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Magnetic bottles on geometrically finite hyperbolic surfaces

We consider a magnetic Laplacian -∆ A = (id + A) ⋆ (id + A) on a hyperbolic surface M, when the magnetic field dA is infinite at the boundary at infinity. We prove that the counting function of the eigenvalues has a particular asymptotic behavior when M has an infinite area. 1

Introduction

We consider a smooth, connected, complete and oriented Riemannian surface (M, g) and a smooth, real one-form A on M. We define the magnetic Laplacian

-∆ A = (i d + A) ⋆ (i d + A) , ( (i d + A)u = i du + uA , ∀ u ∈ C ∞ 0 (M; C) ) .
(1.1)

The magnetic field is the exact two-form ρ B = dA .

If dm is the Riemannian measure on M , then

ρ B = b dm , with b ∈ C ∞ (M; R) . (1.2)
The magnetic intensity is b = | b| .
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It is well known, (see [Shu] ), that -∆ A has a unique self-adjoint extension on L 2 (M) , containing in its domain C ∞ 0 (M; C) , the space of smooth and compactly supported functions.

When b is infinite at the infinity, (with some additional assumption), the spectrum of -∆ A is discrete, and we denote by (λ j ) j the increasing sequence of eigenvalues of -∆ A , (each eigenvalue is repeated according to its multiplicity). Let

N(λ) = λ j <λ 1 . (1.3)
We are interested by the hyperbolic surfaces M, when the curvature of M is constant and negative.

In this case, when M has finite area, the asymptotic behavior of N(λ)

seems to be the Weyl formula :

N(λ) ∼ +∞ λ 4π |M| .
S. Golénia and S. Moroianu in [Go-Mo] have such examples.

In the case of the Poincaré half-plane, M = H , we prove in [Mo-Tr] that the Weyl formula is not valid : lim

λ→+∞ λ -1 N(λ) = +∞ . For example when b(z) = a 2 0 (x/y) 2m 0 +a 2 1 y m 1 +a 2 2 /y m 2 , a j > 0 and m j ∈ N ⋆ , then N(λ) ∼ +∞ λ 1+1/(2m 0 ) ln(λ)α(m 0 , m 1 , m 2 ) .
In this paper, we are interested by the hyperbolic surfaces with infinite area. When M is a geometrically finite hyperbolic surface of infinite area and when the above example is arranged for this new situation, (m 0 is absent, m 1 appears in the cusps and m 2 in the funnels), we get

N(λ) ∼ +∞ λ 1+1/m 2 α(m 2 ) :
the cusps do not contribute to the leading part of N(λ) .

Main result

We assume that (M, g) is a smooth connected Riemannian manifold of dimension two, which is a geometrically finite hyperbolic surface of infinite area; (see [Per] or [Bor] for the definition and the related references). More precisely

M = J 1 j=0 M j J 2 k=1 F k ; (2.1)
where the M j and the F k are open sets of M, such that the closure of M 0 is compact, and if J 1 > 0 , the other M j are cuspidal ends of M, and the F k are funnel ends of M. This means that, for any j, 1 ≤ j ≤ J 1 , there exist strictly positive constants a j and L j such that M j is isometric to S×]a 2 j , +∞[ , equipped with the metric

ds 2 j = y -2 ( L 2 j dθ 2 + dy 2 ) ; (2.2) (S = S 1 is the unit circle.)
In the same way, for any k, 1 ≤ k ≤ J 2 ,there exist strictly positive constants

α k and τ k such that F k is isometric to S×]α 2 k , +∞[ , equipped with the metric ds 2 k = τ 2 k cosh 2 (t)dθ 2 + dt 2 ; (2.3)
moreover, for any two integers j, k > 0 , we have

M j ∩ F k = ∅ and M j ∩ M k = F j ∩ F k = ∅ if j = k .
Let us choose some z 0 ∈ M 0 and let us define

d : M → R + ; d(z) = d g (z, z 0 ) ; (2.4) d g ( . , .
) denotes the distance with respect to the metric g.

We assume the smooth one-form A to be given such that the magnetic field b satisfies lim

d(z)→∞ b(z) = +∞ . (2.5) If J 1 > 0 , there exists a constant C 1 > 0 such |X b(z)| ≤ C 1 (b(z) + 1)e d(z) |X| g ; (2.6) ∀ z ∈ M j , ∀ X ∈ T z M and ∀ j = 1, . . . J 1 .
There exists a constant C 2 > 0 such

|X b(z)| ≤ C 2 (b(z) + 1)|X| g ; (2.7) ∀ z ∈ F k , ∀ X ∈ T z M and ∀ k = 1, . . . J 2 .
For any self-adjoint operator P , and for any real λ , we will denote by E λ (P ) its spectral projection, and when its trace is finite we will denote it by N(λ; P ) = T r(E λ (P )) .

N(λ; P ) is the number of eigenvalues of P , (counted with their multiplicity), which are in ] -∞, λ[ .

Theorem 2.1 Under the above assumptions, -∆ A has a compact resolvent and for any δ ∈ ] 1 3 , 2 5 [ , there exists a constant C > 0 such that

1 2π M (1 - C (b(m) + 1) (2-5δ)/2 ) N (λ(1 -Cλ -3δ+1 ) - 1 4 , b(m)) dm ≤ N(λ, -∆ A ) ≤ (2.8) 1 2π M (1 + C (b(m) + 1) (2-5δ)/2 ) N (λ(1 + Cλ -3δ+1 ) - 1 4 , b(m)) dm
where

N (µ, b(m)) = b(m) +∞ k=0 [µ -(2k + 1)b(m)] 0 + if b(m) > 0 ,
and

N (µ, b(m)) = µ/2 if b(m) = 0 .
[ρ] 0 + is the Heaviside function:

[ρ] 0 + = 1 , if ρ > 0 0 , if ρ ≤ 0 .
The Theorem remains true if we replace

M by J 2 k=1 F k
, due to the fact that the other parts are bounded by Cλ .

Corollary 2.2 Under the assumptions of Theorem 2.1 and if the function

ω(µ) = M [µ -b(m)] 0 + dm satisfies, ∃ C 1 > 0 s.t. ∀ µ > C 1 , ∀ τ ∈ ]0, 1[ , ω ((1 + τ ) µ) -ω(µ) ≤ C 1 τ ω(µ) , (2.9) then N(λ; -∆ A ) ∼ 1 2π M N (λ - 1 4 , b(m)) dm .
(2.10)

For example this allows us to consider magnetic fields of the following type:

on F k , b(θ, t) = p k ( 1/ cosh(t) )
, and on M j , j > 0 , b(θ, y) = q j (y) , where the p k (s) and the q j (s) are, for large s, polynomial functions of order ≥ 1 . In this case, if d is the largest order of the p k (s) , then

N(λ; -∆ A ) ∼ αλ 1+1/d ,
for some constant α > 0 , depending only on the funnels F k where the order of p k (s) is d .

3 Estimate for Dirichlet operators

The main propositions

In this section, we consider some particular open set Ω of M with smooth boundary. To Ω and -∆ A , we associate the Dirichlet operator -∆ Ω A , and we estimate N(λ; -∆ Ω A ) . 

N(λ; -∆

Ω A ) - |Ω| 4π λ ≤ C Ω √ λ ; ∀ λ > 1 .
As Ω is compact, the above estimate is well known. See for example Theorem 29.3.3 in [Hor].

Proposition 3.2 Let j > 0 and Ω an open set of the cusp M j , isometric to S×]a 2 , +∞[ , equipped with the metric ds 2 = y -2 ( L 2 dθ 2 + dy 2 ) ; (a and L are strictly positive constants) .

Then -∆ Ω

A has a compact resolvent and

N(λ; -∆ Ω A ) ∼ |Ω| 4π λ ; as λ → +∞ .
We will prove it in the next subsection.

Proposition 3.3

Let Ω an open set of a funnel F k , isometric to S×]a 2 , +∞[ , equipped with the metric ds 2 = L 2 cosh 2 (t) dθ 2 + dt 2 ; (a and L are strictly positive constants) .

Then -∆ Ω

A has a compact resolvent and for any δ ∈ ] 1 3 , 2 5 [ , there exists a constant C > 0 such that

1 2π Ω (1 - C (b(m) + 1) (2-5δ)/2 ) N (λ(1 -Cλ -3δ+1 ) - 1 4 , b(m)) dm ≤ N(λ, -∆ Ω A ) ≤ 1 2π Ω (1 + C (b(m) + 1) (2-5δ)/2 ) N (λ(1 + Cλ -3δ+1 ) - 1 4 , b(m)) dm
The proof comes easily following the ones in the Poincaré half-plane of [Mo-Tr], using the method of [Col], in the neighbourhood of the boundary at infinity. It corresponds to a context where the partitions of unity were fine, so they can be performed on S×]a 2 , +∞[ , (instead of R×] -∞, 0[ ) .

Proof of Proposition 3.2

For simplicity we change the unit circle S = S 1 into the circle S L , of radius L , so Ω = S L ×]a 2 , +∞[ , ds 2 = y -2 (dx 2 + dy 2 ) , and (3.1)

-∆ Ω A u(z) = y 2 [(D x -A 1 ) 2 u(z) + (D y -A 2 ) 2 u(z)] ; moreover d(z, z ′ ) = arg cosh y 2 + y ′2 + d 2 S L (x, x ′ ) 2yy ′ .
We begin by proving the compactness of the resolvent of -∆ Ω A .

Lemma 3.4 There exists

C 0 > 1 such that Ω (b(z) -C 0 )|u(z)| 2 dm ≤ Ω -∆ Ω A u(z)u(z)dm ; ∀ u ∈ C ∞ 0 (Ω) .
Proof. Let us denote the quadratic form

q Ω A (u) = Ω -∆ Ω A u(z)u(z)dm ∀ u ∈ C ∞ 0 (Ω) . (3.2) Then q Ω A (u) = Ω |(D x -A 1 )u| 2 + (D y -A 2 )u| 2 dxdy ,
and

Ω b(z)|u(z)| 2 dm = Ω [(D x -A 1 )u(z)(D y -A 2 )u(z) -(D y -A 2 )u(z)(D x -A 1 )u(z)]dxdy .
Therefore we get that

Ω b(z)|u(z)| 2 dm ≤ q Ω A (u) .
As b(z) = | b(z)| → +∞ at the infinity, the Lemma comes easily. The Lemma 3.4 and the assumption (2.5) prove that -∆ Ω A has compact resolvent.

Later on, we will need that the assumptions (2.5) and (2.6) ensure that there exists Lemma 3.5 There exists a constant C 0 > 1 such that, for any λ > 1 and for any K ⊂ Ω isometric to I 1 × I 2 , endowed with the metric in (3.1), with

C > 1 such that ∀ z = (x, y) , z ′ = (x ′ , y ′ ) ∈ Ω , b(z)/C ≤ b(z ′ ) ≤ Cb(z) , if |y -y ′ | ≤
I 1 =]x 0 -ǫ 1 , x 0 + ǫ 1 [ , I 2 =]y 0 -ǫ 2 , y 0 + ǫ 2 [ , ǫ 1 ∈ ]C -1 0 , 1[ , ǫ 2 = √ y 0 / b(z 0 ) , (y 0 > C 0 ) ;
the following estimates hold:

[λ(1 - 1 √ y 0 ) -C 0 ] |K| g 4π ≤ N(λ; -∆ K A ) ≤ [λ(1 + 1 √ y 0 ) + C 0 ] |K| g 4π . (3.4)
Proof. If b(z 0 ) > Cλ , then, according to the estimate of Lemma 3.4 with K instead of Ω , N(λ; -∆ K A ) = 0 . So we can assume that b(z 0 ) ≤ Cλ .

We use that the spectrum of -∆ K

A is gauge-invariant, so we can suppose that in K A 2 = 0 and A

1 (x, y) = - y y 0 b(x, ρ) ρ 2 dρ . Then |A 1 (x, y)| ≤ Cǫ 2 b(z 0 ) y 2 0 .
From this estimate, we get that for any ǫ ∈]0, 1[ ,

-(1 -ǫ)∆ K 0 -Cǫ 2 2 b 2 (z 0 ) ǫy 2 0 ≤ -∆ K A ≤ -(1 + ǫ)∆ K 0 + Cǫ 2 2 b 2 (z 0 ) ǫy 2 0 .
We take ǫ = 1/ √ y 0 , to get

-(1 - 1 √ y 0 )∆ K 0 -C b(z 0 ) √ y 0 ≤ -∆ K A ≤ -(1 + 1 √ y 0 )∆ K 0 + C b(z 0 ) √ y 0 .
As b(z 0 ) ≤ Cλ , the Lemma follows easily from the min-max principle and the well-known estimate for N(λ; -∆ K 0 ) . Proof of Proposition 3.2. It follows easily from Lemma 3.5, (for large y ), using the same tricks as in [Mo-Tr].

4 Proof of the main Theorem 2.1

The proof comes easily from the three propositions 3.1 --3.3, following the method developped in [Mo-Tr].

Remark on the case of constant magnetic field

It is not always possible to have a constant magnetic field on M , (for topological reason), but for any (b, β) ∈ R J 1 × R J 2 , there exists a one-form A , such that the corresponding magnetic field dA satisfies

dA = b(z)dm b(z) = b j ∀ z ∈ M j b(z) = β k ∀ z ∈ F k (5.1)

Proposition 3. 1

 1 Let Ω an open set of M 0 with smooth boundary. Then there exists a constant C Ω > 0 s.t.

  1 and y > C . (3.3) This comes from the fact that d(z) is equivalent to ln(y) for y(> 1) large enough, so the assumption (2.6) ensures that |∂ x b(z)| + |∂ y b(z)| ≤ C(|b(z)| + 1).

Theorem 5.1 Assume (2.1) and (5.1).

If J 1 = 0 and J 2 > 0 , then the essential spectrum of -∆ A is

with S(β k ) = ∅ when |β k | ≤ 1/2 and when

If J 1 and J 2 are > 0 , then for any j , 1 ≤ j ≤ J 1 and for any z ∈ M j there exists a unique closed curve through z , C j,z in (M j , g) , not contractible and with zero g-curvature. The following limit exists and is finite:

A .

(5.3)

Remark 5.2 In Theorem 5.1, one can change C j,z into S j,z , the unique closed curve through z , not contractible and with minimal g-length. S j,z is not smooth at z, S j,z is part of two geodesics through z , so there is an out-going tangent and an incoming tangent at z . It is easy to see that C j,z ∩ S j,z = {z} , so by Stokes formula

The orientation in both cases C j,z and S j,z , is chosen such that, if u z , v z ∈ T z M j , g z (u z , v z ) = 0 , dm(u z , v z ) > 0 , and u z is tangent to the curve (in the positive direction), then v z points to boundary at infinity; (for S j,z , one can take as u z the out-going tangent, or the incoming tangent).

Proof of Theorem 5.1. It is clear that

(5.5) so the proof will result on the two lemmas below.

Lemma 5.3

)dθ , (for some constant ξ) .

So we can assume that

We change the density dm = τ k cosh(t)dθdt for dθdt , using the unitary operator Uf = (τ k cosh(t)) 1/2 f , so

We remind that λ ∈ sp ess (-∆ F k A ) iff there exists a sequence (u j

for the Dirichlet condition on L 2 (I; dt) ;

Writing that

we get easily that sp ess (P 

where (ℓ(j)) j denotes any decreasing sequence of negative integers. Now we use again the formula

Assuming ℓξ < 0 , we set ρ = |ℓ -ξ|/τ k and we introduce the new variable y = 2ρe -t . We get that P ℓ is unitarily equivalent to P ρ defined as a Dirichlet type operator in L 2 (]0, 2ρe -α 2 k [; dy) , (zero boundary condition is only required on the right boundary):

, and the operator

We remind that the eigenfunctions associated to the eigenvalues in S(β k ) of P ∞ are exponentially decreasing, so if λ 0 (ρ) ≤ . . . ≤ λ j (ρ) ≤ λ j+1 (ρ) . . . are the eigenvalues of P ρ then for any j ,

Proof. Use the coordinate t = ln y instead of y , so M j = S×]α 2 j , +∞[ and ds 2 j = L 2 j e -2t dθ 2 + dt 2 ; (α j = e a j ) .

Then -∆

) and dm = L j e -t dθdt . As in Lemma 5.3, we have

)dθ , (for some constant ξ) .

So we can also assume that A = A .

We replace the density dm by dθdt , using the unitary operator Uf = L j e -t/2 f , so

Then we get also that sp(-∆