u) |, u ∈ [h, 1 -h]} ≤ C 2 (ω) 1 √ nh 1 2 +δ .
We have then shown that for u

∈ [h, 1 -h], ŝn (u) s(u) = 1 + H n (u) and sup{|H n (u)|, u ∈ [h, 1 -h]} ≤ C(ω) [ ln(n) hn + h 2 + 1 √ nh 1 
2 +δ ] which gives the required result if δ is small enough.

Let us now introduce some notation before proving the next theorem. Let

w 2 k = ||ϕ|| 4 2 2 [ 2 -2 θ 2 (ω) dω], c(u) = s"(u) s(u) and ã(u) = 1 2 C 0 K 2 c(u)
(' denotes the derivative)

Theorem 4 Under H1, H2 and the assumptions, nh 2+a → +∞ as h → 0, for some a > 0, and ϕ is an even function,

n √ h K(ŝ n , s) - 1 2 1-h h 1 s(u) E[ŝn(u) -s(u)] 2 du - 1-h h (ŝ n (u) -s(u)) du D → N (0, σ 2 2 )
where

σ 2 2 = w 2 k
in the sub-optimal case w 2 k + Kã, ã in the optimal case (see [START_REF] Silverman | Weak and strong uniform consistency of the kernel estimate of a density and its derivatives[END_REF] for the definition of Kã, ã )

Remark: The term 1-h h (ŝ n (u) -s(u)
) du tends to zero more slowly than the required normalization n √ h so it cannot be dropped. Proof.

K(ŝ n , s) = 1-h h ŝn (u) ln(1 + ŝn (u) -s(u) s(u) ) du
It is easy to show, using a Taylor expansion of order three for the logarithm, that

K(ŝ n , s) = 1 2 1-h h (ŝ n (u) -s(u)) 2 s(u) du + 1-h h (ŝ n (u) -s(u)) du + - 1 2 1-h h (ŝ n (u) -s(u)) 3 s 2 (u) du + 1 3 1-h h ŝn (u) ŝn (u) -s(u) s(u) 3 1 (1 + θ(u, n, ω)) 3 du
where θ(u, n, ω) is a point between 0 and ŝn (u) -s(u) s(u) , and then

n √ h K(ŝ n , s) - 1 2 1-h h 1 s(u) E[ŝn(u) -s(u)] 2 du - 1-h h (ŝ n (u) -s(u)) du (17) = 1 2 √ h 1-h h 1 s(u) √ nh(ŝ n (u) -s(u)) 2 -E( √ nh(ŝ n (u) -s(u)) 2 ) du - n √ h 2 1-h h (ŝ n (u) -s(u)) 3 s 2 (u) du + n √ h 3 1-h h ŝn (u) ŝn (u) -s(u) s(u) 3 1 (1 + θ(u, n, ω)) 3 du = (I) + (II) + (III).
By the results of the previous section we know that (I) → N (0, σ 2

2 ) in law when n → ∞ (In fact, this is not a straightforward application of Theorem 5 with G(x) = x 2 , because we don't consider here the normalization √ nhσ n,0 (u) and furthermore, we have the term 1 s(u) which does not appear in Theorem 5. However, the idea of the proof is the same and using Mehler's formula (2) the variance is easily computable because of the very simple form of G). Thus to finish it is sufficient to prove that (II) and (III) tend to zero in probability when n → ∞. For this it is enough to prove that E[(II) 2 ] → 0 and that (III) tends to zero a.s., but

E[(II) 2 ] ≤ Const 1 nh 2 1-h h E[ √ nh(ŝ n (u) -s(u))] 6 du and E[ √ nh(ŝ n (u) -s(u))] 6 ≤ Const then E[(II) 2 ] ≤ Const 1
nh 2 and the last term tends to zero because of the hypothesis. Let us look more closely at the last term of [START_REF] Yukich | A note on limit theorems for perturbed empirical processes[END_REF]. We have already seen that

|ŝ n (u) -s(u)| ≤ C 3 (ω) [ ln(n) hn + h 2 + 1 √ nh 1 2 +δ ] ≤ C 3 (ω) a(h) with a(h) → 0 when h → 0, then |θ(u, n, ω)| ≤ C 3 (ω) a(h) and |ŝ n (u)| ≤ d(ω). Finally n √ h |ŝ n (u)| ŝn (u) -s(u) s(u) 3 ≤ C (ω) [ ln 3 (n) n 2 h 5 2 + nh 13 2 + 1 √ nh 1+3δ ]
and then under the hypothesis and for δ small enough, (III) → 0 a.s. Hence the result follows.

We consider also the super-optimal case; following the same arguments as before we get the following Theorem 5 Under H1, H2, if s ∈ C 3 [0, 1], ϕ is an even function, nh 5 → +∞ as h → 0 and nh 8 → 0,then

2 √ n K 2 h 2 K(ŝ n , s) - 1 2 1-h h 1 s(u) E[ŝn(u) -s(u)] 2 du - 1-h h (ŝ n (u) -s(u)) du D → = - 1 0 b F (u)c(u) du ≡ N (0, Kc, c ) (Remember that c(u) = s"(u) s(u)
).

Crossings of the Empirical Process

Denote by N h n (x) the number of crossings before time 1 of the process β n,h at level x. Having in mind the result for the F-B.B. (see Corollary 1) we have the following Theorem 6 Let f be a function in C 2 with f bounded. Under H1, H2 and if

ln(n) √ nh → 0 as h → 0 then V h (f ) = Λ h ∞ -∞ f (x)N h n (x) dx - ∞ -∞ f (x) h n (x) dx → 0 in L 2
where we define,

∞ -∞ f (x) h n (x) dx as the 'modified occupation measure' ∞ -∞ f (x) h n (x)dx = 1 0 f (β n,h (u)) s(u) du (Remember that Λ h = πh 2 ||ϕ|| -1 2 ) Proof. The Banach-Kac [2] [14] formula gives ∞ -∞ f (x) N h n (x) dx = 1 0 f (β n,h (u))| βn,h (u)|du.
To study the behaviour of this r.v. we apply the previous results to the function g

(x) = |x|, to get that if h → 0 √ h 1 0 | βn,h (u)|du → ||ϕ|| 2 2 π 1 0 s(u)du in L 2 and then ∞ -∞ √ h N h n (x) dx → ||ϕ|| 2 2 π ∞ -∞ b (x) dx in L 2 .
We consider, since f is continuous, the following normalization for the integrated number of crossings

Λ h ∞ -∞ f (x)N h n (x)dx = Λ h 1 0 f (β n,h (u))| βn,h (u)|du. Thus E[Vh(f )] 2 = E 1 0 f (β n,h (u))Λ h | βn,h (u)|du - 1 0 f (β n,h (u)) s(u)du 2 ≤ Const E 1 0 [f (β n,h (u)) -f (b n,h (u))]Λ h | βn,h (u)|du 2 + E 1 0 f (b n,h (u))Λ h {| βn,h (u)| -| ḃn,h (u)|}du 2 + E 1 0 f (b n,h (u))(Λ h | ḃn,h (u)| -s(u)) du 2 + E 1 0 (f (b n,h (u)) -f (β n,h (u)) s(u) du 2 
Using the Lipschitz property ( 6), Hölder's inequality for f and Lemma 1, the first and fourth term are

O(( ln(n) √ n ) 2 ) and the second term is O(( ln(n) √ nh ) 2 ). The third term is E[ 1 0 f (b F h (u))(Λ h | ḃF h (u)| -s(u)) du] 2 ≤ hE[Z b h (f )] 2 + E[ 1 0 (f (b F (u)) -f (b F h (u))) s(u)) du] 2
where Z b h (f ) was defined in section 3; by Corollary 1, we know that hE[Z b h (f )] 2 = O(h). Moreover, working in the same manner as in that corollary for the second term we get that

E[ 1 0 (f (b F (u)) -f (b F h (u))) s(u)) du] 2 = o(h), thus E[Vh(f )] 2 ≤ Const [( ln(n) √ n ) 2 + ( ln(n) √ nh ) 2 + h + o(h)].
Hence the theorem holds. Remark: Using this result one has the following convergence

Λ h ∞ -∞ f (x)N h n (x) dx D → ∞ -∞ f (x) b (x) dx.
We only sketch the proof: Let be a

h (f ) = Λ h ∞ -∞ f (x)N h n (x) dx, ζ h (f ) = ∞ -∞ f (x) h n (x)dx, Y (f ) = ∞ -∞ f (x) b (x) dx, Y n (f ) = ∞ -∞ f (x) bn (x)
dx and d a distance that metrizes the convergence in law. We have the following inequality

d(a h (f ), Y (f )) ≤ d(a h (f ), ζ h (f )) + d(ζ h (f ), Y (f ))
By the previous result we know that d(a h (f ),

ζ h (f )) → 0. It is easy to prove that ||ζ h (f ) -Y n (f )|| 2 → 0 and since d(ζ h (f ), Y (f )) = d(ζ h (f ), Y n (f )) ≤ ||ζ h (f ) -Y n (f )|| 2 , the remark follows.
Theorem 7 Under the hypothesis of Theorem 6,

ξ n (f ) = 1 √ h ∞ -∞ f (x) Λ h N h n (x) -h n (x)
dx→V stably where V is as in Corollary 1.

Proof. We decompose the expression for ξ n (f ) as:

ξ n (f ) = 1 √ h 1 0 f (β n,h (u))Λ h | βn,h (u)|du - 1 0 f (β n,h (u)) s(u)du = 1 √ h 1 0 [f (β n,h (u)) -f (b n,h (u))]Λ h | βn,h (u)|du + 1 0 f (b n,h (u))Λ h {| βn,h (u)| -| ḃn,h (u)|}du + 1 0 f (b n,h (u))(Λ h | ḃn,h (u)| -s(u)) du + 1 0 (f (b n,h (u) -f (β n,h (u)) s(u) du = (I) + (II) + (III) + (IV )
We have already seen that

E(I) 2 + E(II) 2 + E(IV ) 2 ≤ Const ( ln(n) √ nh ) 2 + ( ln(n) √ nh ) 2
Hence it only remains to consider (III), but

(III) = 1 √ h 1 0 f (b n,h (u))(Λ h | ḃn,h (u)| -s(u)) du D = 1 √ h 1 0 f (b F h (u))(Λ h | ḃF h (u)| -s(u)) du Thus (III) D = 1 √ h 1 0 f (b F h (u))Λ h | ḃF h (u)| du - 1 0 f (b F (u)) s(u) du + 1 √ h 1 0 f (b F (u)) -f (b F h (u)) s(u) du = (III) 1 + (III) 2
In the proof of the last theorem we showed that E[(III2)] 2 = o(1). On the other hand, the term (III) 1 is exactly Z b h (f ) and converges stably to V when h tends to zero. Thus the theorem follows.

Smoothed Empirical Process

We can obtain an extension of the previous result by considering the Smoothed Empirical Process:

βn,h (u) = β n,h (u) + √ n[ Fn (u) -F (u)]
where Fn (u

) = E[ Fn (u)], Fn (u) = u -∞
ŝn (v)dv with F satisfying the conditions of section 3, s verifying H2 and ϕ even. Note that βn,h has a bias. It is obvious that

βn,h (u) = √ n[ Fn (u) -F (u)]
and hence this process is the same as that defined by Yukich in [START_REF] Yukich | A note on limit theorems for perturbed empirical processes[END_REF]. He proved that if √ nh 2 → 0 then βn,h (u) → b F (u) in law. Moreover using Taylor's development for

√ n( Fn (u) -F (u)), he gets that, if √ nh 2 → a, then βn,h (u) D → b F (u) + a 2 K 2 ṡ(u), where K 2 = ∞ -∞ ϕ(v)v 2 dv.
Working as in the previous section we can obtain the convergence results for Ñ h n (x), the number of crossings on [h, 1 -h] for the process βn,h at level x, i.e. when

√ nh 2 → a ≥ 0, Λ h ∞ -∞ f (x) Ñ h n (x) dx D → 1 0 f (b F (u) + a 2 K 2 ṡ(u)) s(u)du.
When √ nh 2 → +∞, using a Taylor development for 2 K2h 2 ( Fn (u) -F (u)) 0 < u < 1, we get that this term tends to ṡ(u). So it is natural to consider c n βn,h (remember that c n = 2 K2 √ nh 2 ) and to study the convergence results for N n,h (x), the number of times in [h, 1 -h] that the process c n βn,h crosses level x. We obtain the following.

Corollary 2 Suppose that f satisfies (6), s ∈ C 2 [0, 1] (instead of H2), H1 holds, ϕ is an even function and

√ nh 2 → +∞ as h → 0 then a)If nh 5 → +∞, ∞ -∞ f (x)N n,h (x)dx P → 1 0 f ( ṡ(u))|s(u)| du = ∞ -∞ f (x)N ( ṡ, x) dx
where N ( ṡ, x) stands for the number of crossings of level x by ṡ in [0, 1]. b) If √ nh 5 → b (b can take the value 0 and if it is the case we will suppose furthermore that H2 holds and s

∈ C 3 [0, 1]), √ nh 5 ∞ -∞ f (x)N n,h (x)dx D → 2 K 2 ||ϕ|| 2 1 0 f ( ṡ(u)) 2 π d 0,b (u) s(u) du.
(See section 3 for the definition of d 0,b (u) and note that d 0,0 (u) = 1).

Proof. The proof consists in applying the KMT theorem and Theorem 1 of [START_REF] Le | Non-linear functionals of the brownian bridge and their applications[END_REF].

Let us define the following modification of the occupation measure 

∞ -∞ f (x) ˜ h n (x) dx = 1-h h f ( βn,h (u)) s(u) du and ξn (f ) = 1 √ h ∞ -∞ f (x)[Λ h Ñ h n (x) -˜ h n (x)] dx (Remember that Ñ h n (x)
L( Ṽ |F ∞ ) = σ 0 1 0 f (b F (u) + aK 2 2 ṡ(u)) s(u) d W (u)
Proof. We recall that F ∞ is the σ-algebra generated by {b

F (u), 0 ≤ u ≤ 1}. ξn (f ) = 1 √ h [ 1-h h f ( βn,h (u))Λ h | ˙ β n,h (u)| du - 1-h h f ( βn,h (u)) s(u) du] = 1 √ h [ 1-h h f (β n,h (u) + a n (u))Λ h | βn,h (u) + ȧn (u)| du - 1-h h f (β n,h (u) + a n (u)) s(u) du] where a n (u) = √ n[ Fn (u) -F (u)] = √ n ∞ -∞ ϕ(v) [F (u -hv) -F (u)] dv. We decompose ξn (f ) as ξn (f ) = 1 √ h [ 1-h h f (b n,h (u) + a n (u))Λ h | ḃn,h (u) + ȧn (u)| du - 1-h h f (b n,h (u) + a n (u)) s(u) du] + 1 √ h 1-h h [f (β n,h (u) + a n (u)) -f (b n,h (u) + a n (u))]Λ h | βn,h (u) + ȧn (u)| du + 1 √ h 1-h h f (b n,h (u) + a n (u))Λ h [| βn,h (u) + ȧn (u)| -| ḃn,h (u) + ȧn (u)|] du + 1 √ h 1-h h [f (b n,h (u) + a n (u)) -f (β n,h (u) + a n (u))] s(u) du = (I) + (II) + (III) + (IV ).
Consider the last three terms. Using the Lipschitz property (6) for f , Hölder's inequality, Lemma 1 and the fact that, by using a Taylor development for F and s respectively, a n (u) and ȧn (u) are bounded by By an elementary calculation we can see that -a|) in the optimal one. The convergence to zero, in probability, for the term (I) 3 has been proved for the sub-optimal case. Hence we must only consider the optimal case, and then (I) 3 is asymptotically equivalent to 

√ nh 2 on [h, 1 -h], it is easy to see that E(II) 2 and E(IV ) 2 are O(( ln(n) √ nh ) 2 ) and E(III) 2 is O(( ln(n) √ nh ) 2 ). ξn (f ) is then equivalent to (I) and (I) D = 1 √ h 1-h h f (b F h (u) + a n (u)){Λ h | ḃF h (u) + ȧn (u)| -s(u)} du = 1 √ h 1-h h f (b F h (u) + a n (u))G h (u,
|a n (u) - a 2 K 2 ṡ(u)| ≤ Const{| √ nh 2 -a| + √ nh 3 },
we thus obtain that (I) 3 is asymptotically equivalent to

1-h h f (b F (u) + a 2 K 2 ṡ(u)) s(u) s(u) √ h ḃF h (u) du.
By Theorem 1 in [START_REF] Le | Non-linear functionals of the brownian bridge and their applications[END_REF] this quantity tends to zero in probability when h tends to zero. Thus (I) 3 tends to zero in probability and ξn (f ) ∼ (I) 1 = 1 √ h 1-h h f (b F h (u) + a n (u))G h (u, ξ b h (u)) du. following the same arguments as in the proof of Corollary 1 (see remark 2 at the end of section 4), we finally get that the last term tends stably to the required limit.

We consider now the case where √ nh 2 → +∞ and we get, in the next corollary, the speed at which the convergence takes place. √ h → 0 (q ≥ 0), under H2, s ∈ C 3 [0, 1] and assuming that f is in C 2 with bounded second derivative,

1 √ h ||ϕ|| -1 2 √ nh 5 ∞ -∞ f (x)N n,h (x) dx - 2 K 2 1-h h f (c n βn,h (u)) 2 π d 0,q (u) s(u) du D → 2 K 2 ||ϕ|| -1 2 1 0 f ( ṡ(u)) 2 π d 1,q (u) db F (u) + 2 K 2 2 π 1 0 σ q (u)f ( ṡ(u)) s(u)d W (u)
where W is a B. M. independent of b F .

  dv, with ϕ verifying H1, be the regularized empirical process, and denote by βn,h (u) its derivative. Defining b F n (•) = b n (F (•)), b n,h = b n ϕ h and using the KMT theorem, it is easy to see that

2 N 2 N 2 √ 2 N 2 N 2 N 2 N| π 2 N 2 2 π 2 N

 22222222222 h (u) + a n (u))[k h (u) E | π + p n (u)| -s(u)] du h (u) + a n (u))k h (u)ξ b h (u) E[N | π + p n (u)|] du = (I) 1 + (I) 2 + (I) 3 where k h (u) = √ h σb h (u)||ϕ|| -1 2 , p n (u) = π h ȧn (u) √ h σb h (u)andG h (u, y) = k h (u)[| π 2 y + p n (u)| -E | π + p n (u)| -y E[N | π + p n (u)|].Consider the second term (I) 2 .|k h (u) E | π + p n (u)| -s(u)| ≤ |k h (u)[E | π + p n (u)| -1]| + |k h (u) -s(u)|We have already seen in section 5 that on[h, 1 -h], |k h (u) -s(u)| ≤ Const h. Furthermore, a simple calculation shows that [E + p n (u)| -1] = π 2 [E |N + d n (u)| -{d n (u)[Φ(0) -Φ(-d n (u))] + [φ(-d n (u)) -φ(0)]} where d n (u) = p n (u),φ and Φ are the standard Gaussian density and distribution function respectively. So we get that | E | π 2 N + p n (u)| -1| ≤ Const h and therefore |I 2 | ≤ Const √ h 1-h h |f (b F h (u) + a n (u))| du. We thus obtain that E[(I)2] 2 ≤ Const h. Consider now the third term. F h (u) + a n (u)) ḃF h (u) E[N | π + p n (u)|] du.

Corollary 4 f 1 0f

 41 Assume that f verifies (6), s ∈ C 3 [0, 1], H1 holds, ϕ is an even function and nh 4 → +∞ as h → 0, then a) If nh 6 → +∞ and |s| is bounded below on [0, 1], then (x)N n,h (x) dx -1-h h f (c n βn,h (u))|c n √ n( Ḟn (u) -Ḟ (u))| du D → ( ṡ(u))sign(s(u))db F (u) b) If nh 5 -q 2

  Using the Lipschitz property (6) for f and the fact that sup0≤u≤1 ||b F h (u) -b F (u)|| 2 = O(h) and

	1-h h	1 ||ϕ|| 2	f (b F h (u) + a n (u))	aK 2 2||ϕ|| 2	s(u) s(u)	√	h ḃF
	sup						
	h≤u≤1-h					

h (u) du.

) dy.

Remark: In the special case where q = 0, d 1,0 (u) = 0 and the first term of the limit vanishes. Proof. The proof consists, as before, in an application of the KMT theorem, Theorem 1 of [START_REF] Le | Non-linear functionals of the brownian bridge and their applications[END_REF], Theorem 1 and arguments similar to those used to prove Corollary 1.