
HAL Id: hal-00318755
https://hal.science/hal-00318755v1

Preprint submitted on 4 Sep 2008 (v1), last revised 21 Nov 2008 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Heat Conduction and Entropy Production in
Anharmonic Crystals with Self-Consistent Stochastic

Reservoirs
Federico Bonetto, Joel L. Lebowitz, Jani Lukkarinen, Stefano Olla

To cite this version:
Federico Bonetto, Joel L. Lebowitz, Jani Lukkarinen, Stefano Olla. Heat Conduction and Entropy Pro-
duction in Anharmonic Crystals with Self-Consistent Stochastic Reservoirs. 2008. �hal-00318755v1�

https://hal.science/hal-00318755v1
https://hal.archives-ouvertes.fr


HEAT CONDUCTION AND ENTROPY PRODUCTION IN

ANHARMONIC CRYSTALS WITH SELF-CONSISTENT

STOCHASTIC RESERVOIRS

F. BONETTO, J. L. LEBOWITZ, J. LUKKARINEN, AND S. OLLA

Abstract. We investigate a class of anharmonic crystals in d dimen-
sions, d ≥ 1, coupled to both external and internal heat baths of the
Ornstein-Uhlenbeck type. The external heat baths, applied at the bound-
aries in the 1-direction, are at specified, unequal, temperatures Tl and
Tr. The temperatures of the internal baths are determined in a self-
consistent way by the requirement that there be no net energy exchange
with the system in the non-equilibrium stationary state (NESS). We
prove the existence of such a stationary self-consistent profile of temper-
atures for a finite system and show it minimizes the entropy production
to leading order in (Tl − Tr). In the NESS the heat conductivity κ is
defined as the heat flux per unit area divided by the length of the sys-
tem and (Tl − Tr). In the limit when the temperatures of the external
reservoirs goes to the same temperature T , κ(T ) is given by the Green-
Kubo formula, evaluated in an equilibrium system coupled to reservoirs
all having the temperature T . This κ(T ) remains bounded as the size of
the system goes to infinity. We also show that the corresponding infinite
system Green-Kubo formula yields a finite result. Stronger results are
obtained under the assumption that the self-consistent profile remains
bounded.

1. Introduction

The rigorous derivation of Fourier’s law of heat conduction for classi-
cal systems with Hamiltonian bulk dynamics (or for quantum systems with
Schrödinger evolution) with boundaries kept at different temperatures is an
open problem in mathematical physics [8]. The situation is different for sys-
tems with purely stochastic dynamics, e.g. for the Kipnis, Marchioro, Pre-
sutti (KMP) model [12], where such results can be readily derived [11, 16].
An interesting area of current research are hybrid models in which the time
evolution is governed by a combination of deterministic and stochastic dy-
namics. The deterministic part of the dynamics is given by the usual Hamil-
tonian evolution. The stochastic part can be of two different types. In the
first type, the stochastic part is constructed to strictly conserve the energy,
as studied in [5], or conserve also momentum, as in [1, 2]. In the second type,
studied in [6] and [7], the stochastic part is achieved by coupling the par-
ticles of the system to “internal” heat baths with which they can exchange
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energy. To obtain a heat flow between external reservoirs at specified tem-
peratures Tl, Tr, acting at the left and right boundaries of the system, the
temperatures of the internal heat baths are chosen in a self-consistent man-
ner by the requirement that in the nonequilibrium stationary state (NESS)
there be no net energy flux between these baths and the system [6, 7]. Be-
cause of this self-consistency condition, there is an average constant energy
flux across the system in the NESS, supplied by the external reservoirs at
specified, unequal, temperatures coupled to the boundaries of the system,
and then carried by the Hamiltonian dynamics. A proof of Fourier’s law
for both types of hybrid models has been obtained for the case when the
Hamiltonian dynamics is linear [5, 7], i.e., for a system of coupled harmonic
oscillators.

In the present work we investigate the self-consistent model for anhar-
monic crystals. Unlike the case of the harmonic system, where it is known
that Fourier’s law does not hold when the “noise” is turned off (the heat
conductivity then becoming infinite), one expects that in the anharmonic
system with a pinning self-potential the conductivity will stay finite, i.e., it
will satisfy Fourier’s law, even when the strength of the noise goes to zero.
We are quite far from proving this, however. What we do show here is that,
for these anharmonic systems, conductivity for the finite system, defined by
first letting both Tl and Tr approach the same value, is given by a Green-
Kubo formula. We also prove that this Green-Kubo conductivity is bounded
in the system size, whenever the noise is finite.

These results are obtained by studying the entropy production in the
reservoirs in the NESS specified by the temperatures of all the reservoirs.
We prove that the self-consistent profile minimizes, among all possible tem-
perature profiles, the entropy production to the leading order in the differ-
ence of the boundary temperatures Tl−Tr. We then prove a uniform bound
for the entropy production of a stationary state with a profile linear in the
inverse temperatures. This leads to a bound on the leading term of the con-
ductivity of the self-consistent system, given by the Green-Kubo formula for
the finite system with all reservoirs at the same temperature T .

Furthermore, we show that the corresponding Green-Kubo formula for
the infinite system, giving the conductivity of the infinite system as a space-
time integral of the energy-current correlations, is convergent. There are
no comparable results for anharmonic crystals with the first type of hybrid
dynamics, but only some bounds on the conductivity [2]. Under the as-
sumption that the self-consistent temperature profile remains bounded, we
show that the conductivity of the finite systems with a fixed Tl − Tr > 0 is
uniformly bounded in the size of the system. (This assumption is “clearly”
correct but we are unable to prove it, see section 9.)

The model considered is described in section 2 while section 3 contains a
summary of the results proven in this paper. The existence of a NESS with
a self-consistent temperature profile is proven in section 4. Entropy produc-
tion in the NESS is discussed in section 5, and in section 6 we prove that
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the stationary state corresponding to the self-consistent profile minimizes,
at the leading order in the temperature gradient, the entropy production.
Thermal conductivity in the NESS is discussed in section 7 and for the infi-
nite homogeneous system in section 8. Finally, in Section 9 we present some
concluding remarks.

2. Time Evolution

Atoms are labeled by x = (x1, . . . , xd) ∈ {−N, . . . ,N}d = ΛN , N ≥ 1.
Each atom is in contact with a heat reservoir at temperature Tx. The
interactions with the thermostats are modeled by Ornstein-Uhlenbeck pro-
cesses at corresponding temperatures. The atoms have all the same mass
m = 1. Their velocities are denoted by px and the “positions” by qx, with
qx, px ∈ R. We consider a mixture of fixed and periodic boundary condi-
tions. The fixed boundary conditions are applied in the 1-direction, and the
corresponding boundary sites will be used to make contact with external
heat reservoirs. In the remaining directions, we apply periodic boundary
conditions. Explicitly, let ∂ΛN denote the set with |x1| = N + 1 and let
[x]i = −N + (xi + N) mod (2N + 1), for i ≥ 2. The boundary conditions

are then qx = 0, for x ∈ ∂ΛN . In addition, we let the inner boundary of
ΛN consist of those x with |x1| = N , and we denote it by ∂ΛN . To inspect
the heat flow through the system in the non-periodic direction, we will often
encounter the flow through the bonds of the above lattices in the 1-direction.
We define Λ′

N = {x ∈ ΛN : −N ≤ x1 < N} to label these bonds.
The Hamiltonian of the system is given by

HN =
∑

x∈ΛN

Ex,

Ex =
p2

x

2
+

d
∑

j=1

V (qx − qx−ej
) + V (qx+ej

− qx)

2
+W (qx), x ∈ ΛN ,

(2.1)

where the ei, i = 1, . . . , d, denote the Cartesian basis vectors. We assume
that V and W are smooth positive symmetric functions on R with quadratic
growth at infinity:

lim
λ→∞

W ′′(±λ) = W ′′
∞ > 0, lim

λ→∞
V ′′(±λ) = V ′′

∞ > 0 . (2.2)

Clearly then, there are C1, C2 > 0 such that

C1(q
2 − 1) ≤ V (q) ≤ C2(q

2 + 1), C1(q
2 − 1) ≤W (q) ≤ C2(q

2 + 1) . (2.3)

The dynamics is described by the following system of stochastic differen-
tial equations:

dqx = pxdt ,

dpx = −∂qxHN dt − γxpx dt +
√

2γxTx dwx(t) ,
(2.4)
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with γx > 0 for all x ∈ ΛN . Here wx(t), x ∈ ΛN , are independent standard
Brownian motions (with 0 average and diffusion equal to 1). The generator
of this process has the form

LN =
∑

x∈ΛN

(∂pxHN∂qx − ∂qxHN∂px) +
∑

x∈ΛN

γx

(

Tx∂
2
px

− px∂px

)

= A+ S ,

(2.5)

where A is the Hamiltonian part, anti-symmetric in the momentum vari-
ables, and S is the symmetric part corresponding to the action of the reser-
voirs. Then

LNEx =
d

∑

i=1

(jx−ei,x − jx,x+ei
) + Jx, x ∈ ΛN (2.6)

with Jx = γx(Tx − p2
x) and

jx,x+ei
= 0, if [x] 6∈ ΛN or [x+ ei] 6∈ ΛN , (2.7)

jx,x+ei
= −1

2
(p[x] + p[x+ei])V

′(q[x+ei] − q[x]), otherwise . (2.8)

In particular, then jx,x+e1 can be non-zero only if x ∈ Λ′
N .

In section 3 of [13] it is shown that, for any choice of the temperatures T =
{Tx ≥ 0}, there exists an explicit Lyapunov function for the corresponding
stochastic evolution, as long as γx > 0 for all x. This implies the existence
of the corresponding stationary measure that we will denote by µ(T).

If at least one Tx > 0, then the generator LN defined in (2.5) is (weakly)-
hypoelliptic, in the sense that the Lie algebra generated by the vector

fields {A, ∂px , x ∈ ΛN} has full range in the tangent space of the phase

space (R2d)ΛN . In particular, the dynamics has probability transitions with
smooth densities with respect to the Lebesgue measure on the phase space.
If all Tx > 0, also the corresponding control problem has a strong solution
(cf. section 3 in [13], or [10]) and uniqueness of the stationary measure fol-
lows from these properties. These methods could be extended to the case
Tx ≥ 0, at least if HN (p, q) is strictly convex [14]. The investigation of
the uniqueness of the stationary measure goes beyond the purposes of the
present paper, in particular, since zero temperatures will be relevant only
in the general proof of existence of a self-consistent temperature profile in
Section 4. So we will assume the uniqueness even in the case of temperatures
not strictly positive.

The spatial periodicity will be exploited in the following to remove (most
likely irrelevant) technical difficulties associated with irregular boundary
behavior. To this end, we will assume that also the heat bath couplings
respect this periodicity, i.e., we will always assume that γx depends only

on x1. Then in the case where also Tx depends only on x1, the stochastic
dynamics is fully invariant under periodic translations. Since the stationary
measure µ(T) is unique, then also any of the corresponding expectation
values must be invariant.
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We denote the constant temperature profile, Tx = To for all x ∈ ΛN , as
To. Then µ(To) = µTo, the Gibbs measure at temperature To, defined by

µTo = Z−1
To

exp(−HN (p, q)/To)dpdq = GTo(p, q)dpdq (2.9)

We use µTo as a reference measure and denote the related expectation by
〈·〉0.

Computing the adjoint of LN with respect to the Lebesgue measure we
have1

L
∗(1)
N = −A+

∑

x∈ΛN

S∗(1)
x (2.10)

where S
∗(1)
x = γx

(

Tx∂
2
px

+ 1 + px∂px

)

. We denote by fN = fN (T) the den-
sity of the stationary state µ(T) with respect to Lebesgue measure. This is

the solution of L
∗(1)
N fN = 0. Due to hypoellipticity, fN is a smooth function

of (p, q), and this implies also smoothness in T. To see this, note that ∂TyfN

is the solution of the equation

L
∗(1)
N ∂TyfN = −γy∂

2
py
fN . (2.11)

Since the right hand side is smooth in (p, q), this equation has a smooth
solution, and smoothness in T follows by a standard iteration of the argu-
ment.

3. Summary of the results

Given the temperatures ΘR = {Θy}y∈R in a set R ⊂ ΛN , we say that
a temperature profile T = {Tx}x∈ΛN

is self-consistent , if Tx = Θx for all
x ∈ R, and the corresponding stationary state has the property

〈

p2
x

〉

= Tx, for all x ∈ ΛN \R, (3.1)

where 〈·〉 denotes expectations with respect to the NESS, µ(T), assumed
to be unique. Eventually we may choose R = ∂ΛN or part of it. But the
following result is independent from the geometry.

Theorem 1. For any choice of a non-empty R ⊂ ΛN , and for any choice of

temperatures ΘR = {Θy}y∈R not all equal to 0, there exists a self-consistent

temperature profile T = {Tx}x∈ΛN\R. In addition, if R and ΘR are in-

variant under translations in all of the periodic directions of ΛN , then a

self-consistent profile invariant under these translations can be found.

The main body of our results concerns the case where the reservoirs on
the two sides in the non-periodic direction are fixed to constant but unequal
temperatures. We call this case the boundary layer setup. More explicitly,
we then define R = ∂ΛN = ∂lΛN ∪ ∂rΛN , where ∂lΛN = {x : x1 = −N}
and ∂rΛN = {x : x1 = N}, and we fix on the left the temperatures Tx = Tl

for x ∈ ∂lΛN , and on the right Tx = Tr for x ∈ ∂rΛN , Tr < Tl. We also

1We wish to reserve the standard notation for adjoint for certain weighted L
2-spaces,

to be introduced later. Hence the notation L
∗(1)
N for the adjoint here.
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set βl = T−1
l , and βr = T−1

r . Uniqueness of the self-consistent profile is not
claimed in Theorem 1, and this remains an open problem in the generality of
the theorem. However, by restricting to small temperature differences and
then relying on the implicit function theorem, we can get a self-consistent
profile which is essentially unique.

Theorem 2. For any given To > 0 and N , there are ε0, δ > 0 with the

following property: In the boundary layer setup with Tl, Tr such that |Tl −
To|, |Tr − To| < 1

2ε0 there is a self-consistent extension of the temperature

profile, Tsc(Tl, Tr), and the extension is unique in the sense that no other

profile T with maxx |Tx − To| < δ is self-consistent. In addition, Tsc is

invariant under translations in all of the periodic directions of ΛN , and the

map (Tl, Tr) 7→ Tsc(Tl, Tr) is smooth.

As an aside, let us remark that a careful inspection of the proof of Theorem
2 shows that its assumptions could be greatly relaxed, allowing for more
general sets R and almost arbitrary potentials V and W . However, since
the range of its applicability, determined by ε0, can depend on N and might
go to zero as N → ∞, we have included the proof of the more general
result in Theorem 1. Furthermore, the assumptions about the asymptotic
quadratic behavior of V and W will be used in latter proofs, and thus cannot
be neglected. From now on, we assume that Tl − Tr is sufficiently small for
applying Theorem 2, and let Tsc denote the corresponding self-consistent
extension of the temperature profile, which is thus invariant under periodic
translations and leads to a unique, periodically invariant, stationary state.

For a generic profile T, we define the entropy production in a reservoir in
the steady state µ(T) as the energy flux entering that reservoir divided by
its temperature. The total steady state entropy production is then given by

S(T) =
∑

x∈ΛN

〈−Jx〉
Tx

=
∑

x∈ΛN

γx

(

〈

p2
x

〉

Tx
− 1

)

. (3.2)

By using the local energy conservation (2.6) and denoting βx = T−1
x , we can

write this as

S(T) =

d
∑

i=1

∑

x∈Λ′

N

(βx+ei
− βx)〈jx,x+ei

〉 . (3.3)

It is is well known [4] that S(T) ≥ 0.
For the self-consistent profile Tsc, there are no fluxes to the reservoirs for

x 6∈ ∂ΛN and consequently, as will be shown below, 〈jx,x+e1〉 = j̄N for all
x ∈ Λ′

N . The entropy production (3.3) is then equal to

S(Tsc) = (2N + 1)d−1(βr − βl)j̄N . (3.4)

Thus we can estimate the magnitude of the self-consistent current by esti-
mating the entropy production.
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Theorem 3.

S(Tsc) ≤ (2N + 1)d−2(βr − βl)
2C(Tsc, γ) (3.5)

where, up to a constant c depending only on the potentials V and W ,

C(Tsc, γ) = c
maxx γxT

sc
x

minx γ2
x

(1 + max
x

T sc
x ) . (3.6)

Consequently, the average self-consistent current is bounded by

0 ≤ j̄N ≤ C(Tsc, γ)
βr − βl

2N + 1
. (3.7)

We expect, but are not able to prove, that the self-consistent profiles
remain uniformly bounded in N . From such a bound it would follow that
j̄N = O(N−1). We expect in fact that Tx ∈ [Tr, Tl], as in the harmonic case
[7], c.f., Section 9. What we can prove is that the first order term of j̄N in an
expansion in the imposed temperature gradient is O(N−1). This is possible
even without explicit knowledge about the asymptotics of the self-consistent
profile. To this end, we consider also profiles Tβlin which are extensions in
the boundary layer setup to a profile with linear βx; we define

(T βlin
x )−1 =

1

2

(

βr − βl

N
x1 + βr + βl

)

, x ∈ ΛN . (3.8)

For these profiles, the entropy production satisfies

S(Tβlin) =
βr − βl

2N

∑

x∈Λ′

N

〈jx,x+ei
〉
Tβlin , (3.9)

and we can derive a more precise bound for it.

Theorem 4. Given b > 0, there exists a constant C2(γ; b), depending only

on γ, V , W , and b, such that for all Tr ≤ Tl ≤ b,

S(Tβlin) ≤ (2N + 1)d−2(βr − βl)
2C2(γ; b). (3.10)

Obviously, if To is any constant temperature profile, we have S(To) = 0.
Furthermore, ∂S

∂Tx
(To) = 0, and the second order derivatives can also be

computed, yielding the following theorem.

Theorem 5. The Taylor expansion of S around a constant profile To at

the second order gives

S(To + εv) =
ε2

T 2
o

Q(v;To) + O(ε3), Q(v;To) =
∑

x,y∈ΛN

Jy,xvyvx , (3.11)

where, with 〈·〉0 denoting the expectation in µ(To),

Jy,x = γxδy,x − γxγy〈hx(−LN (To))
−1hy〉0, hx =

p2
x

To
− 1 . (3.12)

The matrix J is positive, and if Jy,x is restricted to x, y ∈ ΛN \ ∂ΛN , it

becomes strictly positive.
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We now denote δT = Tl −Tr and To = (Tl +Tr)/2. The next result says
that the self-consistent profile minimizes entropy production, at least up to
the leading order in the gradient of the imposed temperature difference, δT .

Theorem 6. The self-consistent profile Tsc is a smooth function of Tl and

Tr. For a fixed To, its first order Taylor expansion

T sc
x = To + gsc(x)δT + O(δT 2), x ∈ ΛN , (3.13)

is such that v = gsc is the unique minimizer of Q(v;To) for fixed v(x) = ±1
2 ,

x ∈ ∂ΛN , where we choose the +-sign for x ∈ ∂lΛN , and − for x ∈ ∂rΛN .

We define the thermal conductivity in the self-consistent stationary state
(of the finite system) as

κsc
N (To) = lim

δT→0

2N+1

δT
j̄N . (3.14)

This is related to the entropy production by (3.4), yielding

κsc
N (To) = Q(gsc;To)/(2N+1)d−2 , (3.15)

where, as in Theorem 5, we have defined

Q(v;To) = v · J (To)v = T 2
o lim

ε→0

S(To + εv)

ε2
. (3.16)

Since gsc minimizes Q(·), we find using (3.10)

κsc
N (To) ≤ (2N+1)2−dT 2

o lim
δT→0

S(Tβlin)

δT 2
≤ T−2

o C2(γ; 2To) . (3.17)

In particular, since the bound does not depend on N , this proves that the
self-consistent conductivity defined by (3.14) is uniformly bounded in N . It
also has a Green-Kubo type of representation, as summarized in the follow-
ing theorem.

Theorem 7. The self-consistent conductivity is uniformly bounded in N
and satisfies

κsc
N (To) =

1

T 2
o

∫ ∞

0

∑

x∈Λ′

N

(−(2N+1)∇e1g
sc(x))〈jx,x+e1(t)j0,e1(0)〉0 dt (3.18)

where 〈·〉0 denotes the mean over the initial conditions distributed according

to the equilibrium measure at the temperature To with the time evolution

given by the dynamics corresponding to To, i.e., all the reservoirs are at

temperature To. Here ∇e1g
sc(x) = gsc(x + e1) − gsc(x) denotes a discrete

gradient.
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A similar Green-Kubo formula can be obtained for the entropy production
in the stationary state of the profile Tβlin. We will prove that

(2N+1)2−dT 2
o lim

δT→0

S(Tβlin)

δT 2
= lim

δT→0

2N+1

δT

1

|Λ′
N |

∑

x∈Λ′

N

〈jx,x+e1〉µ(Tβlin)

=
(

1 +
1

2N

) 1

T 2
o

∫ ∞

0

1

|Λ′
N |

∑

x,y∈Λ′

N

〈jy,y+e1(t)jx,x+e1(0)〉0 dt . (3.19)

By (3.17), this is always an upper bound for κsc
N (To). We expect the self-

consistent profile to become linear away from the boundaries in the limit
ε → 0, and to find ∇e1g

sc(x) ≈ − 1
2N , whenever x1 is not too close to ±N .

Although a proof of this property is still missing, we conjecture accordingly
that both κsc

N (To) and the right hand side of (3.19) have the same limit as
N → ∞.

The last result concerns the Green-Kubo representation of the conductiv-
ity in the infinite system. Consider the infinite system on Z

d with all γx = γ
and all thermostats at temperature To. This infinite dynamics has a unique

invariant measure given by the Gibbs measure on (R2d)Z
d

at temperature
To, defined by the usual DLR relations. We denote also the infinite volume
Gibbs measure by µTo . The existence of the dynamics of this infinite system
in equilibrium at any given temperature can be proven by standard tech-
niques (cf. [15], where a similar result is proven for an analogous system in
continuous space). A proof of the existence of the dynamics in dimension
2 for a certain set of non-equilibrium initial configurations is proven in [9].
Consequently, we look at the dynamics starting from this equilibrium distri-
bution, and let E denote the expectation over the corresponding stochastic
process.

Theorem 8. There is a unique limit for

1

T 2
o

lim
λ→0

∑

x∈Zd

∫ ∞

0
e−λt

E [jx,x+e1(t)j0,e1(0)] dt = κ(To) <∞ . (3.20)

As argued earlier, we expect the self-consistent conductivity and the
Green-Kubo formula for the linear profile to have the same limit as N → ∞.
However, inspecting the definition of the latter quantity in (3.19) shows that
this limit should be given by (3.20), provided the current-current correla-
tions 〈jx,x+e1(t)jy,y+e1(0)〉0 have a sufficiently fast uniform decay both in t
and in the spatial separation |x− y| (the limiting infinite system dynamics
are translation invariant also in the first direction, which should be em-
ployed to cancel the sum over y in (3.19)). Therefore, we also conjecture
that κsc

N (To) → κ(To), at least along some subsequence of N → ∞.

4. Self-consistent Profiles: Existence

The following Lemma shows that zero temperatures cannot appear in self-
consistent temperature profiles. (We will also give a second proof of local
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existence of self-consistent profiles in Section 6 which does not rely on the
assumptions made about profiles containing zero temperatures.)

Lemma 1. If {Tx, x ∈ ΛN} are not all identically zero, then
〈

p2
y

〉

> 0 for

all y ∈ ΛN .

Proof. This is a consequence of the smoothness of the density of the transi-
tion probability Pt(q

′, p′; q, p) of the process. Since
∫

Pt(q
′, p′; q, p) dq dp = 1,

for any (q′, p′) there exists an open set of positive Lebesgue measure A =
A(q′, p′, t) such that

∫

A
Pt(q

′, p′; q, p) dq dp > 0 . (4.1)

If there exists x such that
〈

p2
x

〉

= 0, it will contradict (4.1). In fact it will
imply that

0 =

∫

µ(T; dq′, dp′)

∫

p2
xPt(q

′, p′; q, p) dq dp (4.2)

which clearly is in contradiction with (4.1). �

Proof of Theorem 1. Given any collection of parameters u ∈ [0,∞)R
c
, x ∈

Rc, let us define the corresponding temperature profile T(u) by

T (u)x = T (u; Θ)x =

{

ux, if x ∈ Rc,

Θx, if x ∈ R.
(4.3)

As before, we denote the density of the corresponding stationary measure by
fN(q, p;T(u), V,W ). We have seen in the section 2 that, by the hypoelliptic
properties of the dynamics (cf. [13]), fN is a smooth function of (q, p) and
consequently of T. By a straightforward scaling argument, we then have for
any u and λ > 0,

λMfN (
√
λq,

√
λp;T(u), V,W ) = fN (q, p;T(u)/λ, Vλ,Wλ) (4.4)

where Vλ(q) = λ−1V (
√
λq) and Wλ(q) = λ−1W (

√
λq). An argument similar

to that used at the end of section 2 to prove regularity in T shows that
fN(q, p;T(u)/λ, Vλ,Wλ) is smooth in λ. Under the conditions assumed on
V and W , we have limλ→∞ Vλ(q) = V∞(q) and limλ→∞Wλ(q) = W∞(q)
with V∞(q) = 1

2V
′′
∞q

2 and W∞(q) = 1
2W

′′
∞q

2.
We apply the scaling relation to prove that for high enough temperatures

the system behaves essentially like a Gaussian. More precisely, consider
arbitrary sequences λn → ∞ and b(n) ∈ [0,∞)ΛN , such that b(n) converges

to b ∈ [0,∞)ΛN . Define further T
(n)
x = λnb

(n)
x , x ∈ ΛN . Then by the scaling

relation (4.4), for any x′,

1

λn

〈

p2
x′

〉

(T(n), V,W ) =
〈

p2
x′

〉

(b(n), Vλn
,Wλn

) −→
n→∞

〈

p2
x′

〉

(b, V∞,W∞) .

(4.5)
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The last expectation is with respect to the stationary state of a purely
harmonic system. This system was studied in [7], where it was proved, in
Sections 3 and 7, that there is a doubly stochastic matrix M , with strictly
positive entries, such that for any profile of temperatures b and for all x′,

〈

p2
x′

〉

(b, V∞,W∞) =
∑

y∈ΛN

Mx′yby.

(Strictly speaking, the result was proven only for periodic profiles in [7].
However, the above properties, linearity in b, as well as positivity and double
stochasticity of M , are easily generalized for non-periodic profiles, although
we do not go into details here.) Since

∑

y Mxy = 1 for all x, this implies
〈

p2
x′

〉

(b, V∞,W∞) ≤ max
y
by = ‖b‖∞ , (4.6)

and the equality holds if and only if b is a constant vector, i.e., bx is inde-
pendent of x.

We can now prove the existence of a self-consistent profile. Let Rc =
ΛN \ R, and consider the mapping F : X → X, X = [0,∞)R

c

defined for
u ∈ [0,∞)R

c
, x ∈ Rc, by

F (u)x = 〈p2
x〉(T(u), V,W ) . (4.7)

Since some of the temperatures are kept fixed to non-zero values, the hy-

poelliptic properties of L
∗(1)
N imply that F is everywhere continuous. For

any L > 0 define XL = [0, L]R
c ⊂ X. We will soon prove that there is an

L > 0 such that F (XL) ⊂ XL. Since XL is homeomorphic to the unit ball

of R
|Rc| and F is continuous on XL, we can conclude from the Brouwer fixed

point theorem that there is at least one u ∈ XL such that F (u) = u. By
Lemma 1, if there is x such that ux = 0, then F (u)x > 0, and such u cannot
be fixed points. Thus for any fixed point 0 < ux ≤ L < ∞ for all x, and
T(u) is then a proper self-consistent temperature profile.

We prove the existence of a constant L, for which F (XL) ⊂ XL, by

contradiction. If no such L exists, then for all L > 0 there is u(L) ∈ XL

such that ‖F (u(L))‖∞ > L. Then necessarily ‖u(L)‖∞ → ∞, since otherwise
there would exists a convergent subsequence, which is incompatible with
‖F (u(L))‖∞ → ∞. Let λL = ‖u(L)‖∞ and v(L) = λ−1

L u(L), so that λL → ∞
and ‖v(L)‖∞ = 1. The sequence (v(L)) belongs to a compact subset of X,

and we can find a subsequence such that v(L) → v in X. For this final
subsequence we can apply (4.5) and (4.6), which shows that for all x

lim sup
L

λ−1
L F (λLv

(L))x < ‖v‖∞ = 1 . (4.8)

Equality is not possible here, as the limit b of λ−1
L T(λLv

(L)) has at least
one component equal to one, but bx = 0 for all x ∈ R, and thus b cannot
be a constant vector. However, by construction, for every L there is x(L)

such that F (λLv
(L))x(L) > L ≥ ‖u(L)‖∞ = λL, which leads to contradiction.
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This proves the existence of L > 0 with the required properties and concludes
the proof of the first part of the theorem.

For the second part, let us first point out that, if R is invariant under
all periodic translations of ΛN , it must be of the form R = R1 × Id−1

N ,
where IN = {−N, . . . ,N} and R1 ⊂ IN is non-empty. Similarly, Θx can
only depend on x1. Let Rc

1 = IN \ R1, let P1 denote the projection on
the first axis in Z

d, and define R′ = P1R
c = Rc

1 × {0}, which is a subset
of Rc = ΛN \ R. If R′ is empty, R = ΛN and there is nothing to prove.

Otherwise, let us consider the map F ′ : X ′ → X ′, X ′ = [0,∞)R
′

, defined by
F ′(u)x = 〈p2

x〉(T′(u), V,W ), where

T ′(u)x =

{

uP1x, if x ∈ Rc,

Θx, otherwise.
(4.9)

Every such T ′(u) is clearly invariant under all periodic translations. We can
then repeat the analysis made above for F ′ and conclude that it has a fixed
point ū with 0 < ūx < ∞. Since T̄ = T ′(ū) is periodic, the dynamics is
completely invariant under periodic translations, implying that also expec-
tation values in the unique stationary state are invariant. Therefore, for any
x ∈ Rc, we have 〈p2

x〉(T̄ ) = 〈p2
P1x〉(T̄ ) = uP1x = T̄x. This proves that T̄ is an

invariant, self-consistent profile. �

5. Entropy Production Bound

In this section we prove the entropy production bounds stated in The-
orems 3 and 4. Given a generic profile of temperatures T, we recall the
notation fN = fN (T) for the density of the stationary measure µ(T) with
respect to Lebesgue measure, and let 〈·〉 denote expectation with respect
to µ(T). A simple computation shows that 〈A ln fN 〉 = 0 for A defined in
(2.5). Therefore, by stationarity we have

0 = −〈LN ln fN 〉 = −
∑

x

〈Sx ln fN 〉 (5.1)

where Sx = γx(Tx∂
2
px

−px∂px). Let ψx = fN/GTx , where GT = Z−1
T e−HN /T ,

as in (2.9). Then we can rewrite the last term as

−〈Sx ln fN 〉 = −
∫

(Sx lnψx)ψxGTxdp dq −
∫

Sx(lnGTx)fNdp dq . (5.2)

Since pxGTx = −Tx∂pxGTx and Sx(lnGTx) = −γx(Tx − p2
x)/Tx = −Jx/Tx,

we find by integration by parts that

−〈Sx ln fN 〉 = Txγx

∫

(∂pxψx)2

ψx
GTxdp dq +

〈Jx〉
Tx

. (5.3)

So by (5.1), the entropy production satisfies

S(T) = −
∑

x∈ΛN

〈Jx〉
Tx

=
∑

x∈ΛN

Dx , (5.4)
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where

Dx = γxTx

∫

(∂pxψx)2

ψx
GTxdp dq . (5.5)

In particular, S(T) ≥ 0, and by using the local conservation of energy, (2.6),
(3.3) holds.

Let us for the remainder of this section assume that T is a temperature
profile which is invariant under the periodic translations. The results then
hold for both Tsc and Tβlin. Obviously, then by (3.3)

S(T) =
∑

x∈Λ′

N

(βx+e1 − βx)〈jx,x+e1〉 (5.6)

Therefore, it will suffice to find a bound for |〈jx,x+e1〉|.
Applying the definition of the current observable, (2.7) and (2.8), and

then integration by parts, shows that

〈jx,x+e1〉 = −1

2

∫

V ′(rx)

1
∑

n=0

ψx′px′GTx′

∣

∣

x′=x+ne1
dp dq

= −
1

∑

n=0

Tx′

2

∫

V ′(rx)GTx′
∂px′

ψx′dp dq
∣

∣

∣

x′=x+ne1

(5.7)

where rx = qx+e1 − qx. We use that 1 = ψ
1/2
x′ /ψ

1/2
x′ whenever ψx′ 6= 0, and

then apply the Schwarz inequality. This shows that

|〈jx,x+e1〉|2 ≤ max
y∈ΛN

Ty

γy

〈

V ′(rx)2
〉 1

2

1
∑

n=0

Dx+ne1 . (5.8)

Therefore, we have obtained the following relation between the total sum of
currents and the entropy production

(

∑

x∈Λ′

N

|〈jx,x+e1〉|
)2

≤ max
y∈ΛN

Ty

γy

∑

x∈Λ′

N

〈

V ′(rx)2
〉

∑

x∈Λ′

N

1

2

1
∑

n=0

Dx+ne1

≤ S(T) max
y∈ΛN

Ty

γy

∑

x∈Λ′

N

〈

V ′(rx)2
〉

. (5.9)

For this bound to be useful, we still need to consider
∑

x∈Λ′

N

〈

V ′(rx)2
〉

.

Since LN (q2x) = 2qxpx, we have 〈qxpx〉 = 0 for all x. Similarly, LNH =
∑

x∈ΛN
γx(Tx − p2

x) implies
∑

x γxTx =
∑

x γx〈p2
x〉. Now

LN (
∑

x∈ΛN

pxqx) =
∑

x∈ΛN

p2
x −

∑

x∈ΛN

qx∂qxH−
∑

x∈ΛN

γxpxqx , (5.10)

and thus

∑

x∈ΛN

γxTx ≥ min
y
γy

∑

x∈ΛN

〈p2
x〉 = min

y
γy

〈

∑

x∈ΛN

qx∂qxH
〉

. (5.11)
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From the asymptotics of V and W we can conclude that there are C > 0
and C ′ ≥ 0 such that

V ′(r)2 ≤ C(rV ′(r) + C ′) and rW ′(r) ≥ −C ′ . (5.12)

But since

∂qxH = W ′(qx) +

d
∑

j=1

(

V ′(qx − qx−ej
) − V ′(qx+ej

− qx)
)

+
1

2

(1(x ∈ ∂rΛN )V ′(−qx) − 1(x ∈ ∂lΛN )V ′(qx)
)

, (5.13)

with 1 denoting the characteristic function, we have

∑

x∈ΛN

qx∂qxH =
∑

x∈ΛN

[

qxW
′(qx) +

d
∑

j=2

rV ′(r)
∣

∣

r=qx+ej−qx

]

+
∑

x∈Λ′

N

rxV
′(rx) +

1

2

∑

x∈∂rΛ

qxV
′(qx) +

1

2

∑

x∈∂lΛ

(−qx)V ′(−qx) .

≥
∑

x∈Λ′

N

rxV
′(rx) − |ΛN |C ′(d+ 1) . (5.14)

Combining this with (5.11) shows that

∑

x∈Λ′

N

〈

V ′(rx)2
〉

≤ C|ΛN |
(

C ′(d+ 2) +
maxy γyTy

miny γy

)

. (5.15)

Consequently, there is c > 0, which depends only on V and W , such that
(

∑

x∈Λ′

N

|〈jx,x+e1〉|
)2

≤ cS(T)|ΛN |maxx γxTx

minx γ2
x

(1 + max
x

Tx) . (5.16)

Let us next consider the case T = Tβlin. Applying the definition of Tβlin

to (5.6) shows that then (3.9) holds, i.e., S(Tβlin) = βr−βl

2N

∑

x∈Λ′

N
〈jx,x+ei

〉.
Then by (5.16) and using the fact that T βlin

x ≤ Tl

S(Tβlin) ≤ c′ |βr − βl|2 (2N + 1)d−2(1 + Tl)
2 , (5.17)

where c′ is a constant depending only on γ, V , and W . Therefore, we have
now proven Theorem 4.

Finally, let us consider the self-consistent case, T = Tsc. For the corre-
sponding stationary measure we find from (2.6),

d
∑

j=1

(〈

jx,x+ej

〉

−
〈

jx−ej ,x

〉)

= 0, x 6∈ ∂ΛN . (5.18)

Since the system, including the self-consistent profile, is periodic in any of
the Cartesian directions ei, i ≥ 2, also the unique stationary measures are
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invariant under translations in these directions. Therefore,

〈jx,x+ei
〉 = 〈jx−ei,x〉 , i 6= 1, x ∈ ΛN . (5.19)

Consequently, by (5.18) and (2.6),

〈jx,x+e1〉 = 〈jx−e1,x〉 , x 6∈ ∂ΛN ,

〈jx,x+e1〉 = 〈Jx〉 = γx(Tl −
〈

p2
x

〉

), x ∈ ∂lΛN ,

〈jx−e1,x〉 = −〈Jx〉 = γx(
〈

p2
x

〉

− Tr), x ∈ ∂rΛN .

(5.20)

We denote the constant current by j̄N , i.e., now we have 〈jx,x+e1〉 = j̄N , for
all x ∈ Λ′

N . Therefore, by (5.6),

S(Tsc) = j̄N
∑

x∈Λ′

N

(βx+e1 − βx) = j̄N (βr − βl)(2N + 1)d−1 , (5.21)

which proves (3.4). This immediately implies that sign(Tl − Tr)j̄N ≥ 0.
But on the other hand, j̄N = 1

|Λ′

N
|

∑

x∈Λ′

N
〈jx,x+e1〉, and thus also for the

self-consistent profile S(Tsc) = βr−βl

2N

∑

x∈Λ′

N
〈jx,x+ei

〉. Applying (5.16) then

completes the proof of Theorem 3.

6. Minimization of entropy production

For a given To > 0, we use the Gibbs measure µTo = GTodpdq as a refer-
ence measure and we denote the related expectation by 〈·〉0. We consider the
generator L on the Hilbert space L2(µTo). Recall that for any temperature
profile T = {Tx, x ∈ ΛN} we have L = L(T) = A+ S(T). Its adjoint is

L∗ = −A+
∑

x∈ΛN

S∗
x (6.1)

where Sx = γx

(

Tx∂
2
px

− px∂px

)

, and thus

S∗
x = Sx + γx

∆Tx

To
(−2px∂px + hx) (6.2)

with ∆Tx = Tx − To and

hx =
p2

x

To
− 1. (6.3)

Observe that 〈hxhx′〉0 = 2δx,x′ and −Sx,Tohx = 2γxhx.
Set L0 = L(To) and consequently L∗

0 = −A+ S(To)
∗ = −A+ S(To).

Lemma 2. For all y, x

∂Ty〈p2
x〉µ(T)

∣

∣

T=To
= γy〈hy(−L0)

−1hx〉0 = γy〈hx(−L0)
−1hy〉0 . (6.4)

Proof. Let us denote by f = f(T) the density of µ(T) with respect to µTo.
Then f is solution of the equation L∗(T)f(T) = 0. Since the coefficients
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in L∗(T) are smooth in T, f is smooth in T and fy = ∂Tyf(T) solves the
equation

L∗(T)fy(T) = −(∂TyL
∗)(T)f(T) = −γy

To

(

To∂
2
py

− 2py∂py + hy

)

f(T) .

(6.5)

Since f(To) = 1, we have found that fy(To) is solution of

−L∗
0fy(To) =

γy

To
hy . (6.6)

Notice that fy has a bounded L2(µTo) norm (cf. [17]), and by a standard
argument (multiply equation (6.6) by fy and integrate with respect to µTo)
we obtain a bound

∑

x

γx〈(∂pxfy)
2〉0 ≤ γyT

−1
o . (6.7)

Now, since hxGTo = −∂px(pxGTo),

〈hx〉µ(T) = 〈px∂pxf(T)〉0 . (6.8)

Then differentiating with respect to Ty we have

∂Ty〈hx〉µ(T) = 〈px∂pxfy(T)〉0 (6.9)

and taking the limit T → To

∂Ty〈hx〉µ(T)

∣

∣

T=To
= 〈px∂pxfy(To)〉0 = 〈hxfy(To)〉0 =

γy

To
〈hx(−L∗

0)
−1hy〉0

(6.10)
Observe that, since h is an even function of p, one can, by a change of
variables p→ −p, replace L∗

0 with L0 in (6.10). This proves (6.4) �

Define F : R
ΛN
+ → R

ΛN as

Fx(T) = 〈Jx〉µ(T) = γx

(

Tx − 〈p2
x〉µ(T)

)

. (6.11)

Its Jacobian at T = To is given by

Jy,x = γxδy,x−γx ∂Ty〈p2
x〉µ(T)

∣

∣

T=To
= γxδy,x−γxγy〈hx(−L0)

−1hy〉0. (6.12)

Observe that J is symmetric and that F (To) = 0 for any value of To. It
follows that 0 is an eigenvalue of J , and we will show shortly that J ≥ 0,
and the eigenspace corresponding to 0 is one-dimensional and generated by
the constant vector. Then the matrix M = (Jx,y)x,y∈Rc is invertible, and
thus there is a neighborhood in (Tl, Tr) containing (To, To) such that the
implicit function theorem can be applied to obtain a self-consistent profile.
This implies that constants ε0 and δ for the first part of Theorem 2 can
be found. It also follows that Tsc(Tl, Tr) is smooth. To see that it must
also be invariant under the periodic translations, we first point out that in
the boundary layer setup clearly any translate of a self-consistent profile
is also self-consistent. Since the translations correspond to a permutation
of indices, they remain in the neighborhood determined by δ, and thus by
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the uniqueness of the self-consistent profile in this neighborhood, T sc(Tl, Tr)
must itself be invariant.

Therefore, to complete the proof of Theorem 2 we only need to prove the
following Lemma.

Lemma 3. J ≥ 0, and J a = 0 implies ax is a constant in x.

Proof. Let a ∈ R
ΛN , and define h =

∑

x∈ΛN
axhx. It follows from the

antisymmetry of A and the symmetry of S0:

〈(Ah)(−L0)
−1(Ah)〉0 = 〈h(−S0)h〉0 − 〈(S0h)(−L0)

−1(S0h)〉0 . (6.13)

Since S0h = −2
∑

x axγxhx, we obtain

〈(Ah)(−L0)
−1(Ah)〉0 = 〈h(−S0)h〉0 − 4

∑

x,y

axayγxγy〈hx(−L0)
−1hy〉0

= 4
∑

x

γxa
2
x − 4

∑

x,y

axayγxγy〈hx(−L0)
−1hy〉0

= 4
∑

x,y

axayJx,y . (6.14)

Therefore, to prove that J has the properties stated above, it suffices to
study the left hand side of (6.13), and to prove that it is always positive,
and equal to zero if and only if a is a constant vector. (Studying real vectors
a suffices here, as J is a symmetric matrix.)

In fact, define u = (−L0)
−1(Ah). Since for any observable F belonging

to the domain of A, 〈F (AF )〉0 = 0, we have then

〈(Ah)(−L0)
−1(Ah)〉0 = 〈u(−S0)u〉0 =

∑

x

γxTo〈(∂pxu)
2〉0 ≥ 0 . (6.15)

This proves the required positivity. In addition, if the left hand side is zero,
then u(p, q) cannot depend on p, and thus

−L0u = −Au = −
∑

x

px∂qxu(q) = Ah = − 2

T0

∑

x

axpx∂qxH (6.16)

It follows, for all x,

2

To
ax∂qxH = ∂qxu(q) . (6.17)

Thus the function

G(q) =
To

2
u(q) −

∑

x∈ΛN

axW (qx) (6.18)
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satisfies, by (5.13),

∂qxG(q) = ax

[

d
∑

j=1

(

V ′(qx − qx−ej
) − V ′(qx+ej

− qx)
)

+
1

2
1(x ∈ ∂rΛN )V ′(−qx) −

1

2
1(x ∈ ∂lΛN )V ′(qx)

]

. (6.19)

For x ∈ Λ′
N and k = 1, 2, . . . we differentiate (6.19) with respect to qx+ek

and obtain

−axV
′′(qx+ek

− qx) = ∂2
qx,qx+ek

G(q) = −ax+ek
V ′′(qx+ek

− qx) . (6.20)

Since there exists an r0 such that V ′′(r0) > 0, this implies a = const. �

We can now conclude that for any To > 0, there is ε0 > 0 such that for all
|ε| < ε0 a self-consistent profile corresponding to Tl = To+

ε
2 , Tr = To− ε

2 can
be found. This profile is differentiable with respect to ε and the derivative
satisfies for x 6∈ ∂ΛN

0 =
∂

∂ε
Fx(T(ε;To)) =

∑

y∈ΛN

∂Ty

∂ε
∂TyFx(T(ε;To)) . (6.21)

Therefore, we have
∑

y∈ΛN
Jx,y

∂Ty(0)
∂ε = 0. This shows that for x 6∈ ∂ΛN ,

∂Tx(ε;To)

∂ε

∣

∣

∣

∣

ε=0

=
∑

y 6∈∂ΛN

(M−1)x,y
1

2

(

∑

y′∈∂rΛN

Jy,y′ −
∑

y′∈∂lΛN

Jy,y′

)

, (6.22)

where M = (Jx,y)x,y 6∈∂ΛN
is a strictly positive matrix, and thus invertible.

Recall the definition of entropy production given in (3.2). By (5.4) we
have then always S(T) ≥ 0, with equality when T = To, a constant profile
given by To > 0. Since

∂S
∂Tx

(T) = −γx

〈

p2
x

〉

T 2
x

+
∑

y

γy

∂Tx

〈

p2
y

〉

Ty
, (6.23)

we have for the constant profile

∂S
∂Tx

(To) = −T−1
o γx + T−1

o

∂

∂Tx

(

∑

y

γy

〈

p2
y

〉

)

T=To

. (6.24)

As mentioned earlier, for any profile
∑

y γy

〈

p2
y

〉

=
∑

y γyTy, and thus we
have proven that

∂S
∂Tx

(To) = 0 . (6.25)

A similar, but a slightly longer calculation, shows that

∂2S
∂Tx∂Ty

(To) =
1

T 2
o

(Jx,y + Jy,x) =
2

T 2
o

Jx,y . (6.26)

By dividing ΛN into R 6= ∅ (the fixed thermostats) and Rc, we can con-
clude from the previous results that the symmetric matrix M = (Jx,y)x,y∈Rc
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is strictly positive. By (6.25) and (6.26), the Taylor expansion of S around
To yields

S(To + εv) =
ε2

T 2
o

∑

x,y∈ΛN

Jx,yvxvy + O(ε3) . (6.27)

This proves Theorem 5. For fixed ε and vx, x ∈ R, the quadratic form

corresponding to the leading term has a unique minimizer, given by v
(min)
x =

vx, x ∈ R, and

v(min)
x = −

∑

y∈Rc

∑

y′∈R

(M−1)xyJy,y′vy′ , for x ∈ Rc . (6.28)

Let us next consider the case studied earlier, with the opposite boundaries
fixed at two different temperatures Tl and Tr. Denote δT = Tl − Tr, which
we assume to be positive, and To = (Tl + Tr)/2. Let us consider a sequence
of Tl, Tr for which To remains fixed and δT → 0. We assume that T is
a sequence of profiles with boundary values on R equal to Tl and Tr, and
which has the Taylor expansion

Tx = To + g(x)δT + O(δT 2) (6.29)

where g is a function for which g(x) = 1/2 for x ∈ ∂lΛN and g(x) = −1/2 for
x ∈ ∂rΛN . By (6.27), the entropy production will be of the order (δT )2, and

the leading term is minimized by g(x) = v
(min)
x corresponding to vx = ±1

2 ,
with +, if x ∈ ∂lΛN , and −, if x ∈ ∂rΛN .

We have proven in the beginning of this section, that the self-consistent
profile can be chosen for all sufficiently small δT so that it is differentiable in
the boundary temperatures. In particular, comparing (6.22) to (6.28) shows
that

T sc
x = To + gsc(x)δT + O(δT 2) (6.30)

with gsc = v(min). We have thus proven Theorem 6.
Consequently, the self-consistent profile minimizes the entropy produc-

tion up to errors of the order of δT 3. In particular, the leading term of the
self-consistent profile can be obtained by minimization of the entropy pro-
duction. This is consistent with the general belief that for small deviations
from the equilibrium state imposed by external constraints, the stationary
state will be such that it minimizes the entropy production with respect to
variation in the unconstrained parameters.

7. Conductivity of the Finite System

In the following we again set Λ′
N = ΛN\∂rΛN , and consider, as in Section

5, a generic profile T which is invariant under periodic translations. Let 〈·〉
be the expectation with respect to the corresponding stationary state. It
is convenient now to use as a reference measure the inhomogeneous Gibbs
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measure νT = G(T; q, p)dqdp, with

G(T; q, p) =
exp(−∑

x Ex(q, p)/Tx)

Z
(7.1)

where Ex is defined in (2.1). Notice that S is automatically symmetric with
respect to νT, while the adjoint of A is given by

−A+
∑

x∈Λ′

N

( 1

Tx+e1

− 1

Tx

)

jx,x+e1 . (7.2)

Let us next inspect T = Tsc and denote by f̃ the density of the self-
consistent stationary state with respect to νTsc . Let us fix To = Tr+Tl

2
with ε = δT = Tl − Tr > 0, as before. Repeating the argument used in
section 2, we find that f̃ is smooth in ε, so a first order development in ε
is justified. Using the expansion of the self-consistent profile, (6.29), shows

that u = ∂εf̃ |ε=0 is solution of the equation

(−A+ S(To))u =
∑

x∈Λ′

N

∇e1g
sc(x)

T 2
o

jx,x+e1 . (7.3)

Explicit formulae for the derivatives of the self-consistent profile, gsc(x), are
given in (6.22).

Recall the definition of the conductivity of the finite system, (3.14). Since
we have already proven Theorems 1–6, the argument given before Theorem
7 in Section 3 provides a proof that κN (To) is bounded in N . On the other
hand, by (7.3),

κN (To) = lim
δT→0

2N + 1

δT

1

|Λ′
N |

∑

x∈Λ′

N

〈jx,x+e1〉

= lim
δT→0

2N + 1

δT
〈j0,e1〉 = (2N + 1)〈uj0,e1〉0 . (7.4)

Define ǔ(q, p) = u(q,−p), and observe that, since jx,x+1 is antisymmetric in
p,

(A+ S(To))ǔ = −
∑

x∈Λ′

N

∇e1g
sc(x)

T 2
o

jx,x+e1 . (7.5)

Thus

κN (To) = −(2N + 1)〈ǔj0,e1〉0 = (2N + 1)

∫ ∞

0
∂t〈ǔ(t)j0,e1(0)〉0 dt

=
1

T 2
o

∫ ∞

0

∑

x∈Λ′

N

(−(2N + 1)∇e1g
sc(x))〈jx,x+e1(t)j0,e1(0)〉0 dt

(7.6)

where 〈·〉0 denotes taking the initial data distribution according to the
equilibrium measure at the specified temperature To, and then considering
the time-evolution corresponding to the stochastic process with all heat-
bath temperatures set to To. We have used here the property that then
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〈ǔ(t)j0,e1(0)〉0 → 〈ǔ〉0〈j0,e1〉0 = 0 for t → ∞. This completes the proof of
Theorem 7.

Repeating the same steps for T = Tβlin, for which ∂εT
βlin
x

∣

∣

ε=0
= − x1

2N ,
proves also the validity of (3.19).

8. Conductivity of the Infinite System

We prove here Theorem 8 concerning the infinite system on (R2d)Z
d

with
all γx = γ and all thermostats at temperature T . This infinite dynamics

has a unique invariant measure given by the Gibbs measure on (R2d)Z
d

at
temperature T , defined by the usual DLR relations. Consequently we look
at the dynamics starting from this equilibrium distribution.

We adapt here an argument used in [3]. Introduce on L2(GT ) the scalar
product

〈〈ϕ,ψ〉〉 =
∑

x

[〈ϕτxψ〉0 − 〈ϕ〉0 〈ψ〉0] (8.1)

where τx is the translation operator. We denote by L2 the corresponding
Hilbert space of square integrable functions. Observe that A and S are
still respectively anti-symmetric and symmetric with respect to the scalar
product 〈〈·, ·〉〉. We also introduce the norm

‖ϕ‖2
1 = 〈〈ϕ, (−S)ϕ〉〉 (8.2)

and let H1 denote the corresponding Hilbert space obtained by closing L2

with respect to ‖ · ‖1.
Let λ > 0 be given and let uλ be the solution of the resolvent equation

λuλ − Luλ = j0,1 . (8.3)

Recall that L = A+ S. By multiplying by uλ and integrating we have

λ〈〈uλ, uλ〉〉 + 〈〈uλ(−S)uλ〉〉 = 〈〈uλ, j0,1〉〉. (8.4)

Since Sj0,1 = −γj0,1, we have by the Schwarz inequality

γ〈〈uλ, j0,1〉〉 = 〈〈uλ, (−S)j0,1〉〉
≤ 〈〈uλ, (−S)uλ〉〉1/2 〈〈j0,1, (−S)j0,1〉〉1/2

≤ C〈〈uλ, (−S)uλ〉〉1/2 .

(8.5)

From this follow the bounds

〈〈uλ, (−S)uλ〉〉 ≤ C2γ−2 (8.6)

and

λ〈〈uλ, uλ〉〉 ≤ C2γ−2 . (8.7)

By (8.6), we can extract a subsequence that we still denote with uλ, weakly
convergent in H1 to u0.

Let uλ(p, q) = us
λ(p, q) + ua

λ(p, q) where us
λ and ua

λ are respectively sym-
metric and antisymmetric in the p’s. Since j0,1 is antisymmetric in the p’s,
we have that 〈〈uλ, j0,1〉〉 = 〈〈ua

λ, j0,1〉〉. Furthermore S preserves the parity
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in p, while it is inverted by A. So we can decompose the resolvent equation
as

λus
λ − Sus

λ −Aua
λ = 0

µua
µ − Sua

µ −Aus
µ = j0,1

(8.8)

Multiplying the first equation by us
µ and the second by ua

λ, and using the
antisymmetry of A, we have

〈〈ua
λ, j0,1〉〉 = µ〈〈ua

µ, u
a
λ〉〉 + 〈〈ua

λ, (−S)ua
µ〉〉 − 〈〈ua

λ, Au
s
µ〉〉

= µ〈〈ua
µ, u

a
λ〉〉 + λ〈〈us

λ, u
s
µ〉〉 + 〈〈uλ, (−S)uµ〉〉

(8.9)

Since
∫

ua
λ(p, q)µ̃T (dp) = 0 (8.10)

(where µ̃T (dp) is the centered Gaussian product measure of variance T ), by
the spectral gap of S in L2(µ̃T (dp)), we have that

〈〈ua
λ, u

a
λ〉〉 ≤ 1

γ
〈〈uλ, (−S)uλ〉〉 ≤ C2γ−3 . (8.11)

Thus by taking first the limit as λ→ 0 and then as µ→ 0, we obtain

〈〈u0, j0,1〉〉 = 〈〈u0, (−S)u0〉〉 . (8.12)

On the other hand, we have

〈〈u0, j0,1〉〉 = lim
λ→0

〈〈uλ, j0,1〉〉 = lim
λ→0

[λ〈〈uλ, uλ〉〉 + 〈〈uλ, (−S)uλ〉〉]
≥ lim

λ→0
λ〈〈uλ, uλ〉〉 + 〈〈u0, (−S)u0〉〉 .

(8.13)

This implies

lim
λ→0

λ〈〈uλ, uλ〉〉 = 0 , (8.14)

and that uλ → u0 strongly in H1. Uniqueness of the limit follows by a stan-
dard argument. This ends the proof of the limit defining the conductivity
κ. Observe also that T 2κ = 〈〈u0, j0,1〉〉 = 〈〈u0, (−S)u0〉〉.

9. Concluding remarks

While all the results obtained in this paper are as expected, the difficulty
of actually proving things about the NESS of systems with nonlinear dy-
namics is immense. This is well illustrated by the impossibility (for us) of
obtaining a bound on the self-consistent temperature T of the second oscil-
lator in a system consisting of three oscillators with T1 = Tl, T3 = Tr, and
the Hamiltonian is as in (2.1) with γx = γ > 0. We certainly expect that T
will satisfy Tr < T < Tl, but do not know how to prove this. All we know
is that there exists a T = 〈p2

2〉, and that j̄ = Tl − 〈p2
1〉 = 〈p2

3〉 − Tr > 0.
We also know for general N that when Tl, Tr → To, then there is a self-
consistent choice T → To, and that this in this limit (2N + 1)j̄/(Tl − Tr)
is bounded and given by the Green-Kubo formula (3.18). Beyond this how-
ever we are stymied except when V and W are harmonic. In that case T is
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given by (3.13) without a correction term for any Tl, Tr, and due to explicit
expressions gsc(x) can be analyzed in great detail, proving Tr < T < Tl.
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