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1Dipartimento di Fisica, Università dell’Aquila, Via Vetoio 1, I-67010 Coppito, L’Aquila, Italy,
Istituto di Fisica dell’Atmosfera, CNR, Via Fosso del Cavaliere, I-00133 Roma, Italy,
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Abstract. We analyze characteristics of drifter trajectories
from the Adriatic Sea with recently introduced nonlinear dy-
namics techniques. We discuss how in quasi-enclosed basins,
relative dispersion as a function of time, a standard analy-
sis tool in this context, may give a distorted picture of the
dynamics. We further show that useful information may be
obtained by using two related non-asymptotic indicators, the
Finite-Scale Lyapunov Exponent (FSLE) and the Lagrangian
Structure Function (LSF), which both describe intrinsic phys-
ical properties at a given scale. We introduce a simple chaotic
model for drifter motion in this system, and show by com-
parison with the model that Lagrangian dispersion is mainly
driven by advection at sub-basin scales until saturation sets
in.

Key words. Oceanography: General (marginal and semi-
closed seas) – Oceanography: Physical (turbulence, diffu-
sion, and mixing processes; upper ocean processes)

1 Introduction

Understanding the mechanisms of transport and mixing pro-
cesses is an important and challenging task which has wide
relevance from a theoretical point of view, e.g. for the study
of diffusion and chaos in geophysical systems in general or
for validating simulation results from a general circulation
model. It is also a necessary tool in the analysis of problems
of general interest and social impact, such as the dispersion
of nutrients or pollutants in sea water with consequent effects
on marine life and on the environment (Adler et al., 1996).

Recently, a number of oceanographic programs have been
devoted to the study of the surface circulation of the Adri-
atic Sea by the observation of Lagrangian drifters within the
larger framework of drifter-related research in the whole Me-
diterranean Sea (Poulain, 1999). The Adriatic Sea is a quasi-
enclosed basin, about 800 long by 200 km wide, connected to
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the rest of the Mediterranean Sea through the Otranto Strait.
From a topographic point of view, three major regions can be
considered. The northern part is the shallowest, about 100 m
maximum depth, and extends down to the latitude of Ancona.
The central part extends down to about 260 m in the Jabuka
Pit, and the southern part extends from the Gargano promon-
tory to the Otranto Strait. The southern part is the deepest,
reaching about 1200 m in the South Adriatic Pit. Reviews on
the oceanography of the Adriatic Sea can be found in Arte-
giani et al. (1997), Orlic et al. (1992), Poulain (1999) and
Zore (1956).

Lagrangian data offer the opportunity to employ techni-
ques of analysis well established in the theory of chaotic dy-
namical systems to study the behavior of actual trajectories
and compare those with a kinematic model.

Let us assume that the Lagrangian drifters are passively
advected in a two-dimensional flow, e.g. as would be the
case in a frictionless barotropic approximation (Ottino, 1989;
Crisanti et al., 1991):

dx

dt
= u(x, y, t) and

dy

dt
= v(x, y, t) , (1)

where(x(t), y(t)) is the position of a fluid particle at timet
in terms of longitude and latitude, andu andv are the zonal
and meridional velocity fields respectively.

For the Eulerian description of a geophysical system, one
should in principle use numerical solutions of the Navier-
Stokes equations (or other suitable equations, e.g. the quasi-
geostrophic model) to obtain the velocity fields. In practice,
direct numerical simulation of these equations on oceano-
graphic length scales is of course not possible, and one has
to invoke approximations, i.e. turbulence modeling. This
motivates one to use instead a simplified kinematic approach
by adopting a given Eulerian velocity field. The criteria for
the construction of such a field follows from phenomenolog-
ical arguments and/or experimental observation and have re-
cently been reviewed in Yang (1996) and Samelson (1996).

Let us consider the relationship between Eulerian and La-
grangian properties of a system. A wide range of literature on
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this topic (e.g. Ottino, 1989; Crisanti et al., 1991) allows us
to state that, in general, Eulerian and Lagrangian behaviours
are not strictly related to each other. It is not rare to have
regular Eulerian behavior, e.g. a time-periodic velocity field
co-existing with Lagrangian chaos or vice-versa.

In quasi-enclosed basins like the Adriatic Sea, a character-
ization of the mechanisms of the mixing is highly non-trivial.
We first observe (see below for detailed discussion) that the
use of the standard diffusion coefficients can have rather lim-
itated applicability (see Artale et al., 1997). Classical studies
on Lagrangian particles in ocean models already contain re-
marks on the intrinsic difficulties in using one-particle diffu-
sion statistics (Taylor, 1921). In situations where the advec-
tive time is not much longer than the typical decorrelation
time scale of the Lagrangian velocity, the diffusivity param-
eter related to small-scale turbulent motion cannot converge
to its asymptotic value (Figueroa and Olson, 1994). On the
other hand, a generalization of the standard Lyapunov ex-
ponent, the Finite-Scale Lyapunov Exponent (FSLE), origi-
nally introduced for the predictability problem (Aurell et al.,
1996, 1997), has been shown to be a suitable tool to de-
scribe non-asymptotic properties of transport. This finite-
scale approach to Lagrangian transport measures effective
rates of particle dispersion without assumptions about small-
scale turbulent processes. For an alternative method, see Buf-
foni et al. (1997) and for a recent review and systematic dis-
cussion of non-asymptotic properties of transport and mixing
in realistic cases, see Boffetta et al. (2000).

In this paper we report data analysis of surface drifter mo-
tion in the Adriatic Sea using relative dispersion, FSLE and
Lagrangian Structure Function (LSF), a quantity related to
the FSLE. We also introduce a chaotic model for the La-
grangian dynamics and use the FSLE and LSF characteris-
tics to compare model and data. We show that it can be very
difficult to obtain an estimate of the diffusion coefficient in a
quasi-enclosed basin, and/or to look for deviations from the
standard diffusion law. In fact, the time a cluster of parti-
cles takes to spread uniformly and reach the boundaries is
not much longer than the largest characteristic time of the
system. In contrast, the FSLE and the LSF do characterize
the transport properties of Lagrangian trajectories at a fixed
spatial scale. Finally, we will show that a simple kinematic
model reproduces the data.

In Sect. 2 we describe the data set we have used as well
as review relevant concepts and analysis techniques for La-
grangian transport and chaos. In Sect. 3 we introduce a kine-
matic model of the Lagrangian dynamics, and in Sect. 4, we
compare the data and the model. Section 5 contains a sum-
mary and a discussion of the results.

2 Data set and analysis techniques

2.1 Data set

In a large drifter research program in the Mediterranean Sea,
started in the late 80’s and continued into the 90’s, Lagrang-

ian data from surface drifters deployed in the Adriatic sea
have been recorded from December 1994 to March 1996.
These drifters are similar to the CODE (COastal Dynam-
ics Experiment) system (Davis, 1985) and they are designed
to be sufficiently wind-resistant so as to effectively give a
description of the circulation at their actual depth (1 me-
ter). The drifters were tracked by the Argos Data Location
and Collection System (DCLS) carried by the NOAA polar-
orbiting satellites. It is assumed that after data processing
drifter positions are accurate to within 200–300 m, and veloc-
ities to within 2–3 cm/s. For a description of the experimental
program, see Poulain (1999) and for technical details about
the treatment of raw data, see Hansen and Poulain (1996),
Poulain et al. (1996) and Poulain and Zanasca (1998).

The data have been stored in separate files, one for each
drifter. In the format used by us each file contains: a num-
ber of records (i.e. number of points of the trajectory); the
time in days; the position of the drifter in longitude and lat-
itude; the velocity of the drifter along the zonal and merid-
ional directions; and the temperature in centigrade degrees.
The sampling time is 6 hours. We can identify five main
deployments on which we will concentrate our attention. Se-
lecting the tracks by the time of the first record, it is easy to
verify that these five subsets consist of drifters deployed in
the same area in the Otranto strait near 19 degrees longitude
east and 40 degrees latitude north. The experimental strategy
of simultaneously releasing the drifters within a distance of
some kilometers allows us to study dispersion quantitatively.

From a qualitative point of view, what we observe from
the plot of all the trajectories (Fig. 1) is the shape of two
(cyclonic) basin-wide gyres, located in the middle and south-
ern regions respectively and, an anti-clockwise boundary cur-
rent which moves the drifters north-westward along the east
coast and south-eastward down the west coast. The latter is
a permanent feature of the Adriatic sea (Poulain, 1999). On
the other hand, it is known that within a year the pattern of
basin-wide gyres may change between one, two and three
gyres over a time-scale of months. The southern gyre is the
most steady of the three. The data also suggests the pres-
ence of small scale structures, even though these are much
more likely to be variable in time. The time-scale of the typ-
ical recirculation period around a basin-wide gyre is about
one month and the time needed to travel along the coasts and
complete one lap of the full basin is in the order of a few
months.

2.2 Analysis techniques

We recall here some basic concepts about dynamical sys-
tems, diffusion and chaos, and the quantities that we shall
use to characterize the properties of Lagrangian trajectories.

If we haveNc clusters of initially close particles with each
cluster containingnk elements, relative dispersion can be
characterized by the diffusion coefficient

Di = lim
t→∞

1

2t
S2

i (t) (2)
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Fig. 1. Plot of the 37 drifter trajectories in the Adriatic Sea used for
the data analysis. The longitude east and latitude north coordinates
are in degrees. The drifters were deployed on the eastern side of the
Otranto strait.

with

S2
i (t) =

1

Nc

Nc∑
k=1

1

nk

nk∑
j=1

(x
(k,j)
i (t) − 〈xi(t)〉

(k))2 (3)

where

〈xi(t)〉
(k)

=
1

nk

nk∑
j=1

x
(k,j)
i (t) (4)

x
(k,j)
i is thei-th spatial coordinate of thej -th particle in the

k-th cluster;S2
=

∑
i S2

i is the mean square displacement of
the particles relative to their time evolving mean position. If
δ(t) is the distance between two trajectoriesx(1) andx(2) in
a cluster at timet , relative dispersion is defined as

〈δ2(t)〉 = 〈||x(1)(t) − x(2)(t)||2〉 (5)

where the average is over all pairs of trajectories in the clus-
ter. In a standard diffusive regime,x(1)(t) andx(2)(t) be-
come independent variables and, fort → ∞, we have〈δ2(t)〉

= 2S2(t). In the following, we shall consider the cluster
mean square radiusS2(t) as a measure of relative dispersion.
Absolute dispersion, which is defined as the mean square dis-
placement from an initial position, will not be taken into ac-
count in our analysis.

If, in the asymptotic limit,S2
i (t) ∼ t2α with α = 1/2, we

have the linear law of standard diffusion for the mean square
displacement and theDi ’s are finite. Ifα 6= 1/2, we have

a so-called anomalous diffusion (Bouchaud and Georges,
1990).

The difficulty which often arises when measuring the ex-
ponentα is that, due to the finite size of the domain, dis-
persion cannot reach its true asymptotic behavior. In other
words, diffusion may not be observable over sufficiently large
scales, i.e. much larger than the largest Eulerian length scale.
Therefore, we cannot have a robust estimate of the exponent
of the asymptotic power law. Moreover, the relevance of
asymptotic quantities, like the diffusion coefficients, is ques-
tionable in the study of realistic cases concerning the trans-
port problem in finite-size systems (Artale et al., 1997).

The diffusion coefficients characterize long-time (large-
scale) dispersion properties. In contrast, at short times (small
scales) the relative dispersion is related to the chaotic behav-
ior of the Lagrangian trajectories.

A quantitative measure of instability for the time evolution
of a dynamical system (Lichtenberg and Lieberman, 1992)
is commonly given by the Maximum Lyapunov Exponent
(MLE) λ, which gives the rate of exponential separation of
two nearby trajectories

λ = lim
t→∞

lim
δ(0)→0

1

t
ln

δ(t)

δ(0)
(6)

whereδ(t) = ||x(1)(t) − x(2)(t)|| is the distance between
two trajectories at timet . Whenλ > 0 the system is said
to be chaotic. There exists a well-established algorithm to
numerically compute the MLE introduced by Benettin et al.
(1980).

A characteristic time,Tλ, associated to the MLE is the pre-
dictability time, defined as the minimum time after which the
error on the state of the system becomes larger than a toler-
ance value1, if the initial uncertainty isδ (Lichtenberg and
Lieberman, 1992):

Tλ =
1

λ
ln

1

δ
(7)

Let us recall thatλ is a mathematically well-defined quan-
tity which measures the growth of infinitesimal errors. In
physical terms, at any time,δ has to be much less than the
characteristic size of the smallest relevant length of the ve-
locity field. For example, in 3D fully developed turbulence,
δ has to be much smaller than the Kolmogorov length.

When the uncertainty reaches non-infinitesimal sizes, i.e.
macroscopic scales, the perturbationδ is governed by the
nonlinear terms and that renders its growth rate a scale-de-
pendent index (Aurell et al., 1996, 1997; Artale et al., 1997).
It is useful to introduce the Finite Scale Lyapunov Exponent
(FSLE),λ(δ). Assumingr > 1 is a fixed amplification ratio
and〈τr(δ)〉 the mean time thatδ takes to grow tor · δ, we
have:

λ(δ) =
1

〈τr(δ)〉
ln r (8)

The average〈 · 〉 is performed over all the trajectory pairs in
a cluster. We note the following properties of the FSLE:
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a) in the limit of infinitesimal separation between trajecto-
ries,δ → 0, the FSLE tends to the maximum Lyapunov
exponent (MLE);

b) in case of standard diffusion,〈δ(t)2
〉 ∼ t , we find that

λ(δ) ∼ δ−2 and the proportionality constant is of the
order of the diffusion coefficient;

c) any slope> −2 for λ(δ) vs δ indicates super-diffusive
behavior, i.e. non-neglectable correlations persist at
long times and advection is still relevant;

d) in particular, whenλ(δ) = constant over a range of
scales, we have exponential separation between tra-
jectories at a constant rate within that range of scales
(chaotic advection).

Another interesting quantity related to the FSLE is the La-
grangian Structure Function (LSF)ν(δ), defined as

ν(δ) =

〈∣∣∣∣∣∣∣∣dx′

dt
−

dx

dt

∣∣∣∣∣∣∣∣〉
δ

(9)

where the value of the velocity difference is taken at the
times for which the distance between the trajectories enters
the scaleδ and the average is performed over a large number
of realizations. The LSF,ν(δ), is a measure of the velocity at
which two trajectories depart from each other, as a function
of scale. By dimensional arguments, we expect that the LSF
is proportional to the scale of the separation and to the FSLE:

ν(δ) ∼ δ λ(δ) (10)

so that we should find similar behavior forλ(δ) andν(δ)/δ,
if independently measured.

In order to study the transport properties of the drifter tra-
jectories, we have focused our interest on the measurement
of S2

i (t), λ(δ) andν(δ).
With regards to the practical definitions of the FSLE and

the LSF, we have chosen a range of scalesδ = (δ0, δ1, ..., δn)

separated by a factorr > 1 such thatδi+1 = r · δi for i =

0, n − 1. The ratior is often referred to as the “doubling”
factor even though it is not necessarily equal to 2, e.g. in
our case we fixed it at

√
2. The r value has naturally an

inferior bound because of the temporal finite resolution of
the trajectories (i.e. it cannot be arbitrarily close to 1) and it
must be not much larger than 1, if we want to resolve scale
separation in the system.

The smallest thresholdδ0 is placed just above the ini-
tial mean separation between two drifters,∼10 km, and the
largest oneδn is naturally selected by the finite size of the
domain,∼500 km.

Following the same procedure, it is straightforward to
compute the LSF as the mean velocity difference between
two trajectories at the moment in which the separation
reaches a scaleδ:

ν(δ) =

〈√
(u1 − u2)2 + (v1 − v2)2

〉
δ

(11)

where the average is performed over the number of all the
pairs within a set of particles, at the time in which||x′

−x|| =

δ.
In Sect. 4 below we shall show the results of our data

analysis and compare them with the simulations from our
chaotic model for the Lagrangian dynamics of the Adriatic
drifters.

3 The chaotic model

In phenomenological kinematic modeling of geophysical
flows, two possible approaches can be considered: stochastic
and chaotic. Both procedures generally involve a mean ve-
locity field, which gives the motion over large scales, and a
perturbation which describes the action of the small scales.
The model is stochastic or chaotic if the perturbation is a
random process or a deterministic time-dependent function,
respectively. Examples on kinematic mechanisms proposed
to model the mixing process can be found in Bower (1991),
Samelson (1992), Bower and Lozier (1994), Cencini et al.
(1999).

The choice of one or the other depends on what one is in-
terested in and what experimental information is available. In
our case, we have opted for a deterministic model since there
are indications that, at the sea surface, the instabilities of the
Eulerian structures are primarily due to air-sea interactions,
which are nearly periodic perturbations.

We want to consider a simple model. So let us assume
as main features of the surface circulation the following ele-
ments: an anti-clockwise coastal current; two large cyclonic
gyres; and some natural irregularities in the Lagrangian mo-
tion induced by the small scale structures.

Let us notice that the actual drifters may leave the Adri-
atic sea through the Otranto Strait, but we model our domain
with a closed basin in order to study the effects of the finite
scales on the transport and treat it like a 2D system, since the
drifters explore the circulation in the upper layer of the sea
within the first meters of water.

On the basis of the previous considerations, we introduce
our kinematic model for the Lagrangian dynamics. Under
the incompressibility hypothesis we write a 2D velocity field
in terms of a stream function:

u = −
∂9

∂y
and v =

∂9

∂x
. (12)

Let us write our stream function as a sum of three terms:

9(x, y, t) = 90(x, y) + 91(x, y, t) + 92(x, y, t) (13)

defined as follows:

90(x, y) =
C0

k0
[− sin(k0(y + π)) + cos(k0(x + 2π))] (14)

91(x, y, t) =
C1

k1
sin(k1(x + ε1 sin(ω1t)))

· sin(k1(y + ε1 sin(ω1t + φ1))) (15)
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Fig. 2. Model stream function isolines at(a) t = 0 and(b) t =

T1/2, with T1 ∼ 30 days. The boundary of the domain is the zero
isoline. The coordinates (x, y) are in km.

92(x, y, t) =
C2

k2
sin(k2(x + ε2 sin(ω2t)))

· sin(k2(y + ε2 sin(ω2t + φ2))) (16)

whereki = 2π/λi , for i = 0, 1, 2, theλi are the wavelengths
of the spatial structure of the flow; analogouslyωj = 2π/Tj ,
for j = 1, 2, and theTj are the periods of the perturbations.
In the non-dimensional expression of the equations, the units
of length and time have been set to 200 km and 5 days, re-
spectively. The choice of the values of the parameters is dis-
cussed below.

The stationary term90 defines the boundary large scale
circulation with positive vorticity.91 contains the two cy-
clonic gyres and it is explicitly time-dependent through a pe-
riodic perturbation of the streamlines. The term92 gives the
motion over scales smaller than the size of the large gyres
and it is time-dependent as well. A plot of the9-isolines at
fixed time is shown in Fig. 2. The actual basin is the inner re-
gion with negative9 values and the zero isoline is taken as a
dynamical barrier which defines the boundary of the domain.

The main difference with reality is that the model domain
is strictly a closed basin, whereas the Adriatic Sea communi-
cates with the rest of the Mediterranean through the Otranto

Strait. This is not crucial as long as we observe the two evo-
lutions of experimental and model trajectories within time
scales smaller than the mean exit time from the sea, typically
of the order of a few months. Furthermore, the presence of
the quasi-steady cyclonic coastal current is compatible with
the interplay between the Po river southward inflow at the
north-western side and the Otranto channel northward inflow
at the south-eastern side of the sea.

The non-stationarity of the stream function is a necessary
feature of a 2D velocity field in order to have Lagrangian
chaos and mixing properties. That is, so that a fluid particle
will visit any portion of the domain after a sufficiently long
interval of time.

We have chosen the parameters as follows. The velocity
scalesC0, C1 andC2 are all equal to 1 which, in physical
dimensions, corresponds to∼0.5 m/s. The wave numbers
k0, k1 andk2 are fixed at 1/2, 1 and 4π , respectively. In Fig.
2a,b we can see two snapshots of the streamlines at fixed
time. The length scales of the model Eulerian structures are
of ∼1000 km (coastal current),∼200 km (gyres) and∼50
km (eddies). The typical recirculation times for gyres and
eddies turns out to be of the order of 1 month and a few days,
respectively.

With regards to the time-dependent terms in the stream
function, the pulsations areω1 = 1 andω2 = 2π , which
determine oscillations of the two large-scale vortices over a
periodT1 ' 30 days and oscillations of the small-scale vor-
tices over a periodT2 ' 5 days. The respective oscillation
amplitudes areε1 = π/5 andε2 = ε1/10 which correspond
to ∼100 km and∼10 km.

The choice of the phase factorsφ1 andφ2 determines how
much the vortex pattern changes during a perturbation pe-
riod. We have chosen to set bothφ1 andφ2 to π/4. This
choice of the parameters for the time-dependent terms in the
stream function is only supposed to be physically reasonable,
for the experimental data give us limited information about
the time variability of the Eulerian structures.

The chaotic advection (Ottino, 1989; Crisanti et al., 1991),
occurring in our model makes an ensemble of initially close
trajectories spread apart from one another, until the size of
the mean relative displacement reaches a saturation value
corresponding to the finite length scale of the domain.

The scale-dependent degree of chaos is given by the FSLE.
Due to the relatively sharp separation between large and
small scales in the model, we expectλ(δ) to display a step-
like behavior with two plateaus, one for each characteristic
time, and a cut-off at scales comparable with the size of the
domain. In the limit of small perturbations, the FSLE gives
an estimate of the MLE of the system.

The LSFν(δ), on the other hand, is expected to be propor-
tional to the size of the perturbation and toλ, as discussed in
the introduction. Therefore, the quantityν(δ)/δ is expected
to be qualitatively proportional toλ(δ), in the sense that the
mean slopes have to be compatible with each other.

In the following section we will show results of our simu-
lations together with the outcome of the data analysis.
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4 Comparison between data and model

The statistical quantities relative to the drifter trajectories
have been computed according to the following prescription.
The number of selected drifters for the analysis is 37, dis-
tributed in 5 different deployments in the Strait of Otranto,
containing, respectively, 4, 9, 7, 7 and 10 drifters. These are
the only drifter trajectories out of the whole data set which
are long enough to study the Lagrangian motion on the basin
scale. To obtain the highest statistics possible, at the price
of losing information on the seasonal variability, the times of
all of the 37 drifters are measured ast − t0, wheret0 is the
time of deployment. Moreover, to restrict the analysis only
to the Adriatic basin, we impose the condition that a drifter
is discarded as soon as its latitude moves south of 39.5 N or
its longitude exceeds 19.5 E. Let us consider the reference
frame in which the axes are aligned, respectively, with the
short side, orthogonal to the coasts, which we call the trans-
verse direction and the long side, along the coasts, which we
call the longitudinal direction.

Before the presentation of the data analysis, let us briefly
discuss the problem of finding characteristic Lagrangian
times. A first obvious candidate is

τ
(1)
L =

1

λ
(17)

Of courseτ
(1)
L is related to small scale properties. Another

characteristic time, at least if the diffusion is standard, is the
so-called integral time scale (Taylor, 1921)

τ
(2)
L =

1

〈v2〉

∫
∞

0
C(τ)dτ (18)

whereC(τ) =
∑d

i=1〈vi(t)vi(t+τ)〉 is the Lagrangian veloc-
ity correlation function and〈v2

〉 is the velocity variance. We
want to stress that it is always possible (at least in principle)
to defineτ (1)

L while to computeτ (2)
L (the integral time scale) it

is necessary to be in a standard diffusion case (Taylor, 1921).
The relative dispersion curves along the two natural direc-

tions of the basin for data and model trajectories are shown
in Figs. 3a and 3b. The curves from the numerical simula-
tion of the model are computed observing the spreading of a
cluster of 104 initial conditions. When a particle reaches the
boundary (9 = 0), it is eliminated. Along with observational
and simulation data, we also plot a straight line correspond-
ing to a standard diffusion with coefficient 103 m2/s, (Falco
et al., 2000). We discuss this comparison below. Consider-
ing the effective diffusion properties, one should expect that
the shape ofS2

i (t), before the saturation regime, can still be
affected by the action of the coherent structures. Actually,
neither the data nor the model dispersion curves display a
clear power-law behavior, and are indeed quite irregular. The
growth of the mean square radius of a cluster of drifters ap-
pears still strongly affected from the details of the system and
the saturation begins no later than∼1 month (∼ the largest
characteristic Lagrangian time). This prevents any attempt
at defining a diffusion coefficient for the effective dispersion
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Fig. 3. Relative dispersion curves for data (plus symbol) and model
(dashed) trajectories along the two natural directions in the basin
geometry:(a) transverse component,(b) longitudinal component.
The time is measured indays and the dispersion in km2. The exper-
imental curve is computed over the 37 drifter trajectories; the model
curve is computed over a cluster of 104 particles, initially placed at
the border of the southern gyre with a mean square displacement
of ∼50 km2. The straight line with slope 1 has been plotted for
comparison with a standard diffusive scaling with a corresponding
diffusion coefficient∼103 m2/s, typical of marine turbulent mo-
tions.

in this system. Although the saturation values are very simi-
lar, we can see that, in the intermediate range, the agreement
between observation and simulation is not good. We point
out that the trouble in reproducing the drifter dispersion in
time does not depend much on the statistics. It makes no dif-
ference whether there are 37 (data) or 104 (model) trajecto-
ries. The problem is that the classic relative dispersion is not
the most suitable quantity to be measured (irregular behavior
even at high statistics).

Let us now discuss the FSLE results. The curve measured
from the data has been averaged over the total number of
pairs out of 37 trajectories (∼700), under the condition that
the evolution of the distance between two drifters is no longer
followed when any of the two exits the Adriatic basin (see
above). In Fig. 4 the FSLE’s for data and model are plotted.
Phenomenologically, fluid particle motion is expected to be
faster at small scales and slower at large scales. The decrease
of λ(δ) at increasingδ reflects the presence of several scales
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Fig. 4. Finite-Scale Lyapunov Exponent for data (continuous line)
and model (dashed line) trajectories.δ is in km andλ(δ) is in day−1.
The experimental FSLE is computed over all the pairs of trajectories
out of 37 drifters; the FSLE from the model is averaged over 104

simulations. The simulatedλ(δ) has a step-like behavior with one
plateau at small scales (<50 km) and one at basin scales (>100
km), corresponding to doubling times of∼3 days and∼30 days,
respectively.

of motions (at least two) involved in the dynamics. In partic-
ular, looking at the values ofλ(δ)−1 at the extreme points of
the δ-range, we see that small-scale (mesoscale) dispersion
has a characteristic time∼4 days and the large-scale (gyre
scale) dispersion has a characteristic time∼1 month. The
ratio between gyre scale and mesoscale is of the same or-
der as the ratio between the inverse of their respective char-
acteristic times (∼10), so the slope ofλ(δ) at intermediate
scales is about−1. The fact that the slope is larger than−2
indicates that relative dispersion is faster than standard dif-
fusion up to sub-basin scales, i.e. Lagrangian correlations
are non-vanishing due to coherent structures. It is interest-
ing to compare this Lagrangian technique of measuring the
effective Lagrangian dispersion on finite scales to the more
traditional technique of extracting a (standard) diffusivity pa-
rameter from the reconstruction of the small-scale anomalies
in the velocity field (Falco et al., 2000). Estimates of the
zonal and meridional diffusivity in Falco et al. (2000) are
of the order of∼103 m2/s and are compatible with the value
of the effective finite-scale diffusive coefficient given by the
FSLE, defined asλ(δ) · δ2, computed atδ = 20 km (∼ the
mesoscale).

The FSLE computed in the numerical simulations shows
two plateaus, one at small scales and the other at large scales,
describing a system with two characteristic time scales and
presents the same behavior, both qualitative and quantitative,
as the FSLE is computed for the drifter trajectories.

It is worth noting that it is much simpler for the model to
reproduce, even quantitatively, the relation between charac-
teristic times and scales of the drifter dynamics (FSLE) rather
than the behavior of the relative dispersion in time.

The LSV in Fig. 5 shows that the behavior ofν(δ), the
mean velocity difference between two particle trajectories as
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δ

Fig. 5. Lagrangian Structure Function for data (continuous line) and
model (dashed line) trajectories.δ is in km andν(δ)/δ is in day−1.
The experimental LSF is computed over all the pairs of drifters; the
LSF from the model is averaged over 104 simulations.

the scale of the separation varies, is compatible with the be-
havior of the FSLE as expected by dimensional arguments,
i.e. ν(δ)/δ, the LSF divided by the scale at which it is com-
puted, has the same slope asλ(δ). This accounts for the ro-
bustness of the information given by the finite-scale analysis.

We see the theoretical predictions of FSLE and LSV are
fairly well comparable with the corresponding quantities ob-
served from the data, if we consider the relatively simple
model which we used for the numerical simulations. Of
course, an agreement exists due to the appropriate choice
of the parameters of the model, capable of reproducing the
correct relation between scales of motion and characteris-
tic times, and because large-scale (∼ sub-basin scales) La-
grangian dispersion is weakly dependent on the small-scale
(∼ mesoscale) details of the velocity field.

5 Discussion and conclusions

In this paper we have analyzed an experimental data set recor-
ded from Lagrangian surface drifters deployed in the Adri-
atic sea. The data span the period from December 1994
to March 1996, during which five sets of drifters were re-
leased at different times in the vicinity of the same point on
the eastern side of the Otranto Strait. Adopting a technique
borrowed from the theory of dynamical systems, we stud-
ied the Lagrangian transport properties by measuring relative
dispersionsS2

i , finite-scale Lyapunov exponentsλ(δ), and
Lagrangian structure functionν(δ). Relative dispersion, as
function of time, does not provide much information, except
for an idea of the size of the domain where saturation sets in
at long times. The behavior ofS2

i looks quite irregular and
this is due not to poor statistics but rather to intrinsic reasons.
In contrast, the results obtained with the FSLE, i.e. disper-
sion rates at different scales of motion, give a more useful
description of the properties of the drifter spreading. In par-
ticular, λ(δ) detects the characteristic times associated with
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the Eulerian characteristic lengths of the system.
We have also introduced a simple chaotic model of the La-

grangian evolution and compared it with the observations. In
our point of view, the actual meaning of the chaotic model,
in relation to the behavior of the drifters, is not the best-
fitting model. We do not claim that the quite difficult task
of modeling the marine surface circulation driven by wind
forcing can be exploited by a simple dynamical system. But
a simple dynamical system can give satisfactory results if we
are interested in large-scale properties of Lagrangian disper-
sion, since they depend much on the topology of the velocity
field and only slightly on the small-scale details of the veloc-
ity structures. In this respect, chaotic advection, very likely
present in every geophysical fluid flow, is crucial for what
concerns tracer dispersion, since it can easily overwhelm the
effects of small-scale turbulent motions on large-scale trans-
port (Crisanti et al., 1991). Even when a standard diffusiv-
ity parameter can be computed from the variance and the
self-correlation time of the Lagrangian velocity, its relevance
for reproducing the effective dispersion on finite scales, in
presence of coherent structures, is questionable. In addition,
practical difficulties arising from both finite resolution and
boundary effects suggest a revision of the analysis techniques
to be used for studying Lagrangian motion on finite scales,
i.e. in non-asymptotic conditions. Considering that, gener-
ally, there is more physical information in a scale-dependent
indicator (λ(δ)) rather than in a time function (S2(t)), we
come to the conclusion that the FSLE is a more appropriate
tool of investigation of finite-scale transport properties. It is
important to remark (Aurell et al, 1996; Artale et al., 1997;
Boffetta et al., 2000) that, in realistic cases,λ(δ) is not just
another way to look atS2(t) vs t , in particular it is not true
thatλ(δ) behaves like(d ln S2(t)/dt)S2=δ2. This is because
λ(δ) is a quantity which characterizes Lagrangian properties
at the scaleδ in a non ambiguous way. On the contrary,S2(t)

can depend strongly onS2(0), so that, in non-asymptotic
conditions, it is relatively easy to get erroneous conclusions
only by looking at the shape ofS2(t). In fact, at a given
time, relative dispersion inside a sub-cluster of drifters can
be rather different from other sub-clusters, e.g. due to fluc-
tuations in the cross-over time between exponential and dif-
fusive regimes. Therefore, when performing an average over
the whole set of trajectories, one may obtain a quite spuri-
ous and inconclusive behavior. On the other hand, we have
seen that the analysis of FSLE (and LSF) and the studying
of the transport properties at a given spatial scale, rather than
at a given time, can provide more reliable information on the
relative dispersion of tracers.

Acknowledgements.The drifter data set used in this work was kind-
ly made available to us by P.-M. Poulain. We warmly thank J.
Nycander, P.-M. Poulain, R. Santoleri and E. Zambianchi for con-
structive readings of the manuscript and for clarifying discussions
about oceanographic matters. We also thank E. Bohm, G. Bof-
fetta, A. Celani, M. Cencini, K. D̈oös, D. Faggioli, D. Fanelli, S.
Ghirlanda, D. Iudicone, A. Kozlov, E. Lindborg, S. Marullo, P.
Muratore-Ginanneschi and V. Rupolo for useful discussions.

This work was supported by a European Science Foundation “TAO

exchange grant” (G. L.), by the Swedish Natural Science Research
Council under contract M-AA/FU/MA 01778-334 (E. A.) and the
Swedish Technical Research Council under contract 97-855 (E. A.),
and by the I.N.F.M. “Progetto di Ricerca Avanzata TURBO” (A.V.)
and MURST, program 9702265437 (A. V.). G. L. thanks the K.T.H.
(Royal Institute of Technology) in Stockholm for hospitality. We
thank the European Science Foundation and the organizers of the
1999 Tao Study Center for invitations, and for an opportunity to
write up this work.

References

Adler, R. J., M̈uller, P., and Rozovskii, B. (Eds.), Stochastic model-
ing in physical oceanography, Birkhäuser, Boston, 1996.
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