Joris Rehm
email: joris.rehm@loria.fr

From Absolute-Timer to Relative-Countdown: Patterns for Model-Checking

Keywords: formal method, real-time, model-checking, Event-B method, pattern

whether they are published or not. The documents may come

Introduction

Despite numerous work on timed systems and sophisticated tools for verifying them, many people still use nonspecialised formal methods to work on their timed specifications and systems. This is not because the results in this area are not recognised but because it is complex to mix together different theories and tools. In many cases realtime systems arise in specialised areas like distributed computing, for this reason it is a promising approach to extend an existing specification with some timing properties. The work presented in this paper starts with this situation: we can see in [START_REF] Abrial | A mechanically proved and incremental development of ieee 1394 tree identify protocol[END_REF] a distributed election algorithm, where most of the problem studied does not require time to be taken into account. But the final phase of this algorithm uses timing constraints, so we found it useful to find a practical way to verify those timing aspects using the same formal method: the Event-B method. We have already proposed a way to model the time as a pattern for this method in [START_REF] Cansell | Time constraint patterns for event B development[END_REF] and we succeeded in verifying our case-study by theorem proving in [START_REF] Rehm | Proved Development of the Real-Time Properties of the IEEE 1394 Root Contention Protocol with the Event B Method[END_REF]. In this work, here a pattern is an element of methodology which explains how it is possible to handle time con-straints within the Event-B method.

Section 2 of this paper describes the initial real-time pattern from [START_REF] Cansell | Time constraint patterns for event B development[END_REF] with a light improvement. In addition to theorem proving we used model-checking on the case-study [START_REF] Rehm | Proved Development of the Real-Time Properties of the IEEE 1394 Root Contention Protocol with the Event B Method[END_REF], we report here the experience gained in this work. Models created with this pattern cannot be model-checked easily because the pattern contains unbounded variables. For example, it contains the variable now for the current time and of course the time progresses indefinitely.

We propose in section 3 an equivalent version of this pattern for real-time modelling and checking. This new version uses only relative values about time and timing. We demonstrate the equivalence of the two patterns through a proof of bi-refinement (mutual refinement between the two model). And we show the properties of this pattern which allow the finiteness of the states reachable by model-checking. Finally section 4 reports on the application of our technique on a case-study, and we conclude.

Related works

In [START_REF] Abadi | An old-fashined recipe for real-time[END_REF] Abadi and Lamport show a "recipe" to model realtime specifications without a specialised formal method. They call this: explicit-time specification. They focus on worst-case upper and lower bounds on real-time delays. They use the variable now which is a real number that never decreases to represent the current time. Transition of the system can be make the time progress or not. Timeprogression transitions are done by the action called "tick", and timing constraints can block the time in order to force other actions to run. An absolute timer, which can be a lower-bound or a upper-bound, imposes timing bound on actions. A volatile δ-timer counts how much time an action has been continuously enabled. A persistent δ-timer is the same as a volatile δ-timer without the continuous condition over the activation.

More generally the application of a formal-method over a timed system is a rich scientific domain. We can cite several review papers such as [START_REF] Wang | Formal verification of timed systems: a survey and perspective[END_REF][START_REF] Henzinger | It's about time: Real-time logics reviewed[END_REF]; we can also find books on the subject such as [START_REF] Zhou | Duration Calculus: A Formal Approach to Real-Time Systems[END_REF]. Besides general study within this domain, many "untimed" formal methods have extensions to handle real-time. For the (classical) B method (which is the "parent" of the Event-B method used here) an extension using duration calculus is described in the thesis [START_REF] Samuel | Contribution à l'intégration de temporalité au formalisme B : Utilisation du calcul des durées en tant que sémantique temporelle pour B[END_REF] and in the article [START_REF] Samuel Colin | Duration calculus: A real-time semantic for b[END_REF]. Our work here is largely different because classical B principally uses operations, which take a certain amount of time to run, whereas an event is an instantaneous action. For Action Systems, the time aware system refinement in [START_REF] Westerlund | Time aware system refinement[END_REF] and in this approach gives a theory for stepwise refinement with time, actions also take a certain time. It is also interesting to look at the work concerning CSP and time: a retrospective can be found in [START_REF] Ouaknine | Timed csp: A retrospective[END_REF] and more complete material in the book [START_REF] Schneider | Concurrent and Real Time Systems: The CSP Approach[END_REF].

In the same context as our work, i.e. explicit-time specification and model-checking, we can cite two articles.

In [START_REF] Lamport | Real-time model checking is really simple[END_REF] Lamport advocates that it is easy to write and verify explicit-time specification (here with TLA [START_REF] Lamport | Specifying Systems, The TLA+ Language and Tools for Hardware and Software Engineers[END_REF]) with an ordinary model-checker. This work follows [START_REF] Abadi | An old-fashined recipe for real-time[END_REF] for the modeling issue and shows a view symmetry over states, and results are compared with real-time model-checkers for two examples. The author introduces a symmetry under timetranslation (two states are equivalent iff they are the same except for absolute time) and use this symmetry with the model-checker of TLA, namely TLC, with discrete time.

Similarly, Dutertre and Sorea in [START_REF] Dutertre | Modeling and verification of a fault-tolerant real-time startup protocol using calendar automata[END_REF] use SAL to model and verify an explicit-time specification of a distributed algorithm of election. Here timing constraints are modeled as a timeout and calendar. The calendar gives the future times of execution of some events, and this notion is very close to our pattern for Event-B in [START_REF] Cansell | Time constraint patterns for event B development[END_REF]. But the authors do not use a non-deterministic "tick" event which makes the time progress. Instead the time goes directly from one event activation to the next event activation. This model prevent the use of clocks which vary continuously. Furthermore, this model allows the authors to use a continuous time with an ordinary model-checker because no values varies continuously in this model.

We are going to show here a different solution with a particular event for time-progression and which uses discrete time.

2 Overview of event-B development by stepwise refinement

Event-based modelling

Our event-driven approach [START_REF] Abrial | B # : Toward a synthesis between Z and B[END_REF] is based on the B notation. It extends the methodological scope of basic concepts in order to take into account the idea of formal models. Roughly speaking, a formal model is characterised by a (finite) list x of state variables possibly modified by a (finite) list of events; an invariant I(x) states properties that must always be satisfied by the variables x and maintained by the activation of the events. In the following, we briefly recall definitions and principles of formal models and explain how they can be managed by tools [START_REF] Abrial | Click'n prove: Interactive proofs within set theory[END_REF].

Generalised substitutions are borrowed from the B notation. They provide a means for expressing changes to state variable values. In its simple form, x := E(x), a generalised substitution looks like an assignment statement. In this construct, x denotes a vector built on the set of state variables of the model, and E(x) a vector of expressions. However, the interpretation we shall give here to this statement is not that of an assignment statement. We interpret it as a logical simultaneous substitution of each variable of the vector x by the corresponding expression of the vector E(x). There exists a more general normal form, denoted by the construct x :| P (x, x ′). This should be read: "x is modified in such a way that the predicate P (x, x ′) holds", where x ′ denotes the new value of the vector and x denotes its old value. This is clearly non-deterministic in general.

An event has two main parts: a guard, which is a predicate built on the state variables, and an action, which is a generalised substitution. An event can take one of the three normal forms. The first form (evnt = BEGIN x :| P (x, x ′) END) shows an event that is not guarded: it is thus always enabled and is semantically defined by P (x, x ′).

The second (evt

= WHEN G(x) THEN x :| Q(x, x ′) END) and third (evt = ANY t WHERE G(t, x) THEN x :| R(x, x ′) END)
forms are guarded by a guard which states the necessary conditions for these events to occur. Such a guard is represented by WHEN G(x) in the second form, and by ANY t WHERE G(t, x) (for ∃ t • G(t, x)) in the third form. We note that the third form defines a possibly non-deterministic event where t represents a vector of distinct local variables. The, so-called, before-after predicate BA(x, x ′) associated with each of the three event types, describes the event as a logical predicate expressing the relationship linking the values of the state variables just before (x) and just after (x ′) the "execution" of event evt.

Proof obligations are produced from events in order to state that an invariant condition I(x) is preserved. Their general form follows immediately from the definition of the before-after predicate, BA(x, x ′), of each event:

I(x) ∧ BA(x, x ′) ⇒ I(x ′)
Note that it follows from the two guarded forms of the events that this obligation is trivially discharged when the guard of the event is false.

Model Refinement

The refinement of a formal model allows us to enrich a model in a step-by-step approach, and is the foundation of our correct-by-construction approach. Refinement provides a way to strengthen invariants and to add details to a model. It is also used to transform an abstract model into a more concrete version by modifying the state description. This is done by extending the list of state variables, by refining each abstract event into a corresponding concrete version, and by adding new events. The abstract state variables, x, and the concrete ones, y, are linked together by means of a, so-called, gluing invariant J(x, y). A number of proof obligations ensure that (1) each abstract event is correctly refined by its corresponding concrete version, (2) each new event refines skip, (3) no new event takes control for ever, and (4) relative deadlock-freeness is preserved. Details of the formulation of these proofs follows.

We suppose that an abstract model AM with variables x and invariant I(x) is refined by a concrete model CM with variables y and gluing invariant J(x, y). If BAA(x, x ′) and BAC(y, y ′) are respectively the abstract and concrete before-after predicates of the same event, we have to prove the following statement, corresponding to proof obligation (1):

I(x) ∧ J(x, y) ∧ BAC(y, y ′) ⇒ ∃x ′ • (BAA(x, x ′) ∧ J(x ′ , y ′))
Now, proof obligation (2) states that BA(y, y ′) must refine skip (x ′ = x), generating the following simple statement to prove (2):

I(x) ∧ J(x, y) ∧ BA(y, y ′) ⇒ J(x, y ′)
For the third proof obligation, we formalise the notion of the system advancing in its execution; a standard technique is to introduce a variant V (y) that is decreased by each new event (to guarantee that an abstract step may occur). This leads to the following statement to prove (3):

I(x) ∧ J(x, y) ∧ BA(y, y ′) ⇒ V (y ′) < V (y)
Finally, to prove that the concrete model does not introduce additional deadlocks, we give formalisms for reasoning about the event guards in the concrete and abstract models: grds(AM) represents the disjunction of the guards of the events of the abstract model, and grds(CM) represents the disjunction of the guards of the events of the concrete model. Relative deadlock freeness is now easily formalised as the following proof obligation (4):

I(x) ∧ J(x, y) ∧ grds(AM) ⇒ grds(CM)
To review, refinement guarantees that the set of traces of the refined model contains (modulo stuttering) the traces of the resulting model.

P(E) Power set of E E \ F Set difference x → y Pair (x, y) E → F Set of total functions from E to F dom(f) Domain of f f ; g Forward composition of function f ⊳ -{x → y}
Overriding with (x, y) over f x := y

x becomes equal to y x :∈ E

x becomes element of E

:= (f \ {x → f (x)}) ∪ {x → E}.
The two last operators := and :∈ define a substitution and can be used only in the action part of an event.

For more details of the event-B method see [START_REF] Cansell | Foundations of the b method[END_REF][START_REF] Abrial | Refinement, decomposition, and instantiation of discrete models: Application to event-b[END_REF], and for the B notation see [START_REF] Abrial | The B Book -Assigning Programs to Meanings[END_REF]. Tools can be found at the Event-B website 1 .

Real-Time Pattern

Our explicit-time pattern [START_REF] Cansell | Time constraint patterns for event B development[END_REF] for real-time system is based on an event-calendar. Let evts be the finite set of events for one model. And let the variables now and at (stands for Activation Times). The pattern variable now represents the current real-time, here we have a discrete time: now ∈ N. And at is the event-calendar. In this pattern, an event-calendar is a function that gives for every element of evts, a set of activation times in the future: at ∈ evts → P(N). Therefore, we have in invariant:

∀e•(e ∈ evts ∧ at(e) = ∅ ⇒ now ≤ min(at(e)))
Fig. 2 gives the pattern which shows how to write an event-B model of a real-time system. Each event of the model will refine one (or maybe several) event(s) of the pattern. In [START_REF] Cansell | Time constraint patterns for event B development[END_REF], which originally defines the pattern, a possible specific improvement is given: we can index different sets by a process or a name. As you can see, we decided here to systematically index the at set by the corresponding event, which will use this at set. We think this improvement should become standard as it provides a crucial information for verifying and validating a model. The pattern has three aspects and of course one initialisation. The event add shows how to add a new future activation time ntime in the calendar of event e . The event use shows how to activate an event e, at the current time now, if e has been scheduled to this current time (now ∈ at(e)); in this case we remove the current time from the calendar of e. Finally the event tic represents the time progression, we increase the current time at least to now + 1 and at most to the smallest time of the calendar (if any).

Real-Time Pattern with Relative Timing

Most, if not all, non trivial real-time systems are cyclic, or are composed by cyclic elements. Their behaviours do not depend on an absolute timing but only on relative delays between events. Therefore, for model-checking, it is crucial to exploit this property. With timed automata [START_REF] Alur | A theory of timed automata[END_REF] (and so for many real-time model-checkers) the model relies on clocks which can be reset. Therefore we can easily specify a finite model. But in explicit-time models (see section 1.1) we use a time model more close to an absolute interpretation of time. This interpretation is natural for verification by theorem proving but inefficient for direct model-checking because many variables of the model increase indefinitely. The article [START_REF] Lamport | Real-time model checking is really simple[END_REF] uses three kinds of timer variables: countdown timer, count-up timer, and expiration timer. The article [START_REF] Dutertre | Modeling and verification of a fault-tolerant real-time startup protocol using calendar automata[END_REF] uses timeout and event-calendar. In our approach we use the event-calendar at defined in the previous section. The expiration timer, timeout and event-calendar are quite similar, in the sense that they refere to a future absolute time. We consider here the (variable) function at, which has already been formally defined as an event-calendar.

We show here how to refine a model with absolute timing to a model with relative timing and we show the equivalence (in sense of bi-refinement) of the two models.

Firstly now is rewritten to 0. Secondly at is refined to rat (represents the Relative Activation Time) with the invariant: rat ∈ evts → P(N), and dom(at) = dom(rat) = evts, and:

∀e• e ∈ dom(at)⇒ (∀x•x ∈ rat(e) ⇔ x + now ∈ at(e))
As you can see the two variables now and at of the abstract model disappear and the new refined model only has rat as variable. We can see in this invariant that the relation between abstract and concrete variables is stated, we call this a gluing invariant. Instead of letting the current time now progress to a event activation time, we decrease all activation times to zero. As in the previous abstract pattern we can add new timeout in the future and use it when the time comes (it is when one timeout of rat is equal to 0). In Fig. 3 we can see the formal pattern refined accordingly. All the proofs for the invariant and the refinement were done with the Rodin tool [START_REF] Abrial | An open extensible tool environment for event-b[END_REF], we found the proof easy and only a few interactive steps are needed. The refinement proof is done in two directions to show the equivalence.

In event add we can see in the witness that the absolute new timeout ntime is equal to ntimer +now, with ntimer the relative new timeout. In the witness one is allowed to use old variables of the abstract event in order to prove the refinement. Therefore we can see that the concrete version of the event add shows the same behaviour as the concrete version if we shift the value of the added timeout by now.

For the event use it is easy to see that 0 ∈ rat(e) is equivalent to now ∈ at(e) as the values of rat are the value of at shifted by now, as stated in the gluing invariant.

Finally for the equivalence of the event tic we need to show that increasing the variable now (not after the first value of at) is equivalent to decreasing all the values inside rat (not below zero). In the abstract version, the local variable n now is the new increased value of now; this local variable disappears and is replaced by now + shif t. The variable shif t is a new local variable which is the relative value of time progression and this value cannot be more than the smallest value of rat. We also defined an auxiliary function as a local variable of this event: the function m is used to decreased by shif t the values inside a set given by the parameter of m. In order to decrease all the timeouts of the relative event-calendar rat, we replace rat by the forward composition of rat and m. Intuitively the equivalence seems to be correct and to verify this with the proof assistant we just needed to instantiate correctly the gluing invariant and to apply the definition of m.

Of course everything works here because we use discret time. We must consider very carefully the choice between discrete or continuous time modelling: a discrete time adds a synchronisation between transitions. Consequently, some subtle error of interleaving may be not revealed by the model checking. If the model-checker requires to instantiate parameters, and if the values of those parameters control the possible interleaving between events, then one has to choose parameters carefully in order to not forbid important traces. Of course, if you use a parametric model-checker or do verification by theorem-proving, then parameters of the model can be left non instantiated (with maybe some abstract conditions between them). In this case, discrete time is not a big issue because the real-time timing value can be as high as we want. And if the timing betwen event activations is as long as we want, we can split the time as small as we want, but not indefinitely.

For continuous time, model-checking with a nonspecialised model-checker becomes difficult. The continuity of the time domain leads to an infinite number of states, for example see how [START_REF] Dutertre | Modeling and verification of a fault-tolerant real-time startup protocol using calendar automata[END_REF]

Example: a timer for light switch

Before the case study, we can consider an example with a light and a timer which switch off this light. Here we have only one timed event: evts = {of f }. An user can push the button of the light and then we observe the switch on event. Some delay after the light automatically turn off with the event switch off. Thoses events can be seen in Fig. 4. The variables are rat from the pattern and light on for the state of the light.

The event switch on observes the change on the system when somebody push the button, is so the light turn on (see act1) and a timer is launched (see act2) to switch off the light in 10±1 units of time. This event switch on refines the event add of the pattern. The added value d to the variable rat is choosen in the interval 9..11 to represent the possible inaccuracy of the timer. In fact, in this simple example, act2 can be replaced by act2: rat(of f) := {d} Since we can deduce rat(of f) = ∅ from the guard grd2 of this event and the invariant inv3.

The event switch off is triggered 10 units (more or less 1) of time after the switch on event. This event refines the event use of the pattern. In the same way as previously, the line act1 of the guard can be simplified by act1: rat(of f) := ∅ Finally the event tic is given in a less general form. While evts is a finite set, this formalisation can always be used.

The invariants of this model are:

inv1: rat ∈ evts → P(N) inv2: light on ∈ BOOL inv3: light on = F ALSE ⇔ rat(of f) = ∅ inv4: card(rat(of f)) ≤ 1
The invariant inv1 comes from the pattern; inv2 gives the type for light on the state of the light, BOOL is the set of boolean; inv3 states that the calendar for the event of f is empty iff the light is off; and with inv4 we can only have one value in the calendar of of f .

Model-checking

In order to model-check our model we have some final considerations. In this work we did experimentation with ProB [START_REF] Leuschel | Prob: A model checker for b[END_REF].

In the section 4 we give a general form of the substitution in the event tic. ProB can evaluate this general form but slowly, therefore we recommend to use the form given in the previous section. This change preserves the equivalence between the two pattern while for the next considerations the pattern for model-checking is only a refinement of the original pattern.

If all values of the range of rat (a set of subset of N) are empty, the value of the variable shif t of the event tic is not limited and the model-checker may loop while finding all possible values of the variable shif t. But, in this case, the substitution done by the tic event does not have an effect because the sets of the range of rat are empty. In other word this activation of the event tic represent the progression of the time without effect on the studied system. In the original pattern this progression was represented by the unlimited incrementation of the variable now of the model.

We have, so far, 4 solutions to this problem.

1. We can add the folowing guard to the event tic:

grd5: ∃x•x ∈ ran(rat) ∧ x = ∅
This guard just block the event in the problematic case.

2. Another possible solution is to limite the size of the variable shif t by a constant c:

grd5': shif t ≤ c
3. As a sub-case of solution 2 we can choose c = 1. This value limits the number of tic transitions studied by the model-checker.

4. As in [START_REF] Dutertre | Modeling and verification of a fault-tolerant real-time startup protocol using calendar automata[END_REF] we can also take shif t = min(rat(e)) where e ∈ dom(rat) and rat(e) = ∅. In this way the time jumps directly to the next scheduled event activation and of course the event tic is blocked when rat(e) = ∅ for all e. This solution works if all events are scheduled in the calendar, but if we still have event not constraints by real-time they are not taked into acount by the progession of the time.

Now if we want to verify, by model-checking, a model written with this pattern then the values inside the codomain of rat need to be finite. A good way to respect this is to bound every value added to rat. Therefore, we need the constraint: grd3: ntimer ≤ m where m ∈ N, which must hold in the guard of the event add. Then we have:

∀e•e ∈ dom(rat) ⇒ (∀x•x ∈ rat(e) ⇒ x ≤ m)
and by the gluing invariant between rat and at:

∀e•e ∈ dom(at) ⇒ (∀x•x ∈ at(e) ⇒ x -now ≤ m)
Finally all the values of the co-domain of rat are bounded naturals and while evts is a finite set (see Section 2) then rat has a finite number of values and a finite number of transitions can be obtained with the pattern event use. We also learn that, from the perspective of the first pattern, the system has a finite number of states if it uses only the timing values (of at) inside a "time window" from now to now + m. In other words if the system is relative to the current time, and does not refer to an absolute time.

We see also that if nothing reacts to the time in the system then we do not care about the time progression. This real-time pattern respects this because the tic event has an effect on the variables only if ∃x•x ∈ ran(rat) ∧ x = ∅. The previous version of tic does not respect this because it always increases the value of now. We have applied our method, with success, on the IEEE 1394 Root Contention Protocol (RCP). In a previous paper [START_REF] Rehm | Proved Development of the Real-Time Properties of the IEEE 1394 Root Contention Protocol with the Event B Method[END_REF] we have created a model of the RCP and verified it by theorem proving. We describe here the model-checking of this case-study with the method of this paper. The RCP is an election procedure between two devices with asynchronous communication. In order to elect a device, signals are sent on a bidirectional channel. Of course with asynchronous communication, signals can be sent and received in almost the same time. If a device receives a signal and has not yet sent a signal then it is elected. In the case where the signals from the two devices cross each other then it is not possible to elect a device, we call this situation the "contention". To resolve the contention, device choses randomly a delay between a short (st) and a long (lt), and re-send a signal after that delay. The development of RCP consists of 4 models link by 3 refinements in this order: m0, m1, m2,and m3. Each model of the development introduces new details: m0 specifies we want an election between two devices; m1 introduces device-states and communication-channels (without timing); m2 adds the propagation time (prop) of signals over channels; m3 adds a randomly chosen waiting delay.

In Fig. 5 we can see possible event activation of the model m1 labelled with the name of the corresponding events. In this figure only the events relevent for the two devices appear, in particular we also have in the model events which make signal progressing on the wires between devices. The device can send a signal and accept it. If the contention appears they start by sleep and wake up after the delay with either awake send or awake accept. Event-names start with a or b to express which device observes the event. The possible traces present a cycle with two sleep events the sleep event for the device a) followed by two awake send event the awake send event for the device a). If we use the real-time pattern (section 2) this cycle is unfolded by the absolute time. If we use the real-time pattern with relative timing (section 3) this cycle is still present in the states reached by the model-checker.

In [START_REF] Rehm | Proved Development of the Real-Time Properties of the IEEE 1394 Root Contention Protocol with the Event B Method[END_REF] we show, by theorem proving, safety properties of this model. The parameters of the model (called constants in Event-B) are prop, st, and lt and verify the following axioms:

st ≥ prop × 2 and lt ≥ prop × 2 + st -1
We showed in particular that:

∀x, y• x ∈ at(a awake) ∧ y ∈ at(b awake) ⇒ if a sleept = b sleept then prop ≤ |x -y| else prop > |x -y|
With at(a awake) (respectively at(b awake)) the calendar of the events a awake accept and a awake send (b awake accept and b awake send), which expresses when the device a or b will wake up after the waiting time and re-try to send a signal or accept a signal; and with a sleep (respectively b sleep) the chosen delay for a (b). This part of the invariant shows that if the two devices choose a different delay to re-send a signal then the propagation time of signals is smaller than the delay between the re-activation of the devices. Therefore the first device to wake up will have enough time to transmit its signal to the other device, and the protocol will work. Furthermore notice that this formula does not change if we would use rat instead of at because we take the difference between two values of at(a awake) or at(b awake).

In [START_REF] Rehm | Proved Development of the Real-Time Properties of the IEEE 1394 Root Contention Protocol with the Event B Method[END_REF], we use an another form for the calendar at or rat: instead we use several sub-sets of N specialised to our needs instead of the general function at. We call these subsets "at sets". For example, we use here at(a awake) but in [START_REF] Rehm | Proved Development of the Real-Time Properties of the IEEE 1394 Root Contention Protocol with the Event B Method[END_REF] we use at a awake. It is possible because with the B we can employ data refinement to use a new version of a variable. Of course the equivalence between the abstract and concrete variable must be proven. Notice that several Event-B events can use (refine the event use of the pattern) one same event e in the sens of a value inside an at set (e ∈ dom(at) if we follow stricly the pattern). For example: the at set at a awake can be used by the events a awake send or a awake accept.

Verification with the B Method is traditionally done by theorem proving, but recently a model-checker called ProB [START_REF] Leuschel | Prob: A model checker for b[END_REF] From [START_REF] Rehm | Proved Development of the Real-Time Properties of the IEEE 1394 Root Contention Protocol with the Event B Method[END_REF] we can extract parts of the invariant of the models which shows that added values to the calendar have a bounded difference with the current time. As the system is symmetrical we show only invariants concerning the device a. As at(a pass) represents the time of the reception of a signal, and signals take the propagation time prop to progress in the channel, then this set is bound by time + prop: ∀x•(x ∈ at(a pass) ⇒ x ≤ now + prop) And we have a upper bound for the set at(a awake): ∀x•(x ∈ at(a awake) ⇒ x ≤ now + a sleept) We can easly rewrite those formula with at to a formula with rat, we just need to remove now.

Therefore, we could verify the invariant of the four models (m0 and m1 are trivially checked) over reachable states. It is also possible to check the properties of the constants st and lt, if the properties are not well chosen then we can find counter-examples with the help of the invariant. In this way the model-checker is very useful to find errors before the proof process (while the proof verifies the models for any parameter values).

Conclusion

We have presented an approach to model and check realtime systems. Our approach can be used to check explicit timed specifications with a generic model-checker.

An explicit timed specification used a non specialised formal method with ordinary variables to represent the time. The papers [START_REF] Lamport | Real-time model checking is really simple[END_REF][START_REF] Dutertre | Modeling and verification of a fault-tolerant real-time startup protocol using calendar automata[END_REF] show how to model-check this kind of system with a variable call now (or time) which model the current time. We have proposed a similar method in [START_REF] Cansell | Time constraint patterns for event B development[END_REF] but for theorem proving, and here we propose a new version of this pattern. The two methods and our later pattern differ on the formal language used, the discrete or continuous time, and with the means of expressing time-constraints (timer, timeout or event calendar). Here we use the event-B formal method, a discrete time, event-calendar and the ProB model-checker [START_REF] Leuschel | Prob: A model checker for b[END_REF]. The two methods [START_REF] Lamport | Real-time model checking is really simple[END_REF][START_REF] Dutertre | Modeling and verification of a fault-tolerant real-time startup protocol using calendar automata[END_REF] use a variable (now or time) for the current time, and we show that if we remove this variable (and modify all time-constraints of the studied model to keep the behaviour) then the modelchecking is easier. This kind of model-checking works nicely if one uses discrete time as show in [START_REF] Lamport | Real-time model checking is really simple[END_REF] (where the symmetry under time translation simplifies the checking by adding a relation of equivalence over states) or with a continuous time but without continuous dynamics as in [START_REF] Dutertre | Modeling and verification of a fault-tolerant real-time startup protocol using calendar automata[END_REF].

As most real-time systems do not depend on absolute timing, it is essential to use this property. We proposed an equivalent version of our pattern [START_REF] Cansell | Time constraint patterns for event B development[END_REF], this version allows one to model-check systems which depend only on timings relative to the current time. The proof of equivalence is shown and we report the use of the Rodin software [START_REF] Abrial | An open extensible tool environment for event-b[END_REF] as a proof assistant in order to formally verify this proof. We explain what properties over the models written with our pattern are required to be able to use a model-checker over those models. With a discrete time those properties directly lead to a finite number of states (of course, if other untimed elements of the model are also model-checkable).

Our approach is suitable for model-checking models with our pattern of time and has been successfully applied to the case study describes in [START_REF] Rehm | Proved Development of the Real-Time Properties of the IEEE 1394 Root Contention Protocol with the Event B Method[END_REF]. We will continue to explore how this idea can enhance verification of models, as in [START_REF] Lamport | Real-time model checking is really simple[END_REF][START_REF] Dutertre | Modeling and verification of a fault-tolerant real-time startup protocol using calendar automata[END_REF]. For the use with the Event-B method, we propose to add a plug-in to the software Rodin [START_REF] Abrial | An open extensible tool environment for event-b[END_REF] in order to automatically translate the models written with our formal pattern (which is suited to theorem proving).

Figure 1 .

 1 Figure 1. Event-B Notations used in this paper

Figure 2 .

 2 Figure 2. Real-time pattern for Event-B.

Figure 3 .Figure 4 .

 34 Figure 3. Refined real-time pattern for Event-B with relative timing.

Figure 5 .

 5 Figure 5. Available events for the devices in the RCP case study

 deals with this problem employing a classical model-checker.

	INITIALISATION =
	BEGIN	
	act1: rat :∈ evts → P(N)
	END	
	add =	
	ANY	
	e	
	ntimer	
	WHERE	
	grd1: e ∈ dom(rat)
	grd2: 0 < ntimer
	WITH	
	ntime: ntime = now + ntimer
	THEN	
	act1: rat(e) := rat(e) ∪ {ntimer}
	END	
	use =	
	ANY	
	e	
	WHERE	
	grd1: e ∈ dom(rat)
	grd2: 0 ∈ rat(e)
	THEN	
	act1: rat(e) := rat(e) \ {0}
	END	
	tic =	
	ANY	
	shif t	
	m	
	WHERE	
	grd1: 0 < shif t
	grd2: ∀e•	e ∈ dom(rat) ∧ rat(e) = ∅ ⇒shif t ≤ min(rat(e))
	grd3: m ∈ ran(rat) → P(N)
	grd4: ∀s•	s ∈ P(N) ⇒m(s) = {x|x + shif t ∈ s}
	WITH	
	n now : n now = now + shif t
	THEN	
	act1 : rat := rat; m
	END	

Number of reachable states: m3 to

 became available. Therefore it is possible to check this case-study with our method. But with ProB it is not possible do parametric model-checking, therefore we need to give a value (which verifies all hypotheses) to prop, st, and lt.We rewrote the model from the first pattern with absolute timing to the second pattern with relative timing. Finally we were able to check all models (invariant included) with ProB, Fig6 and 7give the reachable number of states for the model m2 and m3, and the used valuation of constants.

	prop reachable states	
	1		25	
	2		51	
	3		81	
	4	117	
	5	159	
	6	207	
		Figure 6. Number of reachable states: m2
	prop st lt reachable states
	1	2	3	54
	2	4	7	186
	3	6 11	376
	4	8 15	624
	5	10 19	930
	6	12 23	1294
		Figure 7.		

http://www.event-b.org