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Introduction

The rigorous derivation of Fourier's law of heat conduction for classical systems with Hamiltonian bulk dynamics (or for quantum systems with Schrödinger evolution) with boundaries kept at different temperatures is an open problem in mathematical physics [START_REF] Bonetto | Fourier's law: A challenge to theorists[END_REF]. The situation is different for systems with purely stochastic dynamics, e.g. for the Kipnis, Marchioro, Presutti (KMP) model [START_REF] Kipnis | Heat flow in an exactly solvable model[END_REF], where such results can be readily derived [START_REF] Kipnis | Scaling limits of interacting particle systems[END_REF][START_REF] Spohn | Large Scale Dynamics of Interacting Particles[END_REF]. An interesting area of current research are hybrid models in which the time evolution is governed by a combination of deterministic and stochastic dynamics. The deterministic part of the dynamics is given by the usual Hamiltonian evolution. The stochastic part can be of two different types. In the first type, the stochastic part is constructed to strictly conserve the energy, as studied in [START_REF] Bernardin | Fourier's law for a microscopic model of heat conduction[END_REF], or conserve also momentum, as in [START_REF] Basile | A momentum conserving model with anomalous thermal conductivity in low dimension[END_REF][START_REF] Basile | Thermal conductivity for a momentum conserving model[END_REF]. In the second type, studied in [START_REF] Bolsterli | Simulation of nonharmonic interactions in a crystal by self-consistent reservoirs[END_REF] and [START_REF] Bonetto | Fourier's Law for a harmonic Crystal with Self-Consistent Stochastic Reservoirs[END_REF], the stochastic part is implemented by coupling the particles of the system to "internal" heat baths with which they can exchange energy. To obtain a heat flow between external reservoirs at specified temperatures T l , T r , acting at the left and right boundaries of the system, the temperatures of the internal heat baths are chosen in a self-consistent manner by the requirement that in the nonequilibrium stationary state (NESS) there be no net energy flux between these baths and the system [START_REF] Bolsterli | Simulation of nonharmonic interactions in a crystal by self-consistent reservoirs[END_REF][START_REF] Bonetto | Fourier's Law for a harmonic Crystal with Self-Consistent Stochastic Reservoirs[END_REF]. Because of this self-consistency condition, there is an average constant energy flux across the system in the NESS, supplied by the external reservoirs at specified, unequal, temperatures coupled to the boundaries of the system, and then carried by the Hamiltonian dynamics. A proof of Fourier's law for both types of hybrid models has been obtained for the case when the Hamiltonian dynamics is linear [START_REF] Bernardin | Fourier's law for a microscopic model of heat conduction[END_REF][START_REF] Bonetto | Fourier's Law for a harmonic Crystal with Self-Consistent Stochastic Reservoirs[END_REF], i.e., for a system of coupled harmonic oscillators.

In the present work we investigate the self-consistent model for anharmonic crystals. Unlike the case of the harmonic system, where it is known that Fourier's law does not hold when the "noise" is turned off (the heat conductivity then becoming infinite), one expects that in the anharmonic system with a pinning self-potential the conductivity will stay finite, i.e., it will satisfy Fourier's law, even when the strength of the noise goes to zero. We are quite far from proving this, however. What we do show here is that, for these anharmonic systems, conductivity for the finite system, defined by first letting both T l and T r approach the same value, is given by a Green-Kubo formula. We also prove that this Green-Kubo conductivity is bounded in the system size, whenever the noise is finite.

These results are obtained by studying the entropy production in the reservoirs in the NESS specified by the temperatures of all the reservoirs. We prove that the self-consistent profile minimizes, among all possible temperature profiles, the entropy production to the leading order in the difference of the boundary temperatures T l -T r . We then prove a uniform bound for the entropy production of a stationary state with a profile linear in the inverse temperatures. This leads to a bound on the leading term of the conductivity of the self-consistent system, given by the Green-Kubo formula for the finite system with all reservoirs at the same temperature T .

Furthermore, we show that the corresponding Green-Kubo formula for the infinite system, giving the conductivity of the infinite system as a spacetime integral of the energy-current correlations, is convergent. The bound we derive implies that the conductivity vanishes in the limit of infinitely strong coupling to the reservoirs. This behavior is also apparent in the explicit expression of the conductivity of the corresponding harmonic system (see equation (7.10) in [START_REF] Bonetto | Fourier's Law for a harmonic Crystal with Self-Consistent Stochastic Reservoirs[END_REF]). The violent contact with the reservoirs most likely makes local equilibrium so strong that eventually no transmission is possible.

There are no comparable results for anharmonic crystals with the first type of hybrid dynamics, but only some bounds on the conductivity [START_REF] Basile | Thermal conductivity for a momentum conserving model[END_REF]. Under the assumption that the self-consistent temperature profile remains bounded, we show that the conductivity of the finite systems with a fixed T l -T r > 0 is uniformly bounded in the size of the system. (This assumption is "clearly" correct but we are unable to prove it, see section 9.)

The model considered is described in section 2 while section 3 contains a summary of the results proven in this paper. The existence of a NESS with a self-consistent temperature profile is proven in section 4. Entropy production in the NESS is discussed in section 5, and in section 6 we prove that the stationary state corresponding to the self-consistent profile minimizes, at the leading order in the temperature difference (T l -T r ), the entropy production. Thermal conductivity in the NESS is discussed in section 7 and for the infinite homogeneous system in section 8. Finally, in Section 9 we present some concluding remarks.

Time Evolution

Atoms are labeled by x = (x 1 , . . . , x d ) ∈ {-N, . . . , N } d = Λ N , N ≥ 1.
Each atom is in contact with a heat reservoir at temperature T x . The interactions with the reservoirs are modeled by Ornstein-Uhlenbeck processes at corresponding temperatures. The atoms have all the same mass m = 1. Their velocities are denoted by p x and the "positions" by q x , with q x , p x ∈ R. We consider a mixture of fixed and periodic boundary conditions. The fixed boundary conditions are applied in the 1-direction, and the corresponding boundary sites will be used to make contact with external heat reservoirs. In the remaining directions, we apply periodic boundary conditions. Explicitly, let ∂Λ N denote the set with |x 1 | = N + 1 and let [x] i = -N + (x i + N ) mod (2N + 1), for i ≥ 2. The boundary conditions are then q x = 0, for x ∈ ∂Λ N . In addition, we let the inner boundary of Λ N consist of those x with |x 1 | = N , and we denote it by ∂Λ N .

As we will show, the heat flux in the stationary state will be entirely in the 1-direction and the properties of the system will be uniform in the d -1 periodic directions. We define Λ ′ N = {x ∈ Λ N : -N ≤ x 1 < N } to label the bonds in the 1-direction.

The Hamiltonian of the system is given by

H N = x∈Λ N E x , E x = p 2 x 2 + d j=1 V (q x -q x-e j ) + V (q x+e j -q x ) 2 + W (q x ), x ∈ Λ N , (2.1) 
where the e i , i = 1, . . . , d, denote the Cartesian basis vectors. We assume that V and W are smooth positive symmetric functions on R with quadratic growth at infinity:

lim λ→∞ W ′′ (±λ) = W ′′ ∞ > 0, lim λ→∞ V ′′ (±λ) = V ′′ ∞ > 0 . (2.2)
Clearly then, there are C 1 , C 2 > 0 such that

C 1 (q 2 -1) ≤ V (q) ≤ C 2 (q 2 + 1), C 1 (q 2 -1) ≤ W (q) ≤ C 2 (q 2 + 1) . (2.
3)

The dynamics is described by the following system of stochastic differential equations:

dq x = p x dt , dp x = -∂ qx H N dt -γ x p x dt + 2γ x T x dw x (t) , (2.4) 
with γ x > 0 for all x ∈ Λ N . Here w x (t), x ∈ Λ N , are independent standard Brownian motions (with 0 average and diffusion equal to 1). The generator of this process has the form

L N = x∈Λ N (∂ px H N ∂ qx -∂ qx H N ∂ px ) + x∈Λ N γ x T x ∂ 2 px -p x ∂ px = A + S , (2.5) 
where A is the Hamiltonian part, anti-symmetric in the momentum variables, and S is the symmetric part corresponding to the action of the reservoirs. Then

L N E x = d i=1 (j x-e i ,x -j x,x+e i ) + J x , x ∈ Λ N (2.6) with J x = γ x (T x -p 2 x ) and j x,x+e i = 0, if [x] ∈ Λ N or [x + e i ] ∈ Λ N , (2.7) 
j x,x+e i = - 1 2 (p [x] + p [x+e i ] )V ′ (q [x+e i ] -q [x]
), otherwise .

(2.8)

In particular, then j x,x+e 1 can be non-zero only if x ∈ Λ ′ N . In section 3 of [START_REF] Mattingly | Ergodicity for SDEs and Approximations: Locally Lipshitz Vector Fields and Degenerate Noise[END_REF] it is shown that, for any choice of the temperatures T = {T x ≥ 0}, there exists an explicit Lyapunov function for the corresponding stochastic evolution, as long as γ x > 0 for all x. This implies the existence of the corresponding stationary measure that we will denote by µ(T).

If at least one T x > 0, then the generator L N defined in (2.5) is (weakly)hypoelliptic, in the sense that the Lie algebra generated by the vector fields {A, ∂ px , x ∈ Λ N } has full range in the tangent space of the phase space (R 2d ) Λ N . In particular, the dynamics has probability transitions with smooth densities with respect to the Lebesgue measure on the phase space. If all T x > 0, also the corresponding control problem has a strong solution (cf. section 3 in [START_REF] Mattingly | Ergodicity for SDEs and Approximations: Locally Lipshitz Vector Fields and Degenerate Noise[END_REF], or [START_REF] Hairer | A probabilistic argument for the controllability of conservative systems[END_REF]) and uniqueness of the stationary measure follows from these properties. These methods could be extended to the case T x ≥ 0, at least if H N (p, q) is strictly convex [17]. The investigation of the uniqueness of the stationary measure goes beyond the purposes of the present paper, in particular, since zero temperatures will be relevant only in the general proof of existence of a self-consistent temperature profile in Section 4. So we will assume the uniqueness even in the case of temperatures not strictly positive.

The spatial periodicity will be exploited in the following to remove (most likely irrelevant) technical difficulties associated with irregular boundary behavior. To this end, we will assume that also the heat bath couplings respect this periodicity, i.e., we will always assume that γ x depends only on x 1 . Then in the case where also T x depends only on x 1 , the stochastic dynamics is fully invariant under periodic translations. Since the stationary measure µ(T) is unique, then also any of the corresponding expectation values must be invariant.

We denote the constant temperature profile, T x = T o for all x ∈ Λ N , as T o . Then µ(T o ) = µ To , the Gibbs measure at temperature T o , defined by

µ To = Z -1
To exp(-H N (p, q)/T o )dpdq = G To (p, q)dpdq (2.9)

We use µ To as a reference measure and denote the related expectation by

• 0 .
Computing the adjoint of L N with respect to the Lebesgue measure we have 1 L * (1)

N = -A + x∈Λ N S * (1) x (2.10) where S * (1) x = γ x T x ∂ 2 px + 1 + p x ∂ px .
We denote by f N = f N (T) the density of the stationary state µ(T) with respect to Lebesgue measure. This is the solution of L * (1) N f N = 0. Due to hypoellipticity, f N is a smooth function of (p, q), and this implies also smoothness in T. To see this, note that ∂ Ty f N is the solution of the equation

L * (1) N ∂ Ty f N = -γ y ∂ 2 py f N . (2.11)
Since the right hand side is smooth in (p, q), this equation has a smooth solution, and smoothness in T follows by a standard iteration of the argument.

Summary of results

Given the temperatures Θ R = {Θ y } y∈R in a set R ⊂ Λ N , we say that a temperature profile T = {T x } x∈Λ N is self-consistent, if T x = Θ x for all x ∈ R, and the corresponding stationary state has the property

p 2 x = T x , for all x ∈ Λ N \ R, (3.1) 
where • denotes expectation with respect to the NESS, µ(T), assumed to be unique. Eventually we may choose R = ∂Λ N or part of it. But the following result is independent from the geometry.

Theorem 1. For any choice of a non-empty R ⊂ Λ N , and for any choice of temperatures Θ R = {Θ y } y∈R not all equal to 0, there exists a self-consistent temperature profile T = {T x } x∈Λ N \R . In addition, if R and Θ R are invariant 1 We wish to reserve the standard notation for adjoint for certain weighted L 2 -spaces, to be introduced later. Hence the notation L * (1) N

for the adjoint here.

under translations in all of the d -1 periodic directions of Λ N , then a selfconsistent profile invariant under these translations can be found.

The main body of our results concerns the case where the reservoirs on the two sides in the non-periodic direction are fixed to constant but unequal temperatures. We call this case the boundary layer setup. More explicitly, we then define

R = ∂Λ N = ∂ l Λ N ∪ ∂ r Λ N , where ∂ l Λ N = {x : x 1 = -N } and ∂ r Λ N = {x : x 1 = N },
and we fix on the left the temperatures T x = T l for x ∈ ∂ l Λ N , and on the right

T x = T r for x ∈ ∂ r Λ N , T r < T l . We also set β l = T -1
l , and β r = T -1 r . Uniqueness of the self-consistent profile is not claimed in Theorem 1, and this remains an open problem in the generality of the theorem. However, by restricting to small temperature differences and then relying on the implicit function theorem, we can get a self-consistent profile which is essentially unique.

Theorem 2. For any given T o > 0 and N , there are ε 0 , δ > 0 with the following property: In the boundary layer setup with T l , T r such that |T l -

T o |, |T r -T o | < 1
2 ε 0 there is a self-consistent extension of the temperature profile, T sc (T l , T r ), and the extension is unique in the sense that no other profile T with max

x |T x -T o | < δ is self-consistent. In addition, T sc is invariant under translations in all of the d -1 periodic directions of Λ N , and the map (T l , T r ) → T sc (T l , T r ) is smooth.
As an aside, let us remark that a careful inspection of the proof of Theorem 2 shows that its assumptions could be greatly relaxed, allowing for more general sets R and almost arbitrary potentials V and W . However, since the range of its applicability, determined by ε 0 , can depend on N and might go to zero as N → ∞, we have included the proof of the more general result in Theorem 1. Furthermore, the assumptions about the asymptotic quadratic behavior of V and W will be used in latter proofs, and thus cannot be neglected. From now on, we assume that T l -T r is sufficiently small for applying Theorem 2, and let T sc denote the corresponding self-consistent extension of the temperature profile, which is thus invariant under periodic translations and leads to a unique, periodically invariant, stationary state.

For a generic profile T, we define the entropy production in a reservoir in the steady state µ(T) as the energy flux entering that reservoir divided by its temperature [START_REF] Bergmann | New approach to nonequilibrium processes[END_REF]. The total steady state entropy production is then given by

σ(T) = x∈Λ N -J x T x = x∈Λ N γ x p 2 x T x -1 . (3.2)
By using the local energy conservation (2.6) and denoting

β x = T -1
x , we can write this as

σ(T) = d i=1 x∈Λ ′ N (β x+e i -β x ) j x,x+e i . (3.3)
It is is well known [START_REF] Bergmann | New approach to nonequilibrium processes[END_REF] that σ(T) ≥ 0.

For the self-consistent profile T sc , there are no fluxes to the reservoirs for x ∈ ∂Λ N and consequently, as will be shown below, j x,x+e 1 = jN for all x ∈ Λ ′ N . The entropy production (3.3) is then equal to

σ(T sc ) = (2N + 1) d-1 (β r -β l ) jN . (3.4)
Thus we can estimate the magnitude of the self-consistent current by estimating the entropy production.

Theorem 3.

σ(T sc ) ≤ (2N + 1) d-2 (β r -β l ) 2 C(T sc , γ) (3.5)
where, up to a constant c depending only on the potentials V and W ,

C(T sc , γ) = c max x γ x T sc x min x γ 2 x (1 + max x T sc x ) . (3.6)
Consequently, the average self-consistent current is bounded by

0 ≤ jN ≤ C(T sc , γ) β r -β l 2N + 1 . (3.7)
We expect, but are not able to prove, that the self-consistent profiles remain uniformly bounded in N . From such a bound it would follow that jN = O(N -1 ). We expect in fact that T x ∈ [T r , T l ], as in the harmonic case [START_REF] Bonetto | Fourier's Law for a harmonic Crystal with Self-Consistent Stochastic Reservoirs[END_REF], c.f., Section 9. What we can prove is that the first order term of jN in an expansion in the imposed temperature gradient is O(N -1 ). This is possible even without explicit knowledge about the asymptotics of the self-consistent profile. To this end, we consider also profiles T βlin which are extensions in the boundary layer setup to a profile with linear β x ; we define

(T βlin x ) -1 = 1 2 β r -β l N x 1 + β r + β l , x ∈ Λ N . (3.8) 
For these profiles, the entropy production satisfies

σ(T βlin ) = β r -β l 2N x∈Λ ′ N j x,x+e i T βlin , (3.9) 
and we can derive a more precise bound for it.

Theorem 4. Given b > 0, there exists a constant C 2 (γ; b), depending only on γ, V , W , and b, such that for all

T r ≤ T l ≤ b, σ(T βlin ) ≤ (2N + 1) d-2 (β r -β l ) 2 C 2 (γ; b). (3.10)
Obviously, if T o is any constant temperature profile, we have σ(T o ) = 0. Furthermore, ∂σ ∂Tx (T o ) = 0, and the second order derivatives can also be computed, yielding the following theorem.

Theorem 5. The Taylor expansion of σ around a constant profile T o at the second order gives

σ(T o + εv) = ε 2 T 2 o Q(v; T o ) + O(ε 3 ), Q(v; T o ) = x,y∈Λ N J y,x v y v x , (3.11) 
where, with • 0 denoting the expectation in µ(T o ),

J y,x = γ x δ y,x -γ x γ y h x (-L N (T o )) -1 h y 0 , h x = p 2 x T o -1 . (3.12)
The matrix J is positive, and if J y,x is restricted to x, y ∈ Λ N \ ∂Λ N , it becomes strictly positive.

We now denote δT = T l -T r and T o = (T l + T r )/2. The next result says that the self-consistent profile minimizes entropy production, at least up to the leading order in the gradient of the imposed temperature difference, δT . Theorem 6. The self-consistent profile T sc is a smooth function of T l and T r . For a fixed T o , its first order Taylor expansion

T sc x = T o + g sc (x)δT + O(δT 2 ), x ∈ Λ N , (3.13 
)

is such that v = g sc is the unique minimizer of Q(v; T o ) for fixed v(x) = ± 1 2 , x ∈ ∂Λ N , where we choose the +-sign for x ∈ ∂ l Λ N , and -for x ∈ ∂ r Λ N .
Consequently, the self-consistent profile minimizes the entropy production up to errors of the order of δT 3 . In particular, the leading term of the self-consistent profile can be obtained by minimization of the entropy production. This is consistent with the general belief that for small deviations from the equilibrium state imposed by external constraints, the stationary state will be such that it minimizes the entropy production with respect to variation in the unconstrained parameters [START_REF] Katz | Nonequilibrium steady states of stochastic lattice gas models of fast ionic conductors[END_REF]. The entropy production has also been studied by Bodineau and Lefevere [START_REF] Bodineau | Large deviations of lattice Hamiltonian dynamics coupled to stochastic thermostats[END_REF] in this model, and originally by Maes, et al., [START_REF] Maes | Heat conduction networks[END_REF] in the context of heat conduction networks.

We define the thermal conductivity in the self-consistent stationary state (of the finite system) as

κ sc N (T o ) = lim δT →0 2N +1 δT jN . (3.14)
This is related to the entropy production by (3.4), yielding

κ sc N (T o ) = Q(g sc ; T o )/(2N +1) d-2 , (3.15) 
where, as in Theorem 5, we have defined

Q(v; T o ) = v • J (T o )v = T 2 o lim ε→0 σ(T o + εv) ε 2 . (3.16)
Since g sc minimizes Q(•), we find using (3.10)

κ sc N (T o ) ≤ (2N +1) 2-d T 2 o lim δT →0 σ(T βlin ) δT 2 ≤ T -2 o C 2 (γ; 2T o ) . (3.17)
In particular, since the bound does not depend on N , this proves that the self-consistent conductivity defined by (3.14) is uniformly bounded in N . It also has a Green-Kubo type of representation, as summarized in the following theorem.

Theorem 7. The self-consistent conductivity is uniformly bounded in N and satisfies

κ sc N (T o ) = 1 T 2 o ∞ 0 x∈Λ ′ N (-(2N +1)∇ e 1 g sc (x)) j x,x+e 1 (t)j 0,e 1 (0) 0 dt (3.18)
where • 0 denotes the mean over the initial conditions distributed according to the equilibrium measure at the temperature T o with the time evolution given by the dynamics corresponding to T o , i.e., all the reservoirs are at temperature T o . Here ∇ e 1 g sc (x) = g sc (x + e 1 )g sc (x) denotes a discrete gradient.

A similar Green-Kubo formula can be obtained for the entropy production in the stationary state of the profile T βlin . We will prove that

(2N +1) 2-d T 2 o lim δT →0 σ(T βlin ) δT 2 = lim δT →0 2N +1 δT 1 |Λ ′ N | x∈Λ ′ N j x,x+e 1 µ(T βlin ) = 1 + 1 2N 1 T 2 o ∞ 0 1 |Λ ′ N | x,y∈Λ ′ N j y,y+e 1 (t)j x,x+e 1 (0) 0 dt . (3.19) 
By (3.17), this is always an upper bound for κ sc N (T o ). We expect the selfconsistent profile to become linear away from the boundaries in the limit ε → 0, and to find ∇ e 1 g sc (x) ≈ -1 2N , whenever x 1 is not too close to ±N . Although a proof of this property is still missing, we conjecture accordingly that both κ sc N (T o ) and the right hand side of (3.19) have the same limit as N → ∞.

The last result concerns the Green-Kubo representation of the conductivity in the infinite system. Consider the infinite system on Z d with all γ x = γ and all thermostats at temperature T o . This infinite dynamics has a unique invariant measure given by the Gibbs measure on (R 2d ) Z d at temperature T o , defined by the usual DLR relations. We denote also the infinite volume Gibbs measure by µ To . The existence of the dynamics of this infinite system in equilibrium at any given temperature can be proven by standard techniques (cf. [START_REF] Olla | Equilibrium fluctuations for interacting Ornstein-Uhlenbeck particles[END_REF], where a similar result is proven for an analogous system in continuous space). A proof of the existence of the dynamics in dimension 2 for a certain set of non-equilibrium initial configurations is proven in [START_REF] Fritz | Stochastic dynamics of two-dimensional infinite-particle systems[END_REF]. Consequently, we look at the dynamics starting from this equilibrium distribution, and let E denote the expectation over the corresponding stochastic process.

Theorem 8. There is a unique limit for 1

T 2 o lim λ→0 x∈Z d ∞ 0 e -λt E [j x,x+e 1 (t)j 0,e 1 (0)] dt = κ(T o ) ≤ C γ , (3.20) 
where C = E (V ′ (q e 1 (0)q 0 (0))) 2 /T o is finite and depends only on T o .

As we have mentioned in the introduction, the above bound for the conductivity goes to zero when γ → ∞.

As argued earlier, we expect the self-consistent conductivity and the Green-Kubo formula for the linear profile to have the same limit as N → ∞. However, inspecting the definition of the latter quantity in (3.19) shows that this limit should be given by (3.20), provided the current-current correlations j x,x+e 1 (t)j y,y+e 1 (0) 0 have a sufficiently fast uniform decay both in t and in the spatial separation |x -y| (the limiting infinite system dynamics are translation invariant also in the first direction, which should be employed to cancel the sum over y in (3.19)). Therefore, we also conjecture that κ sc N (T o ) → κ(T o ), at least along some subsequence of N → ∞.

Self-consistent Profiles: Existence

The following Lemma shows that zero temperatures cannot appear in selfconsistent temperature profiles. (We will also give a second proof of local existence of self-consistent profiles in Section 6 which does not rely on the assumptions made about profiles containing zero temperatures.) Lemma 1. If {T x , x ∈ Λ N } are not all identically zero, then p 2 y > 0 for all y ∈ Λ N .

Proof. This is a consequence of the smoothness of the density of the transition probability P t (q ′ , p ′ ; q, p) of the process. Since P t (q ′ , p ′ ; q, p) dq dp = 1, for any (q ′ , p ′ ) there exists an open set of positive Lebesgue measure A = A(q ′ , p ′ , t) such that A P t (q ′ , p ′ ; q, p) dq dp > 0 .

(4.1)

If there exists x such that p 2 x = 0, then 0 = µ(T; dq ′ , dp ′ ) p 2 x P t (q ′ , p ′ ; q, p) dq dp

(4.2)
which clearly is in contradiction with (4.1).

Proof of Theorem 1. Given any collection of parameters

u ∈ [0, ∞) R c , x ∈ R c
, let us define the corresponding temperature profile T(u) by

T (u) x = T (u; Θ) x = u x , if x ∈ R c , Θ x , if x ∈ R. (4.3)
As before, we denote the density of the corresponding stationary measure by f N (q, p; T(u), V, W ). We have seen in the section 2 that, by the hypoelliptic properties of the dynamics (cf. [START_REF] Mattingly | Ergodicity for SDEs and Approximations: Locally Lipshitz Vector Fields and Degenerate Noise[END_REF]), f N is a smooth function of (q, p) and consequently of T. By a straightforward scaling argument, we then have for any u and λ > 0,

λ M f N ( √ λq, √ λp; T(u), V, W ) = f N (q, p; T(u)/λ, V λ , W λ ) (4.4)
where

V λ (q) = λ -1 V ( √ λq) and W λ (q) = λ -1 W ( √ λq
). An argument similar to that used at the end of section 2 to prove regularity in T shows that f N (q, p; T(u)/λ, V λ , W λ ) is smooth in λ. Under the conditions assumed on V and W , we have lim λ→∞ V λ (q) = V ∞ (q) and lim

λ→∞ W λ (q) = W ∞ (q) with V ∞ (q) = 1 2 V ′′ ∞ q 2 and W ∞ (q) = 1 2 W ′′ ∞ q 2 .
We apply the scaling relation to prove that for high enough temperatures the system behaves essentially like a Gaussian. More precisely, consider arbitrary sequences

λ n → ∞ and b (n) ∈ [0, ∞) Λ N , such that b (n) converges to b ∈ [0, ∞) Λ N . Define further T (n) x = λ n b (n)
x , x ∈ Λ N . Then by the scaling relation (4.4), for any x ′ , 1

λ n p 2 x ′ (T (n) , V, W ) = p 2 x ′ (b (n) , V λn , W λn ) -→ n→∞ p 2 x ′ (b, V ∞ , W ∞ ) . (4.5)
The last expectation is with respect to the stationary state of a purely harmonic system. This system was studied in [START_REF] Bonetto | Fourier's Law for a harmonic Crystal with Self-Consistent Stochastic Reservoirs[END_REF], where it was proved, in Sections 3 and 7, that there is a doubly stochastic matrix M , with strictly positive entries, such that for any profile of temperatures b and for all x ′ ,

p 2 x ′ (b, V ∞ , W ∞ ) = y∈Λ N M x ′ y b y .
(Strictly speaking, the result was proven only for periodic profiles in [START_REF] Bonetto | Fourier's Law for a harmonic Crystal with Self-Consistent Stochastic Reservoirs[END_REF]. However, the above properties, linearity in b, as well as positivity and double stochasticity of M , are easily generalized for non-periodic profiles, although we do not go into details here.) Since y M xy = 1 for all x, this implies

p 2 x ′ (b, V ∞ , W ∞ ) ≤ max y b y = b ∞ , (4.6) 
and the equality holds if and only if b is a constant vector, i.e., b x is independent of x.

We can now prove the existence of a self-consistent profile. Let R c = Λ N \ R, and consider the mapping

F : X → X, X = [0, ∞) R c defined for u ∈ [0, ∞) R c , x ∈ R c , by F (u) x = p 2 x (T(u), V, W ) . (4.7)
Since some of the temperatures are kept fixed to non-zero values, the hypoelliptic properties of L * (1) N imply that F is everywhere continuous. For any L > 0 define X L = [0, L] R c ⊂ X. We will soon prove that there is an L > 0 such that F (X L ) ⊂ X L . Since X L is homeomorphic to the unit ball of R |R c | and F is continuous on X L , we can conclude from the Brouwer fixed point theorem that there is at least one u ∈ X L such that F (u) = u. By Lemma 1, if there is x such that u x = 0, then F (u) x > 0, and such u cannot be fixed points. Thus for any fixed point 0 < u x ≤ L < ∞ for all x, and T(u) is then a proper self-consistent temperature profile.

We prove the existence of a constant L, for which F (X L ) ⊂ X L , by contradiction. If no such L exists, then for all L > 0 there is u (L) ∈ X L such that F (u (L) ) ∞ > L. Then necessarily u (L) ∞ → ∞, since otherwise there would exists a convergent subsequence, which is incompatible with ) , so that λ L → ∞ and v (L) ∞ = 1. The sequence (v (L) ) belongs to a compact subset of X, and we can find a subsequence such that v (L) → v in X. For this final subsequence we can apply (4.5) and (4.6), which shows that for all x

F (u (L) ) ∞ → ∞. Let λ L = u (L) ∞ and v (L) = λ -1 L u (L
lim sup L λ -1 L F (λ L v (L) ) x < v ∞ = 1 . (4.8)
Equality is not possible here, as the limit b of λ -1 L T(λ L v (L) ) has at least one component equal to one, but b x = 0 for all x ∈ R, and thus b cannot be a constant vector. However, by construction, for every L there is x(L) such that F (λ L v (L) ) x(L) > L ≥ u(L) ∞ = λ L , which leads to contradiction. This proves the existence of L > 0 with the required properties and concludes the proof of the first part of the theorem.

For the second part, let us first point out that, if R is invariant under all periodic translations of Λ N , it must be of the form

R = R 1 × I d-1
N , where I N = {-N, . . . , N } and R 1 ⊂ I N is non-empty. Similarly, Θ x can only depend on x 1 . Let R c 1 = I N \ R 1 , let P 1 denote the projection on the first axis in Z d , and define

R ′ = P 1 R c = R c 1 × {0}, which is a subset of R c = Λ N \ R. If R ′ is empty, R = Λ N
and there is nothing to prove. Otherwise, let us consider the map

F ′ : X ′ → X ′ , X ′ = [0, ∞) R ′ , defined by F ′ (u) x = p 2
x (T ′ (u), V, W ), where

T ′ (u) x = u P 1 x , if x ∈ R c , Θ x , otherwise. (4.9) 
Every such T ′ (u) is clearly invariant under all periodic translations. We can then repeat the analysis made above for F ′ and conclude that it has a fixed point ū with 0 < ūx < ∞. Since T = T ′ (ū) is periodic, the dynamics is completely invariant under periodic translations, implying that also expectation values in the unique stationary state are invariant. Therefore, for any x ∈ R c , we have p 2 x ( T ) = p 2 P 1 x ( T ) = u P 1 x = Tx . This proves that T is an invariant, self-consistent profile.

Entropy Production Bound

In this section we prove the entropy production bounds stated in Theorems 3 and 4. Given a generic profile of temperatures T, we recall the notation f N = f N (T) for the density of the stationary measure µ(T) with respect to Lebesgue measure, and let • denote expectation with respect to µ(T). A simple computation shows that A ln f N = 0 for A defined in (2.5). Therefore, by stationarity we have

0 = -L N ln f N = - x S x ln f N (5.1)
where

S x = γ x (T x ∂ 2 px -p x ∂ px ). Let ψ x = f N /G Tx , where G T = Z -1
T e -H N /T , as in (2.9). Then we can rewrite the last term as

-S x ln f N = -(S x ln ψ x ) ψ x G Tx dp dq -S x (ln G Tx )f N dp dq . (5.2) Since p x G Tx = -T x ∂ px G Tx and S x (ln G Tx ) = -γ x (T x -p 2
x )/T x = -J x /T x , we find by integration by parts that

-S x ln f N = T x γ x (∂ px ψ x ) 2 ψ x G Tx dp dq + J x T x . (5.3) 
So by (5.1), the entropy production satisfies

σ(T) = - x∈Λ N J x T x = x∈Λ N D x , (5.4) 
where

D x = γ x T x (∂ px ψ x ) 2 ψ x G Tx dp dq . (5.5) 
In particular, σ(T) ≥ 0, and by using the local conservation of energy, (

Let us for the remainder of this section assume that T is a temperature profile which is invariant under the periodic translations. The results then hold for both T sc and T βlin . Obviously, then by (3.3)

σ(T) = x∈Λ ′ N (β x+e 1 -β x ) j x,x+e 1 (5.6)
Therefore, it will suffice to find a bound for | j x,x+e 1 |.

Applying the definition of the current observable, (2.7) and (2.8), and then integration by parts, shows that

j x,x+e 1 = - 1 2 V ′ (r x ) 1 n=0 ψ x ′ p x ′ G T x ′ x ′ =x+ne 1 dp dq = - 1 n=0 T x ′ 2 V ′ (r x )G T x ′ ∂ p x ′ ψ x ′ dp dq x ′ =x+ne 1 (5.7)
where r x = q x+e 1q x . We use that 1 = ψ

1/2 x ′ /ψ 1/2
x ′ whenever ψ x ′ = 0, and then apply the Schwarz inequality. This shows that

| j x,x+e 1 | 2 ≤ max y∈Λ N T y γ y V ′ (r x ) 2 1 2 1 n=0 D x+ne 1 .
(5.8)

Therefore, we have obtained the following relation between the total sum of currents and the entropy production

x∈Λ ′ N | j x,x+e 1 | 2 ≤ max y∈Λ N T y γ y x∈Λ ′ N V ′ (r x ) 2 x∈Λ ′ N 1 2 1 n=0 D x+ne 1 ≤ σ(T) max y∈Λ N T y γ y x∈Λ ′ N V ′ (r x ) 2 .
(5.9)

For this bound to be useful, we still need to consider

x∈Λ ′ N V ′ (r x ) 2 . Since L N (q 2
x ) = 2q x p x , we have q x p x = 0 for all x. Similarly,

L N H = x∈Λ N γ x (T x -p 2 x ) implies x γ x T x = x γ x p 2 x . Now L N ( x∈Λ N p x q x ) = x∈Λ N p 2 x - x∈Λ N q x ∂ qx H - x∈Λ N γ x p x q x , (5.10) 
and thus

x∈Λ N γ x T x ≥ min y γ y x∈Λ N p 2 x = min y γ y x∈Λ N q x ∂ qx H . (5.11)
From the asymptotics of V and W we can conclude that there are C > 0 and C ′ ≥ 0 such that

V ′ (r) 2 ≤ C(rV ′ (r) + C ′ ) and rW ′ (r) ≥ -C ′ .
(5.12)

But since

∂ qx H = W ′ (q x ) + d j=1 V ′ (q x -q x-e j ) -V ′ (q x+e j -q x ) + 1 2 ½(x ∈ ∂ r Λ N )V ′ (-q x ) -½(x ∈ ∂ l Λ N )V ′ (q x ) , (5.13) 
with ½ denoting the characteristic function, we have

x∈Λ N q x ∂ qx H = x∈Λ N q x W ′ (q x ) + d j=2 rV ′ (r) r=q x+e j -qx + x∈Λ ′ N r x V ′ (r x ) + 1 2 x∈∂rΛ q x V ′ (q x ) + 1 2 x∈∂lΛ (-q x )V ′ (-q x ) . ≥ x∈Λ ′ N r x V ′ (r x ) -|Λ N |C ′ (d + 1) . (5.14)
Combining this with (5.11) shows that

x∈Λ ′ N V ′ (r x ) 2 ≤ C|Λ N | C ′ (d + 2) + max y γ y T y min y γ y . (5.15)
Consequently, there is c > 0, which depends only on V and W , such that

x∈Λ ′ N | j x,x+e 1 | 2 ≤ cσ(T)|Λ N | max x γ x T x min x γ 2 x (1 + max x T x ) .
(5.16)

Let us next consider the case T = T βlin . Applying the definition of T βlin to (5.6) shows that then (3.9) holds, i.e., σ(T βlin ) = βr-βl

2N x∈Λ ′ N j x,x+e i .
Then by (5.16) and using the fact that

T βlin x ≤ T l σ(T βlin ) ≤ c ′ |β r -β l | 2 (2N + 1) d-2 (1 + T l ) 2 , (5.17)
where c ′ is a constant depending only on γ, V , and W . Therefore, we have now proven Theorem 4.

Finally, let us consider the self-consistent case, T = T sc . For the corresponding stationary measure we find from (2.6), d j=1 j x,x+e jj x-e j ,x = 0, x ∈ ∂Λ N .

(5.18)

Since the system, including the self-consistent profile, is periodic in any of the Cartesian directions e i , i ≥ 2, also the unique stationary measures are invariant under translations in these directions. Therefore,

j x,x+e i = j x-e i ,x , i = 1, x ∈ Λ N . (5.19) 
Consequently, by (5.18) and (2.6),

j x,x+e 1 = j x-e 1 ,x , x ∈ ∂Λ N , j x,x+e 1 = J x = γ x (T l -p 2 x ), x ∈ ∂ l Λ N , j x-e 1 ,x = -J x = γ x ( p 2 x -T r ), x ∈ ∂ r Λ N .
(5.20)

We denote the constant current by jN , i.e., now we have j x,x+e 1 = jN , for all x ∈ Λ ′ N . Therefore, by (5.6),

σ(T sc ) = jN x∈Λ ′ N (β x+e 1 -β x ) = jN (β r -β l )(2N + 1) d-1 , (5.21) 
which proves (3.4). This immediately implies that sign(T l -T r ) jN ≥ 0. But on the other hand, jN = 1 

|Λ ′ N | x∈Λ ′ N j x,

Minimization of entropy production

For a given T o > 0, we use the Gibbs measure µ To = G To dpdq as a reference measure and we denote the related expectation by • 0 . We consider the generator L on the Hilbert space L 2 (µ To ). Recall that for any temperature profile T = {T x , x ∈ Λ N } we have L = L(T) = A + S(T). Its adjoint is

L * = -A + x∈Λ N S * x (6.1)
where S x = γ x T x ∂ 2 pxp x ∂ px , and thus

S * x = S x + γ x ∆T x T o (-2p x ∂ px + h x ) (6.2) 
with ∆T x = T x -T o and

h x = p 2 x T o -1. (6.3) Observe that h x h x ′ 0 = 2δ x,x ′ and -S x,To h x = 2γ x h x . Set L 0 = L(T o ) and consequently L * 0 = -A + S(T o ) * = -A + S(T o ). Lemma 2. For all y, x ∂ Ty p 2 x µ(T) T=To = γ y h y (-L 0 ) -1 h x 0 = γ y h x (-L 0 ) -1 h y 0 . (6.4) 
Proof. Let us denote by f = f (T) the density of µ(T) with respect to µ To . Then f is solution of the equation L * (T)f (T) = 0. Since the coefficients in L * (T) are smooth in T, f is smooth in T and f y = ∂ Ty f (T) solves the equation

L * (T)f y (T) = -(∂ Ty L * )(T)f (T) = - γ y T o T o ∂ 2 py -2p y ∂ py + h y f (T) . (6.5) 
Since f (T o ) = 1, we have found that f y (T o ) is solution of

-L * 0 f y (T o ) = γ y T o h y . (6.6) 
Notice that f y has a bounded L 2 (µ To ) norm (cf. [START_REF] Villani | Hypercoercivity[END_REF]), and by a standard argument (multiply equation (6.6) by f y and integrate with respect to µ To ) we obtain a bound

x γ x (∂ px f y ) 2 0 ≤ γ y T -1 o . (6.7) Now, since h x G To = -∂ px (p x G To ), h x µ(T) = p x ∂ px f (T) 0 . (6.8) 
Then differentiating with respect to T y we have

∂ Ty h x µ(T) = p x ∂ px f y (T) 0 (6.9) 
and taking the limit

T → T o ∂ Ty h x µ(T) T=To = p x ∂ px f y (T o ) 0 = h x f y (T o ) 0 = γ y T o h x (-L * 0 )
-1 h y 0 (6.10) Observe that, since h is an even function of p, one can, by a change of variables p → -p, replace L * 0 with L 0 in (6.10). This proves (6.4).

Define

F : R Λ N + → R Λ N as F x (T) = J x µ(T) = γ x T x -p 2 x µ(T) . (6.11) 
Its Jacobian at T = T o is given by

J y,x = γ x δ y,x -γ x ∂ Ty p 2
x µ(T) T=To = γ x δ y,x -γ x γ y h x (-L 0 ) -1 h y 0 . (6.12) Observe that J is symmetric and that F (T o ) = 0 for any value of T o . It follows that 0 is an eigenvalue of J , and we will show shortly that J ≥ 0, and the eigenspace corresponding to 0 is one-dimensional and generated by the constant vector. Then the matrix M = (J x,y ) x,y∈R c is invertible, and thus there is a neighborhood in (T l , T r ) containing (T o , T o ) such that the implicit function theorem can be applied to obtain a self-consistent profile. This implies that constants ε 0 and δ for the first part of Theorem 2 can be found. It also follows that T sc (T l , T r ) is smooth. To see that it must also be invariant under the periodic translations, we first point out that in the boundary layer setup clearly any translate of a self-consistent profile is also self-consistent. Since the translations correspond to a permutation of indices, they remain in the neighborhood determined by δ, and thus by the uniqueness of the self-consistent profile in this neighborhood, T sc (T l , T r ) must itself be invariant.

Therefore, to complete the proof of Theorem 2 we only need to prove the following Lemma. Lemma 3. J ≥ 0, and J a = 0 implies a x is a constant in x.

Proof. Let a ∈ R Λ N , and define h = x∈Λ N a x h x . It follows from the antisymmetry of A and the symmetry of S 0 :

(Ah)(-L 0 ) -1 (Ah) 0 = h(-S 0 )h 0 -(S 0 h)(-L 0 ) -1 (S 0 h) 0 . (6.13) 
Since S 0 h = -2 x a x γ x h x , we obtain

(Ah)(-L 0 ) -1 (Ah) 0 = h(-S 0 )h 0 -4 x,y a x a y γ x γ y h x (-L 0 ) -1 h y 0 = 4 x γ x a 2 x -4 x,y a x a y γ x γ y h x (-L 0 ) -1 h y 0 = 4
x,y a x a y J x,y . (

Therefore, to prove that J has the properties stated above, it suffices to study the left hand side of (6.13), and to prove that it is always positive, and equal to zero if and only if a is a constant vector. (Studying real vectors a suffices here, as J is a symmetric matrix.) In fact, define u = (-L 0 ) -1 (Ah). Since for any observable F belonging to the domain of A, F (AF ) 0 = 0, we have then

(Ah)(-L 0 ) -1 (Ah) 0 = u(-S 0 )u 0 = x γ x T o (∂ px u) 2 0 ≥ 0 . (6.15) 
This proves the required positivity. In addition, if the left hand side is zero, then u(p, q) cannot depend on p, and thus

-L 0 u = -Au = - x p x ∂ qx u(q) = Ah = - 2 T 0 x a x p x ∂ qx H (6.16) 
It follows, for all x,

2

T o a x ∂ qx H = ∂ qx u(q) . (6.17)

Thus the function

G(q) = T o 2 u(q) - x∈Λ N a x W (q x ) (6.18)
satisfies, by (5.13),

∂ qx G(q) = a x d j=1 V ′ (q x -q x-e j ) -V ′ (q x+e j -q x ) + 1 2 ½(x ∈ ∂ r Λ N )V ′ (-q x ) - 1 2 ½(x ∈ ∂ l Λ N )V ′ (q x ) . (6.19) 
For x ∈ Λ ′ N and k = 1, 2, . . . we differentiate (6.19) with respect to q x+e k and obtain

-a x V ′′ (q x+e k -q x ) = ∂ 2 qx,q x+e k G(q) = -a x+e k V ′′ (q x+e k -q x ) . (6.20) 
Since there exists an r 0 such that V ′′ (r 0 ) > 0, this implies a = const.

We can now conclude that for any T o > 0, there is ε 0 > 0 such that for all |ε| < ε 0 a self-consistent profile corresponding to T l = T o + ε 2 , T r = T o -ε 2 can be found. This profile is differentiable with respect to ε and the derivative satisfies for

x ∈ ∂Λ N 0 = ∂ ∂ε F x (T(ε; T o )) = y∈Λ N ∂T y ∂ε ∂ Ty F x (T(ε; T o )) . (6.21) 
Therefore, we have y∈Λ N J x,y ∂Ty(0) ∂ε = 0. This shows that for x ∈ ∂Λ N ,

∂T x (ε; T o ) ∂ε ε=0 = y ∈∂Λ N (M -1 ) x,y 1 2 y ′ ∈∂rΛ N J y,y ′ - y ′ ∈∂lΛ N J y,y ′ , (6.22)
where M = (J x,y ) x,y ∈∂Λ N is a strictly positive matrix, and thus invertible.

Recall the definition of entropy production given in (3.2). By (5.4) we have then always σ(T) ≥ 0, with equality when T = T o , a constant profile given by T o > 0. Since As mentioned earlier, for any profile y γ y p 2 y = y γ y T y , and thus we have proven that ∂σ ∂T x (T o ) = 0 . (6.25)

A similar, but a slightly longer calculation, shows that

∂ 2 σ ∂T x ∂T y (T o ) = 1 T 2 o (J x,y + J y,x ) = 2 T 2 o J x,y . (6.26) 
By dividing Λ N into R = ∅ (the fixed thermostats) and R c , we can conclude from the previous results that the symmetric matrix M = (J x,y ) x,y∈R c is strictly positive. By (6.25) and (6.26), the Taylor expansion of σ around T o yields

σ(T o + εv) = ε 2 T 2 o x,y∈Λ N J x,y v x v y + O(ε 3 ) . (6.27)
This proves Theorem 5. For fixed ε and v x , x ∈ R, the quadratic form corresponding to the leading term has a unique minimizer, given by v

(min) x = v x , x ∈ R, and v (min) x = - y∈R c y ′ ∈R (M -1 ) xy J y,y ′ v y ′ , for x ∈ R c .
(6.28)

Let us next consider the case studied earlier, with the opposite boundaries fixed at two different temperatures T l and T r . Denote δT = T l -T r , which we assume to be positive, and T o = (T l + T r )/2. Let us consider a sequence of T l , T r for which T o remains fixed and δT → 0. We assume that T is a sequence of profiles with boundary values on R equal to T l and T r , and which has a Taylor expansion

T x = T o + g(x)δT + O(δT 2 ) (6.29)
where g is a function for which g(x) = 1/2 for x ∈ ∂ l Λ N and g(x) = -1/2 for x ∈ ∂ r Λ N . By (6.27), the entropy production will be of the order (δT ) 2 , and the leading term is minimized by g

(x) = v (min) x corresponding to v x = ± 1 2 , with +, if x ∈ ∂ l Λ N , and -, if x ∈ ∂ r Λ N .
We have proven in the beginning of this section, that the self-consistent profile can be chosen for all sufficiently small δT so that it is differentiable in the boundary temperatures. In particular, comparing (6.22) to (6.28) shows that T sc x = T o + g sc (x)δT + O(δT 2 ) (6.30) with g sc = v (min) . We have thus proven Theorem 6.

Conductivity of the Finite System

In the following we again set Λ ′ N = Λ N \∂ r Λ N , and consider, as in Section 5, a generic profile T which is invariant under periodic translations. Let • be the expectation with respect to the corresponding stationary state. It is convenient now to use as a reference measure the inhomogeneous Gibbs measure ν T = G(T; q, p)dqdp, with

G(T; q, p) = exp(-x E x (q, p)/T x ) Z (7.1)
where E x is defined in (2.1). Notice that S is automatically symmetric with respect to ν T , while the adjoint of A is given by

-A + x∈Λ ′ N 1 T x+e 1 - 1 T x j x,x+e 1 . (7.2)
Let us next inspect T = T sc and denote by f the density of the selfconsistent stationary state with respect to ν T sc . Let us fix T o = Tr+Tl 2 with ε = δT = T l -T r > 0, as before. Repeating the argument used in section 2, we find that f is smooth in ε, so a first order development in ε is justified. Using the expansion of the self-consistent profile, (6.29), shows that u

= ∂ ε f | ε=0 is solution of the equation (-A + S(T o ))u = x∈Λ ′ N ∇ e 1 g sc (x) T 2 o j x,x+e 1 . (7.3) 
Explicit formulae for the derivatives of the self-consistent profile, g sc (x), are given in (6.22).

Recall the definition of the conductivity of the finite system, (3.14). Since we have already proven Theorems 1-6, the argument given before Theorem 7 in Section 3 provides a proof that κ N (T o ) is bounded in N . On the other hand, by (7.3),

κ N (T o ) = lim δT →0 2N + 1 δT 1 |Λ ′ N | x∈Λ ′ N j x,x+e 1 = lim δT →0 2N + 1 δT j 0,e 1 = (2N + 1) uj 0,e 1 0 . (7.4) 
Define ǔ(q, p) = u(q, -p), and observe that, since j x,x+e 1 is antisymmetric in p,

(A + S(T o ))ǔ = - x∈Λ ′ N ∇ e 1 g sc (x) T 2 o j x,x+e 1 . (7.5) Thus κ N (T o ) = -(2N + 1) ǔj 0,e 1 0 = (2N + 1) ∞ 0 ∂ t ǔ(t)j 0,e 1 (0) 0 dt = 1 T 2 o ∞ 0 x∈Λ ′ N (-(2N + 1)∇ e 1 g sc (x)) j x,x+e 1 (t)j 0,e 1 (0) 0 dt (7.6)
where • 0 denotes taking the initial data distribution according to the equilibrium measure at the specified temperature T o , and then considering the time-evolution corresponding to the stochastic process with all heatbath temperatures set to T o . We have used here the property that then ǔ(t)j 0,e 1 (0) 0 → ǔ 0 j 0,e 1 0 = 0 for t → ∞. This completes the proof of Theorem 7.

Repeating the same steps for T = T βlin , for which ∂ ε T βlin x ε=0 = -x 1 2N , proves also the validity of (3.19).

Conductivity of the Infinite System

We prove here Theorem 8 concerning the infinite system on (R 2d ) Z d with all γ x = γ and all thermostats at temperature T o . This infinite dynamics has a unique invariant measure given by the Gibbs measure on (R 2d ) Z d at temperature T o , defined by the usual DLR relations. We denote this measure by µ To and its expectation by • 0 . Consequently we look at the dynamics starting from this equilibrium distribution.

We adapt here an argument used in [START_REF] Benabou | Homogenization of Ornstein-Uhlenbeck Process in Random Environment[END_REF]. Introduce on L 2 (µ To ) a degenerate scalar product

ϕ, ψ = x∈Z d [ ϕτ x ψ 0 -ϕ 0 ψ 0 ] , (8.1) 
where τ x is the translation operator. The scalar product can also be obtained via the limit

ϕ, ψ = lim n→∞ Cov µ To (Φ n ϕ, Φ n ψ) = lim n→∞ ( Φ n ϕ Φ n ψ 0 -Φ n ϕ 0 Φ n ψ 0 ) , (8.2 
) where Φ n maps functions into the corresponding "fluctuation averages" in Λ n , a square box of linear size n centered at 0. Explicitly,

(Φ n ψ)(q, p) = 1 |Λ n | x∈Λn (τ x ψ)(q, p) . (8.3) 
The scalar product is degenerate, since every function of the form φ = ψτ x ψ is in its kernel. We denote by L 2 the corresponding Hilbert space of square integrable functions. More precisely, L 2 is a space of classes of functions such that each of its elements can be identified with a function in L 2 (µ To ) up to a translation.

Observe that A and S are still respectively anti-symmetric and symmetric with respect to the scalar product •, • . We also introduce the semi-norm

ϕ 2 1 = ϕ, (-S)ϕ (8.4)
and let H 1 denote the corresponding Hilbert space obtained by closing L 2 with respect to • 1 . To see that ϕ 1 is a semi-norm, in particular, that it is positive, we can employ the easily derived identity

ϕ 2 1 = lim n→∞ Φ n ϕ (-SΦ n ϕ) 0 . (8.5) 
Since S acts only on velocities, • 1 has a kernel consisting of all functions which depend only on q, the position variables. Thus also H 1 is a space of equivalence classes of functions.

Let λ > 0 be given and let u λ be the solution of the resolvent equation

λu λ -Lu λ = j 0,e 1 . (8.6) 
The solution can be given explicitly in terms of the the semigroup P t generated by L = A + S, u λ (q, p) = ∞ 0 e -λt (P t j 0,e 1 )(q, p) dt .

Obviously,

C 0 := j 0,e 1 , j 0,e 1 = x∈Z d j 0,e 1 j x,x+e 1 0 ≤ T o (V ′ (q e 1 -q 0 )) 2 0 < ∞ , (8.8 
) and thus j 0,e 1 ∈ L 2 . Then u λ ∈ L 2 (µ To ), and by stationarity u λ 0 = 0. We will show next that, in fact, u λ ∈ H 1 . From (8.6) we obtain λ (Φ n u λ ) 2 0 + (Φ n u λ )(-S)(Φ n u λ ) 0 = (Φ n u λ )(Φ n j 0,e 1 ) 0 , (8.9)

where we have used translation invariance of L and antisymmetry of A. Since Sj 0,e 1 = -γj 0,e 1 , an application of Schwarz inequality yields (Φ n u λ )(Φ n j 0,e 1 ) 0 = γ -1 (Φ n u λ )(-S)(Φ n j 0,e 1 ) 0 ≤ γ -1 (Φ n u λ )(-S)(Φ n u λ )

1/2 0 (Φ n j 0,e 1 )(-S)(Φ n j 0,e 1 )

1/2 0 = γ -1/2 (Φ n j 0,e 1 ) 2 1/2 0 (Φ n u λ )(-S)(Φ n u λ )

1/2 0 . (8.10)

Consequently, we have

(Φ n u λ )(-S)(Φ n u λ ) 0 ≤ γ -1 (Φ n j 0,e 1 ) 2 0 n→∞ -→ γ -1 C 0 , (8.11) 
which implies that λ u λ , u λ ≤ γ -1 C 0 (8.12) and u λ 2 1 ≤ γ -1 C 0 . (8.13) Therefore, u λ ∈ H 1 and by (8.13), we can extract a subsequence, which we still denote with u λ , weakly convergent in H 1 to u 0 .

Let u λ (p, q) = u s λ (p, q) + u a λ (p, q) where u s λ and u a λ are respectively symmetric and antisymmetric in the p's. Since j 0,e 1 is antisymmetric in the p's, we have that u λ , j 0,e 1 = u a λ , j 0,e 1 . Furthermore, S preserves the parity in p, while it is inverted by A. So we can decompose the resolvent equation as λu s λ -Su s λ -Au a λ = 0 , νu a µ -Su a ν -Au s ν = j 0,e 1 .

(8.14)

Taking a scalar product of the first equation with u s ν , of the second with u a λ , and using the antisymmetry of A, we find In particular, u a 0 ∈ L 2 . Thus by taking first the limit as λ → 0 we have λ u s λ , u s ν → 0, then as ν → 0 we have ν u a ν , u a 0 → 0, and finally we obtain from (8.15) u 0 , j 0,e 1 = u 0 , (-S)u 0 = u 0 Therefore, u λ → u 0 strongly in H 1 .

Uniqueness of the limit follows by the following standard argument. Suppose that λ n is the chosen subsequence such that u λn converges to u 0 , and suppose ν m is another sequence such that u νm converges to ũ0 . Then, similarly as we have done in equation (8.15) u a λn , j 0,e 1 = ν m u a νm , u a λn + λ n u s λm , u s νn + u λn , (-S)u νm (8.22) which implies u a 0 , j 0,e 1 = u 0 , (-S)ũ 0 . (8.23)

Using u a νm instead of u a λn , we find similarly ũa 0 , j 0,e 1 = u 0 , (-S)ũ 0 . (8.24)

Combining these with (8.19) shows that u 0 -ũ0 2 = 0, i.e., u 0 = ũ0 . Thus the conductivity κ(T o ) defined by (3.20) is independent of the subsequence chosen for λ. Moreover, we have

κ(T o ) = T -2 o u 0 , j 0,e 1 = T -2 o u 0 2 1 ≤ C 0 T 2 o γ ≤ V ′ (q e 1 -q 0 ) 2 0 T o γ . (8.25)
This completes the proof of Theorem 8.

Concluding remarks

While all the results obtained in this paper are as expected, the difficulty of actually proving things about the NESS of systems with nonlinear dynamics is immense. This is well illustrated by the impossibility (for us) of obtaining a bound on the self-consistent temperature T of the second oscillator in a system consisting of three oscillators with T 1 = T l , T 3 = T r , and the Hamiltonian is as in (2.1) with γ x = γ > 0. We certainly expect that T will satisfy T r < T < T l , but do not know how to prove this. All we know is that there exists a T = p 2 2 , and that j = T lp 2 1 = p 2 3 -T r > 0. We also know for general N that when T l , T r → T o , then there is a selfconsistent choice T → T o , and that this in this limit (2N + 1) j/(T l -T r ) is bounded and given by the Green-Kubo formula (3.18). Beyond this however we are stymied except when V and W are harmonic. In that case T is given by (3.13) without a correction term for any T l , T r , and due to explicit expressions g sc (x) can be analyzed in great detail, proving T r < T < T l .

x+e 1 ,

 1 and thus also for the self-consistent profile σ(T sc ) = βr-βl 2N x∈Λ ′ N j x,x+e i . Applying (5.16) then completes the proof of Theorem 3.

u a λ , j 0,e 1 =

 1 ν u a ν , u a λ + u a λ , (-S)u a ν u a λ , Au s ν = ν u a ν , u a λ + λ u s λ , u s ν + u λ , (-S)u ν . (8.15) Since u a λ (p, q)μ To (dp) = 0 ,(8.16)where μTo (dp) is the centered Gaussian product measure of variance T o , and S has a spectral gap γ in L 2 (μ To (dp)), we have that (-S)u λ ≤ C 0 γ -2 . (8.17)

  hand, we have u 0 , j 0,e 1 = lim λ→0 u λ , j 0,e 1 = lim λ→0 [λ u λ , u λ + u λ , (-S)u λ ] ≥ lim λ→0 λ u λ , u λ + u
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