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Abstract

We consider a magnetic Laplacian −∆A = (id+A)⋆(id+A)
on a hyperbolic surface M, when the magnetic field dA is infinite
at the boundary at infinity. We prove that the counting function of
the eigenvalues has a particular asymptotic behavior when M has an
infinite area. 1

1 Introduction

We consider a smooth, connected, complete and oriented Riemannian sur-
face (M, g) and a smooth, real one-form A on M. We define the magnetic
Laplacian

−∆A = (i d+ A)⋆(i d+ A) ,
( (i d+ A)u = i du+ uA , ∀ u ∈ C∞

0 (M;C) ) .
(1.1)

The magnetic field is the exact two-form ρB = dA .

If dm is the Riemannian measure on M , then

ρB = b̃ dm , with b̃ ∈ C∞(M;R) . (1.2)

The magnetic intensity is b = |b̃| .
1 Keywords : spectral asymptotics, magnetic bottles, hyperbolic surface.
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It is well known, (see [Shu] ), that−∆A has a unique self-adjoint extension
on L2(M) , containing in its domain C∞

0 (M;C) , the space of smooth and
compactly supported functions.

When b is infinite at the infinity, (with some additional assumption),
the spectrum of −∆A is discrete, and we denote by (λj)j the increasing
sequence of eigenvalues of −∆A , (each eigenvalue is repeated according to
its multiplicity). Let

N(λ) =
∑

λj<λ

1 . (1.3)

We are interested by the hyperbolic surfaces M, when the curvature of
M is constant and negative.

In this case, when M has finite area, the asymptotic behavior of N(λ)

seems to be the Weyl formula : N(λ) ∼+∞
λ

4π
|M| .

S. Golénia and S. Moroianu in [Go-Mo] have such examples.
In the case of the Poincaré half-plane, M = H , we prove in [Mo-Tr] that

the Weyl formula is not valid : lim
λ→+∞

λ−1N(λ) = +∞ .

For example when b(z) = a20(x/y)
2m0+a21y

m1+a22/y
m2 , aj > 0 andmj ∈ N⋆ ,

then
N(λ) ∼+∞ λ1+1/(2m0) ln(λ)α(m0, m1, m2) .

In this paper, we are interested by the hyperbolic surfaces with infinite
area. When M is a geometrically finite hyperbolic surface of infinite area and
when the above example is arranged for this new situation, (m0 is absent,
m1 appears in the cusps and m2 in the funnels), we get

N(λ) ∼+∞ λ1+1/m2α(m2) :

the cusps do not contribute to the leading part of N(λ) .

2 Main result

We assume that (M, g) is a smooth connected Riemannian manifold of
dimension two, which is a geometrically finite hyperbolic surface of infinite
area; (see [Per] or [Bor] for the definition and the related references). More
precisely

M =

(
J1⋃

j=0

Mj

)
⋃
(

J2⋃

k=1

Fk

)
; (2.1)
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where the Mj and the Fk are open sets of M, such that the closure of M0 is
compact, and if J1 > 0 , the other Mj are cuspidal ends of M, and the Fk

are funnel ends of M.
This means that, for any j, 1 ≤ j ≤ J1 , there exist strictly positive

constants aj and Lj such that Mj is isometric to S×]a2j ,+∞[ , equipped
with the metric

ds2j = y−2( L2
j dθ2 + dy2 ) ; (2.2)

(S = S
1 is the unit circle.)

In the same way, for any k, 1 ≤ k ≤ J2 ,there exist strictly positive
constants αk and τk such that Fk is isometric to S×]α2

k,+∞[ , equipped
with the metric

ds2k = τ 2k cosh
2(t)dθ2 + dt2 ; (2.3)

moreover, for any two integers j, k > 0 , we have Mj ∩ Fk = ∅ and
Mj ∩Mk = Fj ∩ Fk = ∅ if j 6= k .

Let us choose some z0 ∈ M0 and let us define

d : M → R+ ; d(z) = dg(z, z0) ; (2.4)

dg( . , . ) denotes the distance with respect to the metric g.
We assume the smooth one-form A to be given such that the magnetic

field b̃ satisfies
lim

d(z)→∞
b(z) = +∞ . (2.5)

If J1 > 0 , there exists a constant C1 > 0 such

|Xb̃(z)| ≤ C1(b(z) + 1)ed(z)|X|g ; (2.6)

∀ z ∈ Mj , ∀ X ∈ TzM and ∀ j = 1, . . . J1 .

There exists a constant C2 > 0 such

|Xb̃(z)| ≤ C2(b(z) + 1)|X|g ; (2.7)

∀ z ∈ Fk , ∀ X ∈ TzM and ∀ k = 1, . . . J2 .

For any self-adjoint operator P , and for any real λ , we will denote by
Eλ(P ) its spectral projection, and when its trace is finite we will denote it
by

N(λ;P ) = Tr(Eλ(P )) .

N(λ;P ) is the number of eigenvalues of P , (counted with their multiplicity),
which are in ]−∞, λ[ .
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Theorem 2.1 Under the above assumptions, −∆A has a compact resolvent
and for any δ ∈ ]1

3
, 2
5
[ , there exists a constant C > 0 such that

1

2π

∫

M

(1− C

(b(m) + 1)(2−5δ)/2
) N (λ(1− Cλ−3δ+1)− 1

4
,b(m)) dm

≤ N(λ,−∆A) ≤ (2.8)

1

2π

∫

M

(1 +
C

(b(m) + 1)(2−5δ)/2
) N (λ(1 + Cλ−3δ+1)− 1

4
,b(m)) dm

where

N (µ,b(m)) = b(m)
+∞∑

k=0

[µ− (2k + 1)b(m)]0+ if b(m) > 0 ,

and
N (µ,b(m)) = µ/2 if b(m) = 0 .

[ρ]0+ is the Heaviside function:

[ρ]0+ =

{
1 , if ρ > 0
0 , if ρ ≤ 0 .

The Theorem remains true if we replace

∫

M

by

J2∑

k=1

∫

Fk

, due to the

fact that the other parts are bounded by Cλ .

Corollary 2.2 Under the assumptions of Theorem 2.1 and if the function

ω(µ) =

∫

M

[µ− b(m)]0+dm

satisfies, ∃ C1 > 0 s.t. ∀ µ > C1 , ∀ τ ∈ ]0, 1[ ,

ω ((1 + τ) µ)− ω(µ) ≤ C1 τ ω(µ) , (2.9)

then

N(λ;−∆A) ∼ 1

2π

∫

M

N (λ− 1

4
,b(m)) dm . (2.10)
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For example this allows us to consider magnetic fields of the following
type:

on Fk , b(θ, t) = pk( 1/ cosh(t) ) ,
and on Mj , j > 0 , b(θ, y) = qj(y) ,

where the pk(s) and the qj(s) are, for large s, polynomial functions of order
≥ 1 . In this case, if d is the largest order of the pk(s) , then

N(λ;−∆A) ∼ αλ1+1/d ,

for some constant α > 0 , depending only on the funnels Fk where the order
of pk(s) is d .

3 Estimate for Dirichlet operators

3.1 The main propositions

In this section, we consider some particular open set Ω of M with smooth
boundary. To Ω and −∆A , we associate the Dirichlet operator −∆Ω

A , and
we estimate N(λ;−∆Ω

A) .

Proposition 3.1 Let Ω an open set of M0 with smooth boundary. Then
there exists a constant CΩ > 0 s.t.

∣∣∣∣N(λ;−∆Ω
A) − |Ω|

4π
λ

∣∣∣∣ ≤ CΩ

√
λ ; ∀ λ > 1 .

As Ω is compact, the above estimate is well known. See for example
Theorem 29.3.3 in [Hor].

Proposition 3.2 Let j > 0 and Ω an open set of the cusp Mj, isometric to
S×]a2,+∞[ , equipped with the metric

ds2 = y−2( L2 dθ2 + dy2 ) ; (a and L are strictly positive constants) .

Then −∆Ω
A has a compact resolvent and

N(λ;−∆Ω
A) ∼ |Ω|

4π
λ ; as λ → +∞ .
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We will prove it in the next subsection.

Proposition 3.3 Let Ω an open set of a funnel Fk, isometric to S×]a2,+∞[ ,
equipped with the metric

ds2 = L2 cosh2(t) dθ2 + dt2 ; (a and L are strictly positive constants) .

Then −∆Ω
A has a compact resolvent and for any δ ∈ ]1

3
, 2
5
[ , there exists a

constant C > 0 such that

1

2π

∫

Ω

(1− C

(b(m) + 1)(2−5δ)/2
) N (λ(1− Cλ−3δ+1)− 1

4
,b(m)) dm

≤ N(λ,−∆Ω
A) ≤

1

2π

∫

Ω

(1 +
C

(b(m) + 1)(2−5δ)/2
) N (λ(1 + Cλ−3δ+1)− 1

4
,b(m)) dm

The proof comes easily following the ones in the Poincaré half-plane of
[Mo-Tr], using the method of [Col], in the neighbourhood of the boundary at
infinity. It corresponds to a context where the partitions of unity were fine,
so they can be performed on S×]a2,+∞[ , (instead of R×]−∞, 0[ ) .

3.2 Proof of Proposition 3.2

For simplicity we change the unit circle S = S1 into the circle SL , of radius
L , so

Ω = SL×]a2,+∞[ , ds2 = y−2(dx2 + dy2) , and (3.1)

−∆Ω
Au(z) = y2[(Dx − A1)

2u(z) + (Dy − A2)
2u(z)] ;

moreover d(z, z′) = arg cosh
y2 + y′2 + d2

SL
(x, x′)

2yy′
.

We begin by proving the compactness of the resolvent of −∆Ω
A .

Lemma 3.4 There exists C0 > 1 such that
∫

Ω

(b(z)− C0)|u(z)|2dm ≤
∫

Ω

−∆Ω
Au(z)u(z)dm ; ∀ u ∈ C∞

0 (Ω) .
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Proof. Let us denote the quadratic form

qΩA(u) =

∫

Ω

−∆Ω
Au(z)u(z)dm ∀ u ∈ C∞

0 (Ω) . (3.2)

Then qΩA(u) =

∫

Ω

[
|(Dx −A1)u|2 + (Dy − A2)u|2

]
dxdy ,

and

∣∣∣∣
∫

Ω

b̃(z)|u(z)|2dm
∣∣∣∣

=

∣∣∣∣
∫

Ω

[(Dx −A1)u(z)(Dy − A2)u(z) − (Dy − A2)u(z)(Dx −A1)u(z)]dxdy

∣∣∣∣ .

Therefore we get that

∣∣∣∣
∫

Ω

b̃(z)|u(z)|2dm
∣∣∣∣ ≤ qΩA(u) .

As b(z) = |b̃(z)| → +∞ at the infinity, the Lemma comes easily.
The Lemma 3.4 and the assumption (2.5) prove that −∆Ω

A has compact
resolvent.

Later on, we will need that the assumptions (2.5) and (2.6) ensure that
there exists C > 1 such that ∀ z = (x, y) , z′ = (x′, y′) ∈ Ω ,

b(z)/C ≤ b(z′) ≤ Cb(z) , if |y − y′| ≤ 1 and y > C . (3.3)

This comes from the fact that d(z) is equivalent to ln(y) for y(> 1) large
enough, so the assumption (2.6) ensures that |∂xb(z)|+ |∂yb(z)| ≤ C(|b(z)|+
1).

Lemma 3.5 There exists a constant C0 > 1 such that, for any λ > 1 and
for any K ⊂ Ω isometric to I1 × I2 , endowed with the metric in (3.1), with

I1 =]x0 − ǫ1, x0 + ǫ1[ , I2 =]y0 − ǫ2, y0 + ǫ2[ ,

ǫ1 ∈ ]C−1
0 , 1[ , ǫ2 =

√
y0/
√

b(z0) , (y0 > C0) ;

the following estimates hold:

[λ(1− 1√
y0
)− C0]

|K|g
4π

≤ N(λ;−∆K
A ) ≤ [λ(1 +

1√
y0
) + C0]

|K|g
4π

. (3.4)

Proof. If b(z0) > Cλ , then, according to the estimate of Lemma 3.4
with K instead of Ω , N(λ;−∆K

A ) = 0 .
So we can assume that b(z0) ≤ Cλ .
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We use that the spectrum of −∆K
A is gauge-invariant, so we can suppose

that in K

A2 = 0 and A1(x, y) = −
∫ y

y0

b̃(x, ρ)

ρ2
dρ .

Then |A1(x, y)| ≤ Cǫ2
b(z0)

y20
.

From this estimate, we get that for any ǫ ∈]0, 1[ ,

−(1− ǫ)∆K
0 − Cǫ22

b2(z0)

ǫy20
≤ −∆K

A ≤ −(1 + ǫ)∆K
0 + Cǫ22

b2(z0)

ǫy20
.

We take ǫ = 1/
√
y0 , to get

−(1− 1√
y0
)∆K

0 − C
b(z0)√

y0
≤ −∆K

A ≤ −(1 +
1√
y0
)∆K

0 + C
b(z0)√

y0
.

As b(z0) ≤ Cλ , the Lemma follows easily from the min-max principle and
the well-known estimate for N(λ;−∆K

0 ) .
Proof of Proposition 3.2.

It follows easily from Lemma 3.5, (for large y ), using the same tricks as
in [Mo-Tr].

4 Proof of the main Theorem 2.1

The proof comes easily from the three propositions 3.1 - - 3.3, following the
method developped in [Mo-Tr].

5 Remark on the case of constant magnetic

field

It is not always possible to have a constant magnetic field on M , (for topo-
logical reason), but for any (b, β) ∈ R

J1 ×R
J2 , there exists a one-form A ,

such that the corresponding magnetic field dA satisfies

dA = b̃(z)dm

{
b̃(z) = bj ∀ z ∈ Mj

b̃(z) = βk ∀ z ∈ Fk

(5.1)
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Theorem 5.1 Assume (2.1) and (5.1).
If J1 = 0 and J2 > 0 , then the essential spectrum of −∆A is

spess(−∆A) = [
1

4
+ inf

k
β2
k , +∞[

⋃
(

J2⋃

k=1

S(βk)

)
(5.2)

with S(βk) = ∅ when |βk| ≤ 1/2 and when |βk| > 1/2
S(βk) = {(2j + 1)|βk| − j(j + 1) ; j ∈ N, j < |βk| − 1/2} .

If J1 and J2 are > 0 , then for any j , 1 ≤ j ≤ J1 and for any
z ∈ Mj there exists a unique closed curve through z , Cj,z in (Mj , g) ,
not contractible and with zero g−curvature. The following limit exists and is
finite:

[A]Mj
= lim

d(z)→+∞

∫

Cj,z

A . (5.3)

If JA
1 = {j ∈ N , 1 ≤ j ≤ J1 s.t. [A]Mj

∈ 2πZ } , then

spess(−∆A) = [
1

4
+min{ inf

j∈JA
1

b2j , inf
1≤k≤J2

β2
k } , +∞[

⋃
(

J2⋃

k=1

S(βk)

)
. (5.4)

If J2 = 0 and JA
1 = ∅ , then spess(−∆A) = ∅ :

−∆A has purely discrete spectrum, (its resolvent is compact).

Remark 5.2 In Theorem 5.1, one can change Cj,z into Sj,z , the unique
closed curve through z , not contractible and with minimal g−length.
Sj,z is not smooth at z, Sj,z is part of two geodesics through z , so there
is an out-going tangent and an incoming tangent at z . It is easy to see that
Cj,z ∩ Sj,z = {z} , so by Stokes formula

∫

Sj,z

(A− A0) =

∫

Cj,z

(A− A0) ,

where A0 is a one-form on M , such that

dA = dA0 on Mj and [A0]Mj
= 0 ; ∀ j .

The orientation in both cases Cj,z and Sj,z , is chosen such that, if
uz, vz ∈ TzMj , gz(uz, vz) = 0 , dm(uz, vz) > 0 , and uz is tangent to the
curve (in the positive direction), then vz points to boundary at infinity; (for
Sj,z , one can take as uz the out-going tangent, or the incoming tangent).
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Proof of Theorem 5.1. It is clear that

spess(−∆A) =

(
J1⋃

j=1

spess(−∆
Mj

A )

)
⋃
(

J2⋃

k=1

spess(−∆Fk

A )

)
; (5.5)

so the proof will result on the two lemmas below.

Lemma 5.3

spess(−∆Fk

A ) = [
1

4
+ β2

k , +∞[∪S(βk) .

Proof. We have −∆Fk

A = τ−2
k cosh−2(t)(Dθ − A1)

2 + cosh−1(t)(Dt −
A2) [cosh(t)(Dt −A2)] .

Since b̃ = βk = τ−1
k cosh−1(t)(∂θA2 − ∂tA1) , there exists a function ϕ such

that A− Ã = dϕ if Ã = (ξ − βkτk sinh(t))dθ , (for some constant ξ) .

So we can assume that A = Ã .
We change the density dm = τk cosh(t)dθdt for dθdt , using the unitary

operator Uf = (τk cosh(t))
1/2f , so

P = −U∆Fk

A U⋆ = τ−2
k cosh−2(t)(Dθ − A1)

2 +D2
t +

1

4
(1 + cosh−2(t)) .

We remind that λ ∈ spess(−∆Fk

A ) iff there exists a sequence (uj)j ∈
Dom(−∆Fk

A ) converging weekly in L2(Fk) to zero, ‖uj‖L2(Fk) = 1 and such

that the sequence (−∆Fk

A uk − λuk)k converges strongly to zero.

It is clear that sp(−∆Fk

A ) = sp(
⊕

ℓ∈Z

Pℓ) ,

Pℓ = D2
t + τ−2

k cosh−2(t)(ℓ+ βkτk sinh(t)− ξ)2 +
1

4
(1 + cosh−2(t)) ,

for the Dirichlet condition on L2(I; dt) ; I =]α2
k , +∞[ .

So sp(−∆Fk

A ) =
⋃

ℓ∈Z

sp(Pℓ) .

Writing that Pℓ = D2
t +

(
ℓ− ξ

τk cosh(t)
+ βk tanh(t)

)2

+
1

4
(1+ cosh−2(t)) ,

we get easily that spess(Pℓ) = [
1

4
+ β2

k ,+∞[ , and that the number of eigen-

values <
1

4
+ β2

k is finite for all ℓ < ξ and equal to zero for all ℓ ≥ ξ . Here
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we assume βk > 0 . So [
1

4
+ β2

k ,+∞[ ⊂ spess(−∆Fk

A ) and the other part of

spess(−∆Fk

A ) is S∞ = {λ ; λ = lim
j→+∞

λℓ(j) , λℓ(j) ∈ spd(Pℓ(j))} ,

where (ℓ(j))j denotes any decreasing sequence of negative integers.
Now we use again the formula

Pℓ = D2
t +

(
ℓ− ξ

τk cosh(t)
+ βk tanh(t)

)2

+
1

4
(1 + cosh−2(t)) .

Assuming ℓ − ξ < 0 , we set ρ = |ℓ − ξ|/τk and we introduce the new vari-

able y = 2ρe−t . We get that Pℓ is unitarily equivalent to P̃ρ defined as a
Dirichlet type operator in L2(]0, 2ρe−α2

k [; dy) , (zero boundary condition is
only required on the right boundary):

P̃ρ = Dy(y
2Dy) +Wρ(y) , with

Wρ(y) =

(
βk

(1− y2/(4ρ2)

1 + y2/(4ρ2)
− y

1 + y2/(4ρ2)

)2

+

(
y/(2ρ)

1 + y2/(4ρ2)

)2

.

So we have lim
ρ→+∞

Wρ(y) = W∞(y) = (βk − y)2 , and the operator

P̃∞ = Dy(y
2Dy) +W∞(y) on L2(]0,+∞[; dy) satisfies, (see [Mo-Tr] ),

sp(P̃∞) = spess(P̃∞) ∪ spd(P̃∞) with

spess(P̃∞) = [
1

4
+ β2

k ,+∞[ ; spd(P̃∞) = S(βk) .

We remind that the eigenfunctions associated to the eigenvalues in S(βk) of

P̃∞ are exponentially decreasing, so if λ0(ρ) ≤ . . . ≤ λj(ρ) ≤ λj+1(ρ) . . .

are the eigenvalues of P̃ρ then for any j ,
lim

ρ→+∞
λj(ρ) = λj(∞) = (2j + 1)βk − j(j + 1) , if βk > 1/2 and j < βk − 1/2 ,

otherwise lim
ρ→+∞

λj(ρ) =
1

4
+ β2

k .

Therefore we get that S∞ = S(βk) , or S∞ = S(βk) ∪ {1
4
+ β2

k} : the
formula of Lemma 5.3 follows.

Lemma 5.4 If 1 ≤ j ≤ J1 and j /∈ JA
1 , then

spess(−∆
Mj

A ) = ∅ .

If j ∈ JA
1 , then

spess(−∆
Mj

A ) = [
1

4
+ b2j , +∞[ .
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Proof. Use the coordinate t = ln y instead of y , so

Mj = S×]α2
j ,+∞[ and ds2j = L2

je
−2tdθ2 + dt2 ; (αj = eaj ) .

Then −∆
Mj

A = L−2
j e2t(Dθ − A1)

2 + et(Dt − A2)(e
−t(Dt − A2)) ,

b̃ = L−1
j et(∂θA2 − ∂tA1) and dm = Lje

−tdθdt . As in Lemma 5.3, we have

A− Ã = dϕ if Ã = (ξ + Ljbje
−t)dθ , (for some constant ξ) .

So we can also assume that A = Ã .
We replace the density dm by dθdt , using the unitary operator

Uf =
√

Lje
−t/2f , so

P = −U∆
Mj

A U⋆ = L−2
j e2t(Dθ − A1)

2 +D2
t +

1

4
.

Then we get also that

sp(−∆
Mj

A ) = sp(P ) =
⋃

ℓ∈Z

sp(Pℓ) ; Pℓ = D2
t +

1

4
+

(
et
(ℓ+ ξ)

Lj
+ bj

)2

,

for the Dirichlet condition on L2(I; dt) ; I =]α2
j ,+∞[ .

When ℓ+ ξ 6= 0 , the spectrum of Pℓ is discrete. More precisely

sp(Pℓ) = sp(P±) , where P± = D2
t +

1

4
+ (±et + bj)

2

for the Dirichlet condition on L2(Ij,ℓ; dt) ; Ij,ℓ =]α2
j + ln(|ℓ + ξ|/Lj),+∞[ ,

and ± =
ℓ+ ξ

|ℓ+ ξ| .
So lim

|ℓ|→∞
inf sp(Pℓ) = +∞ , and then we get easily that the spectrum of

−∆
Mj

A is discrete, when ξ = [A]Mj
/(2π) /∈ Z .

If ℓ+ ξ = 0 , the spectrum of Pℓ is absolutely continuous :

sp(P−ξ) = spess(P−ξ) = spac(P−ξ) = [
1

4
+ b2j , +∞[ ;

and then, when [A]Mj
∈ 2πZ , spess(−∆

Mj

A ) = [
1

4
+ b2j , +∞[ .

This achieves the proof of Lemma 5.4.
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