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Coniveau 2 complete intersections and effective cones

Claire Voisin

CNRS, Institut de mathématiques de Jussieu and IHÉS

0 Introduction

The goal of this paper is first of all to propose a strategy to attack the generalized
Hodge conjecture for coniveau 2 complete intersections, and secondly to state a
conjecture concerning the cones of effective cycle classes in intermediate dimensions.
Our main results show that the generalized Hodge conjecture for coniveau 2 complete
intersections would follow from a particular case of this effectiveness conjecture.

A rational Hodge structure of weight k is given by a Q-vector space L together
with a Hodge decomposition

LC =
⊕

p+q=k

Lp,q

satisfying Hodge symmetry
Lp,q = Lq,p.

The coniveau of such a Hodge structure is the smallest integer c such that Lk−c,c 6= 0.
When the Hodge structure comes from geometry, the notion of coniveau is con-

jecturally related to codimension by the generalized Grothendieck-Hodge conjecture.
Suppose X is a smooth complex projective variety and L ⊂ Hk(X, Q) is a sub-Hodge
structure of coniveau c.

Conjecture 0.1 (cf [7]) There exists a closed algebraic subset Z ⊂ X of codimen-
sion c such that L vanishes under the restriction map Hk(X, Q) → Hk(U, Q), where
U := X \ Z.

Notice that it is a non trivial fact that the kernel of this restriction map is indeed
a sub-Hodge structure of coniveau ≥ c. This needs some arguments from mixed
Hodge theory (see [3], [7] or [15], II, 4.3.2).

Remark 0.2 When a sub-Hodge structure L has coniveau c, we can consider the
generalized Grothendieck-Hodge conjecture for L and for any coniveau c′ ≤ c, that
is, ask whether L vanishes on the complementary set of a closed algebraic subset
of codimension c′. When this holds, we will say that L satisfies the generalized
Grothendieck-Hodge conjecture for coniveau c′.

Consider a complete intersection X ⊂ Pn of r hypersurfaces of degree d1 ≤ . . . ≤ dr.
By Lefschetz hyperplane sections theorem, the only interesting Hodge structure is
the Hodge structure on Hn−r(X, Q), and in fact on the primitive part of it (that is the
orthogonal of the restriction of H∗(Pn, Q) with respect to the intersection pairing).
We will say that X has coniveau c if the Hodge structure on Hn−r(X, Q)prim has
coniveau c.
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The coniveau of a complete intersection can be computed using Griffiths residues
and the comparison of pole order and Hodge filtration (see [6] or [15], II, 6.1.2). The
result is as follows:

Theorem 0.3 X has coniveau ≥ c if and only if

n ≥
∑

i

di + (c − 1)dr.

For c = 1, the result is obvious, as coniveau(X) ≥ 1 is equivalent to Hn−r,0(X) =
H0(X,KX) = 0, that is X is a Fano complete intersection. In this case, the general-
ized Hodge-Grothendieck conjecture is known to be true, using the correspondence
between X and its Fano variety of lines of lines F . Denoting by

P
q
→ X

p ↓
F

the incidence correspondence, where p is the tautological P1-bundle on F , one can
show (see for example [13]) that taking a n−r−2-dimensional complete intersection
Fn−r−2 ⊂ F and restricting P to it, the resulting morphism of Hodge structures

q′∗ ◦ p′
∗

: Hn−r−2(Fn−r−2, Q) → Hn−1(X, Q)

is surjective, where P ′ = p−1(Fn−r−2) and p′, q′ are the restrictions of p, q to P ′. It
follows that Hn−1(X, Q) vanishes on the complement of the (singular) hypersurface
q(P ′) ⊂ X.

In the case of coniveau 2, the numerical condition given by theorem 0.3 becomes

n ≥
∑

i

di + dr. (0.1)

The geometric meaning of this bound is not so obvious. Furthermore the generalized
Grothendieck-Hodge conjecture for coniveau 2 is not known to hold in this range.
For a general hypersurface X of degree d in Pn, it is known to hold (for coniveau
2) only when the dimension n becomes much larger than the degree d, so that X
becomes covered by a family of planes (see [4]), (a slightly weaker condition has
been obtained by Otwinowska [10], see section 3). The numerical range in which the
result is known looks like

n ≥
d2

4
+ O(d)

which is very different from the bound n ≥ 2d of theorem 0.3. For specific hyper-
surfaces of coniveau ≥ c defined by an equation F (X0, . . . ,Xn) of the form

F = F1(X0, . . . ,Xd+s) + F2(Xd+s+1, . . . ,X2d+s) + . . . + Fr(X(c−1)d+s+1 . . . ,Xcd+s),

(so n = cd + s), the generalized Hodge conjecture 0.1 is proved in [14] which proves
more generally that they satisfy the corresponding Bloch-Beilinson conjecture on
Chow groups of hypersurfaces:

Conjecture 0.4 If coniveau(X) ≥ c, the Chow groups CHi(X)hom,Q of cycles ho-
mologous to zero modulo rational equivalence are trivial for i ≤ c − 1.
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Notice that the previously mentioned papers [4], [10] are also devoted to the study
of cycles of low dimension, and that the generalized Grothendieck-Hodge conjec-
ture is deduced from vanishings for these. We refer to [1], [12] or [15], II, 10.3.2,
for the proof that the Bloch-Beilinson conjecture implies the generalized Hodge-
Grothendieck conjecture.

We propose in this paper a strategy to prove the generalized Hodge conjecture
for coniveau 2 complete intersections, which does involve the study of Chow groups
and the construction of 2-cycles (replacing the lines used in the coniveau 1 case).

Our method is based on the following result which allows to give in section 1 a
geometric proof of the numerical estimate (0.1) for the coniveau 2 property : First
of all, let us make the following definition:

Definition 0.5 A smooth k-dimensional subvariety V ⊂ Y , where Y is smooth
projective, is very moving if it has the following property: through a generic point y ∈
Y , and given a generic vector subspace W ⊂ TY,y of rank k, there is a deformation
Y ′ of Y which is smooth and passes through y with tangent space equal to W at y.

Let X ⊂ Pn be a generic complete intersection of multidegree d1 ≤ . . . ≤ dr. For a
generic section G ∈ H0(X,OX (n −

∑
i di − 1)), consider the subvariety FG ⊂ F of

the variety of lines in XG. Then by genericity, F and FG are smooth of respective
dimensions 2n − 2 −

∑
i di − r and n − r − 2. One can show that the deformations

of FG are given by deformations of G.

Theorem 0.6 When
n ≥

∑

i

di + dr

the subvariety FG ⊂ F is “very moving”.

Cones of effective cycles have been very much studied in codimension 1 or in
dimension 1 (cf [2]), but essentially nothing is known in intermediate (co)dimensions.
Let us say that an algebraic cohomology class is big if it belongs to the interior of the
effective cone. In [11], it is shown that when dim W = 1, and W ⊂ V is moving and
has ample normal bundle, its class [W ] is big. We will give here an example working
in any dimension ≥ 4 and in codimension 2, showing that in higher dimensions, a
moving variety W ⊂ V with ample normal bundle has not a necessarily big class.
Here by moving, we mean that a generic deformation of W in V may be imposed to
pass through a generic point of V .

We make the following conjecture for “very moving” subvarieties.

Conjecture 0.7 Let V be smooth and projective and let W ⊂ V be a very moving
subvariety. Then the class [W ] of W is big.

This conjecture, in the case of codimension 2 complete intersections in projective
space, predicts rather mysterious effectiveness statements concerning projective bun-
dles on Grassmannians. We will show this effectiveness result exactly in the same
range appearing in [10], which together with theorem 0.8 below gives another proof
of the fact that the generalized Hodge-Grothendieck for coniveau 2 is satisfied in
this numerical range.

We finally prove the following result (theorem 3.1) in section 3 :
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Theorem 0.8 Assume n ≥
∑

i di + dr and the subvariety FG ⊂ F introduced above
has a big class (that is satisfies conjecture 0.7). Then the complete intersections of
multidegree d1 ≤ . . . ≤ dr in Pn satisfy the generalized Hodge conjecture for coniveau
2.

Our method reproves the known results concerning the generalized Hodge con-
jecture for coniveau 2, that is proves it in the same range as [10], but the spirit
is very different, and the two methods lead in fact to a different statement, which
we explain to conclude this introduction. It is generally believed that to solve the
generalized Hodge conjecture for coniveau c for Hk(X, Q), k = dim X, one should
produce a family of cycles (Zb)b∈B , dim B = k − 2c, of dimension c in X, such that
the incidence family

Z
q
→ X

p ↓
B

induces a surjective map

q∗p
∗ : Hk−2c(B, Q) → Hk(X, Q).

This obviously implies that Hk(X, Q) vanishes away from q(Z) and thus that the
generalized Hodge conjecture for coniveau c is satisfied. In general such cycles are
provided by the proof that Chow groups of dimension < c are small (cf [1] or [15],
II, proof of theorem 10.31).

However if the generalized Hodge conjecture holds for coniveau c and for Hk(X, Q),
it does not imply the existence of such family, unless we also have a Lefschetz type
conjecture satisfied. To see this more precisely, suppose the Hodge conjecture holds
true for Hk(X, Q) and for coniveau c. Then there exists a closed algebraic subset
Z ⊂ X of codimension c such that Hk(X, Q) vanishes on X \Z. Introduce a desin-
gularization τ : Z̃ → X of Z. Then the vanishing of Hk(X, Q) on X \ Z implies by
strictness of morphisms of mixed Hodge structures (see [3] or [15], II, 4.3.2) that

τ∗ : Hk−2c(Z̃, Q) → Hk(X, Q)

is surjective. Observe now that dim Z̃ = k − c. If the Lefschetz standard conjecture
is satisfied by Z̃, there exists a variety B of dimension k−2c and a cycle T ⊂ B× Z̃
of codimension k − 2c (a family of cycles on Z̃ of dimension c parameterized by B),
such that the map

q∗p
∗ : Hk−2c(B, Q) → Hk−2c(Z̃, Q)

hence also the map

τ∗ ◦ q∗p
∗ : Hk−2c(B, Q) → Hk(X, Q)

are surjective, where p and q are the maps from T to B and Z̃ respectively.
Hence the parametrization of Hk(X, Q) by algebraic cycles of dimension c does

not follow from the generalized Hodge conjecture for coniveau c, but also needs a
Lefschetz standard conjecture applied to a certain subvariety of X.
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1 A geometric interpretation of the coniveau 2 condi-

tion

In this section, we will give a geometric interpretation of the numerical condition
(0.1), relating it to a positivity property of a certain cycle class on the variety of lines
of the considered complete intersection. We will also show how to deduce theorem
0.3 for coniveau 2 from this positivity property.

Let thus X be a generic complete intersection of multidegree d1 ≤ . . . ≤ dr in
Pn. Thus the variety of lines of X is smooth of dimension 2n − 2 −

∑
i di − r. For

G a generic polynomial of degree n −
∑

i di − 1, let XG ⊂ X be the hypersurface
defined by G and FG ⊂ F the variety of lines contained in XG. Thus FG is smooth
of dimension

2n − 2 −
∑

i

di − r − (n −
∑

i

di) = n − r − 2 = dim X − 2.

Recall the incidence diagram
q : P → X

↓
F

which induces for n −
∑

i di ≥ 0 an injective morphism of Hodge structures:

p∗q
∗ : Hn−r(X, Q) → Hn−r−2(F, Q).

Lemma 1.1 For a primitive cohomology class a ∈ Hn−l(X, Q)prim, the class η :=
p∗q

∗a ∈ Hn−r−2(F, Q) satisfies the following two properties (property 1 will be used
only in section 3):

1. (see [13]) η is primitive with respect to the Plücker polarization l := c1(L) on
F .

2. η vanishes on subvarieties FG:

η|FG
= 0. (1.2)

Proof. For the proof of the first statement, recall first that primitive cohomology
Hn−r−2(F, Q)prim is defined as the kernel of

∪ln−
∑

i di+1 : Hn−r−2(F, Q) → H3n−2
∑

i di−r(F, Q)

because dim F = 2n−2−
∑

i di−r. On the basis U parameterizing smooth complete
intersections X such that F is smooth of the right dimension, the composed maps

∪ln−
∑

i di+1 ◦ p∗q
∗ : Hn−r(X)prim → Hn−r−2(F )

give a morphism of local system. The point is now the following: suppose X de-
generate to a generic X0 with one ordinary double point x0. Then the family Z0

of lines in X0 passing through x0 has dimension n −
∑

i di. It follows that it does

5



not meet the generic intersection K of n −
∑

i di + 1 members of the Plücker lin-
ear system | L |. Choose an Xǫ which is generic and close enough to X0. Then
Xǫ contains a vanishing sphere Sǫ which is arbitrarily close to x0. Thus the cycle
pǫ(q

−1
ǫ (Sǫ)) ⊂ Fǫ does not meet a small perturbation Kǫ ⊂ Fǫ of K. It follows that if

δǫ is the class of Sǫ (well defined up to a sign depending on a choice of orientation),
γǫ := pǫ∗q

∗
ǫ (δǫ) ∈ Hn−r−2(Fǫ)prim is primitive. Hence we conclude that δǫ belongs

to the kernel of this morphism of local systems. As the monodromy along U , act-
ing on Hn−r(X, Q)prim, acts transitively on vanishing cycles (transported from the
δǫ’s), and the later generate Hn−r(X, Q)prim (cf [15], II, 3.2.2), it follows that the
morphism ∪ln−

∑
i di+1 ◦ p∗q

∗ : Hn−r(X)prim → Hn−r−2(F ) is zero.
The second statement is elementary. Indeed, as XG ⊂ X is a smooth member of

| OX(n −
∑

i di − 1) |, by Lefschetz theorem, the restriction map

Hn−r(X, Q)prim → Hn−r(XG, Q)

is zero. Now we have the following commutative diagram:

Hn−r(X, Q)prim → Hn−r(XG, Q)
p∗q

∗ ↓ pG∗q
∗
G ↓

Hn−r−2(F, Q) → Hn−r−2(FG, Q)

where
PG

qG→ XG

pG ↓
FG

is the incidence diagram for XG and the horizontal maps are restriction maps. Thus
we have η|FG

= pG∗q
∗
G(a|XG

) = 0.

The main result of this section is the following:

Theorem 1.2 If X is as above and n ≥
∑

i di +dr, the subvarieties FG ⊂ F , where
deg G = n −

∑
i di − 1 are very moving (cf definition 0.5).

Before giving the proof, let us use it, combined with lemma 1.1, to give a geometric
proof of the numerical estimate (0.1) of theorem 0.3 for coniveau 2.

Corollary 1.3 (cf theorem 0.3) If the inequality n ≥
∑

i di + dr is satisfied, X has
coniveau ≥ 2.

Proof. The fact that X has coniveau ≥ 2 is equivalent (as we know already that
Hn−r,0(X) = 0) to the vanishing Hn−r−1,1(X)prim = 0. Let a ∈ Hn−r−1,1(X)prim

and consider
η := p∗q

∗a ∈ Hn−r−2,0(F ) = H0(F,Ωn−r−2
F ).

Then η = 0 iff a = 0. We use now statement 2 in lemma 1.1. This gives us

η|FG
= 0 in H0(FG,Ωn−r−2

FG
)

for generic G. On the other hand, theorem 1.2 tells that for generic G, the r − 2
dimensional subvariety FG passes through a generic point ∆ ∈ F with a generic
tangent space. It follows immediately that η|FG

= 0 implies η = 0.
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Proof of theorem 1.2. We fix a line ∆ ∈ F . We want to study the differential
of the map φ which to a polynomial G vanishing on ∆ associates the tangent space
at ∆ of FG, assuming it has the right dimension. What we will prove is the fact
that the differential of φ is generically surjective when the bound is realized. Let
W := φ(G), that is W ⊂ TF,∆ is the tangent space to FG. Then the differential of
φ is a linear map

dφ(G) : H0(X,I∆(n −
∑

i

di − 1)) → Hom (W,TF,∆/W ) (1.3)

where the right hand side is the tangent space to the Grassmannian of rank n−r−2
dimensional subspaces of TF,∆. We remark that dφ(G) factors through

H0(∆,I∆,X/I2
∆,X(n −

∑

i

di − 1)) = H0(∆, N∗
∆/X(n −

∑

i

di − 1)).

Furthermore, we observe that the natural map

H0(X,I∆,X(n −
∑

i

di − 1)) → H0(∆,I∆,X/I2
∆,X(n −

∑

i

di − 1))

is surjective. Indeed, the restriction map

H0(Pn,I∆,Pn(n −
∑

i

di − 1)) → H0(∆,I∆,Pn/I2
∆,Pn(n −

∑

i

di − 1))

= H0(∆, N∗
∆/Pn(n −

∑

i

di − 1))

is surjective. Furthermore the the conormal exact sequence:

0 →
⊕

j

O∆(−dj) → N∗
∆/Pn → N∗

∆/X → 0

shows that the cokernel of the map

H0(∆, N∗
∆/Pn(n −

∑

i

di − 1)) → H0(∆, N∗
∆/X(n −

∑

i

di − 1))

is

H1(∆,
⊕

j

O∆(n −
∑

i

di − 1 − dj)). (1.4)

As dr = Sup {dj}, the vanishing of the space (1.4) is clearly implied (and in fact
equivalent to) by the inequality n −

∑
i di − 1 − dr ≥ −1 of (0.1).

We now show the surjectivity of the map induced by dφ(G):

dφ(G) : H0(∆, N∗
∆/X(n −

∑

i

di − 1)) → Hom (W,TF,∆/W ).

Let G ∈ H0(X,I∆/X(n−
∑

i di − 1)) be generic and W = TFG,∆. Then the quotient
TF,∆/W identifies to H0(∆,O∆(n −

∑
i di − 1)). Indeed, FG is defined as the zero

set of a transverse section of Sn−
∑

i di−1E , and thus the normal bundle of FG in F
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identifies to Sn−
∑

i di−1E|FG
, with fiber H0(∆,O∆(n−

∑
i di−1)) at ∆. Furthermore

we observe that as ∆ is generic and n −
∑

i di > 1, the normal bundle N∆/X is
generated by sections. Of course N∗

∆/X(n−
∑

i di−1) is generated by global sections

too. Finally, we note that by definition, the space W is the space H0(∆, N∆/XG
).

As deg G = n−
∑

i di−1, XG is a generic Fano complete intersection of index 2, and
it thus follows that the normal bundle N∆/XG

is generically a direct sum of copies
of O∆.

We have the following lemma:

Lemma 1.4 1) The space W = TFG,∆ ⊂ H0(∆, N∆/X) identifies to the kernel of
the contraction map with

G ∈ H0(∆,I∆,X/I2
∆,X(n −

∑

i

di − 1)) = H0(∆, N∗
∆/X(n −

∑

i

di − 1)),

with value in H0(∆, N∗
∆/X(n −

∑
i di − 1)).

2) Using the inclusion W ⊂ H0(∆, N∆/X), the map dφ(G) is induced by the
contraction map between H0(∆, N∆/X) and H0(∆, N∗

∆/X(n−
∑

i di−1)), with value

in H0(∆,O∆(n −
∑

i di − 1)).

Postponing the proof of this lemma, we now conclude as follows. Let G ∈ H0(∆, N∗
∆/X(n−∑

i di − 1)) be generic and let W = Ker dφ(G), where dφ(G) has been identified in
lemma 1.4 to contraction by G, with value in H0(∆,O∆(n −

∑
i di − 1)). We have

to show that the map given by contraction

H0(∆, N∗
∆/X(n −

∑

i

di − 1)) → Hom (W,H0(∆,O∆(n −
∑

i

di − 1)))

is surjective. This problem concerns now vector bundles on ∆ = P1: we have a
vector bundle E of rank s = n − r − 1 and degree k = n − 1 −

∑
i di on ∆ = P1,

such that E∗(k) is generated by global sections. We choose a generic element G
of H0(∆, E∗(k)). We know that G gives a surjective map E → O∆(k) with kernel
K which is a trivial vector bundle. Denote by W ⊂ H0(∆, E) the kernel of the
contraction map with G, with value in H0(O∆(k)); thus W = H0(∆,K) and we
have to show that the contraction map induces a surjective map:

H0(∆, E∗(k)) → Hom (W,H0(∆,O∆(k)).

We consider now the composed map

H0(∆, E∗(k)) → H0(∆,K∗(k)) → Hom (H0(∆,K),H0(∆,O∆(k)))

and want to show that it is surjective. The first map is surjective as its cokernel
is H1(∆,O∆) = 0. The second map is surjective exactly when H0(∆,K(−1)) = 0
which follows from the fact that K is trivial.

Proof of lemma 1.4. 1) We have the inclusions

∆ ⊂ XG ⊂ X,
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which give the normal bundles exact sequence:

0 → N∆/XG
→ N∆/X

dG
→ O∆(n −

∑

i

di − 1) → 0.

The space W is by definition the space H0(∆, N∆/XG
) hence by the exact sequence

above, it is the kernel of

dG : H0(∆, N∆/X) → H0(∆,O∆(n −
∑

i

di − 1)).

We just have to observe that the map dG above is nothing but contraction with the
image of G in I∆/I2

∆(n−
∑

i di − 1) = N∗
∆/X(n−

∑
i di − 1), which follows from the

construction of the normal bundles sequence.

2) It is an immediate consequence of 1) and the following more general statement:
Let φ : V → H be a surjective map and let W := Ker φ. A small deformation of φ,
given by an element of Hom (V,H) gives a deformation of W ∈ Grass(w, V ). Thus
we have a natural rational map

a : Hom (V,H) → Grass(w, V )

where w = rk W . Then the differential h ∈ Hom (V,H) 7→ da(h) ∈ Hom (W,V/W ) =
Hom (W,H) of this map is simply the map

h ∈ Hom (V,H) 7→ h|W .

This last statement follows from the standard construction of the isomorphism
TGrass(w,V )

∼= Hom (W,V/W ). This concludes the proof of 2).

2 A conjecture on cones of effective cycles

Let Y be a smooth projective complex variety and let Alg2k(Y ) ⊂ H2k(Y, R) be the
vector subspace generated by classes of codimension k algebraic cycles. This vector
space contains the effective cone

E2k(Y ) ⊂ Alg2k(Y )

generated by classes of effective cycles.

Definition 2.1 A class α ∈ Alg2k(Y ) is said to be big if α is an interior point of
E2k(Y ).

If h = c1(H) where H is an ample line bundle on Y , hk belongs to the interior of
the cone E2k(Y ). Indeed, for any effective cycle Z ⊂ Y of codimension k, the class
Nhk − [Z] is effective for N large enough. Applying this to a basis of Alg2k(Y )
consisting of effective cycles, one concludes that for some open set U ⊂ Alg2k(Y )
containing 0, hk − U ⊂ E2k(Y ).

Thus we get the following:
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Lemma 2.2 A class α ∈ Alg2k(Y ) is big if and only if, for some ǫ > 0, α − ǫhk ∈
E2k(Y ).

In the divisor case, the effective cone, or rather its closure, the pseudo-effective
cone, is now well understood by work of Boucksom, Demailly, Paun and Peternell
[2]. The case of higher codimension is not understood at all. To start with, there
is the following elementary result for divisors, which we will show to be wrong in
codimension 2 and higher.

Lemma 2.3 Let D be an effective divisor on Y , and assume that OY (D)|D is ample.
Then [D] is big.

Proof. Indeed, one shows for any divisor E on Y , by vanishing on D, that the
natural map

H1(Y,OY ((n − 1)D − E)) → H1(Y,OY (nD − E))

is surjective for large n, hence must be an isomorphism for large n. Thus the
restriction map

H0(Y,OY (nD − E)) → H0(D,OD(nD − E))

is surjective for large n. The space H0(D,OD(nD − E)) is non zero for n large, by
ampleness of OD(D), and it thus follows that the space H0(Y,OY (nD −E)) is non
zero too. Taking for E an ample divisor and applying lemma 2.2 gives the result.

Note that when D is smooth, OD(D) is also the normal bundle ND/Y . Let us
now construct examples of codimension 2 smooth subvarieties W ⊂ Y with ample
normal bundle, such that [W ] is not big.

We start from a generic hypersurface Z of degree d in Pd+2, with d ≥ 3 and
denote by Y its variety of lines. Let now Pd+1 ⊂ Pd+2 be an hyperplane, and let
W ⊂ Y be the subvarieties of lines contained in Z ′ := Z ∩ Pd+1. By genericity, W
and Y are smooth, and W is the zero set of a transverse section of the tautological
rank 2 bundle E on F , with fiber H0(∆,O∆(1)) at the point ∆ ∈ F . Thus the normal
bundle of W in Y is isomorphic to E|W . This vector bundle is globally generated on
W , and it is ample if the natural map

P(E) → Z ′

is finite to one. This is indeed the case for generic Z ′ by [8]. Thus W has ample
normal bundle. Let us now show:

Proposition 2.4 The class [W ] ∈ Alg4(Y, R) is not big.

Proof. The d + 1-dimensional hypersurface Z has Hd,1(Z)prim 6= 0, and this
provides using the incidence diagram (cf section 1) a non zero holomorphic form
η ∈ Hd−1,0(Y ) vanishing on W . Note that dim W = d− 1. Assume that [W ] is big.
By lemma 2.2, one has

[W ] = ǫh2 + e, (2.5)

where e =
∑

i ei[Ei] is a class of an effective codimension 2 cycle with real coefficients

and h is the class of an ample divisor. Let us integrate the form id−1(−1)
(d−1)(d−2)

2 η∧η

10



on both sides. As η|W = 0, the left hand side is zero. On the other hand, we have
by the second Hodge-Riemann relations (for holomorphic forms):

∫

Ei

id−1(−1)
(d−1)(d−2)

2 η ∧ η ≥ 0,

∫

Y
h2 ∪ id−1(−1)

(d−1)(d−2)
2 η ∧ η > 0.

Thus the integral on the right is > 0, which is a contradiction.

Note that the variety W also has the property that it is moving, that is, its
deformations sweep out Y . The proof of lemma 2.4 shows however that it is not
very moving (see section 1). Let us make the following conjecture :

Conjecture 2.5 Let W ⊂ Y be a smooth variety which is very moving. then [W ]
is big.

Remark 2.6 We could weaken slightly the conjecture above by considering varieties
which are very moving and have ample normal bundle. Indeed, the varieties we will
consider in the sequel and for which we would need to know that their class is big
not only are very moving (cf theorem 1.2) but also have ample normal bundle.

The conjecture is true for divisors by lemma 2.3. We also have:

Proposition 2.7 Conjecture 2.5 is true for curves.

Proof. Indeed, by Möıshezon-Nakai criterion, the dual cone to the effective cone of
curves is the ample cone. A point c = [C] which is in the boundary of the effective
cone of curves must thus have zero intersection with a nef class e, that is a point in
the boundary of the ample cone. Consider now a one-dimensional family (Ct)t∈B of
curves deforming C and passing through a given generic point y ∈ Y . Such a family
exists as C is very moving. Let τ : Σ → X be a desingularization of this family.
Then Σ contains two divisor classes c and σ which correspond to the fibers of the
map Σ → B and to the section of this map given by the point y. The nef class
τ∗e ∈ H2(Σ, R) satisfies

< τ∗e, c >= 0, < τ∗e, τ∗e >≥ 0

while the class c satisfies < c, c >= 0, where the <,> denotes the intersection
product on H2(Σ, R). The Hodge index theorem then tells that the classes c and
τ∗e must be proportional. But as < c, σ >> 0 and < τ∗e, σ >= 0, it follows that
in fact τ∗e = 0. The contradiction comes from the following: as e 6= 0 there is a
curve Γ ⊂ X, which we may assume to be in general position, such that degΓe > 0.
Now, because C is very moving, there exist for each γ ∈ Γ curves Cγ which are
deformations of C and pass through y and γ. We can thus choose our one dimensional
family to be parameterized by a cover r : Γ′ → Γ, in such a way that for any γ′ ∈ Γ′,
r(γ′) ∈ Cγ′ . But then the surface τ(Σ) contains the section γ′ 7→ γ′ ∈ Cr(γ′) which
sends via τ onto Γ, and as degΓe > 0, we conclude that τ∗e 6= 0.

Another example where conjecture 2.5 holds is the following:

Lemma 2.8 Let V ⊂ G(1, n) be a very moving subvariety. Then [V ] is big.

11



Proof. The cone of effective cycles on G(1, n) is very simple because (cf [9]) we have
for each pairs of complementary dimensions dual basis of the cohomology which are
generated by classes of Schubert cycles, which are effective, and furthermore, as
the tangent space of the Grassmannian is globally generated, two effective cycles of
complementary dimension on G(1, n) have non negative intersection (cf [5]). If z
is an effective class on G(1, n), write z =

∑
i αiσi where σi are Schubert classes of

dimension equal to dim z. Then αi = z · σ∗
i ≥ 0. Thus the cone of effective cycles is

the cone generated by classes of Schubert cycles. It follows from this argument that
for the class [V ] to be big, it suffices that

V · σ∗
i > 0

for every Schubert cycle σ∗
i of complementary dimension. These inequalities are

now implied by the fact that V is very moving. Indeed, choose a smooth point
x ∈ σ∗

i . Then we can choose a deformation V ′ of V passing through x, smooth at x
and meeting transversally σ∗

i at x. Thus there is a non zero contribution to V · σ∗
i

coming from the point x. The intersection V ∩σ∗
i could be non proper away from x,

but because the tangent space of the Grassmannian is generated by global sections,
each component of the intersection V ∩ σ∗

i has a non negative contribution to V · σ∗
i

by [5]. Thus V · σ∗
i > 0.

2.1 On the conjecture 2.5 for the varieties FG

We finally turn to the study of conjecture 2.5 for the subvarieties FG ⊂ F . For X a
generic complete intersection of multidegree d1 ≤ . . . ≤ dr in Pn, we have seen that
FG ⊂ F is very moving, where deg G = n −

∑
i di − 1. We have now the following:

Theorem 2.9 The class [FG] ∈ H2n−2
∑

i di(F, Q) is big when

3n − 4 −
∑

i

(di + 1)(di + 2)

2
≥ n − r − 2. (2.6)

Before proving this, let us explain the geometric meaning of this bound. The number
3n − 6 −

∑
i

(di+1)(di+2)
2 is simply the expected dimension of the family of planes

contained in X. The number 3n−4−
∑

i
(di+1)(di+2)

2 is thus the expected dimension
of the family Z ′ of lines contained in a plane contained in X. On the other hand,
the dimension n− r − 2 appearing on the right is the dimension of the varieties FG.

Proof of theorem 2.9 First of all, by Lemma 2.15 proved below, it suffices to
consider the case where

3n − 4 −
∑

i

(di + 1)(di + 2)

2
= n − r − 2.

What we shall do is to compute the class of the subvariety Z ′ of F introduced above,
which we describe as follows: let G2 → G be the partial flag manifold parameterizing
pairs (Q,∆), ∆ ⊂ Q, where ∆ is a line in Pn and Q is a plan in Pn. Let π : F2 → F
be the subvariety of G2 consisting of such pairs with ∆ ∈ F . Thus π : F2 → F is
a projective bundle of relative dimension n − 2. We consider the variety Z ⊂ F2

12



consisting of pairs (∆, P ) ∈ F2 where P is also contained in X. It has dimension

3n− 4−
∑

i
(di+1)(di+2)

2 which by assumption is equal to n− r − 2. Thus Z ′ = π(Z)
has dimension n − r − 2 and its codimension is n −

∑
i di.

Theorem 2.9 is an immediate consequence of the following two statements, (lemma
2.10 and proposition 2.11).

Lemma 2.10 Assume there exists a class P ∈ H2n−2
∑

i di(F, Q), which has the
following properties:

1. P is an effective class on F .

2. P can be written as
P = −ǫln−

∑
i di + c2R,

where R is any algebraic class of F .

Then the class cn−
∑

i di
(Sn−

∑
i di−1E) ∈ H2n−2

∑
i di(F, Q) is big.

Proposition 2.11 The class [Z ′] (which is by definition effective) of the variety Z ′

defined above is given by a polynomial expression P = P (l, c2) satisfying property 2
of lemma 2.10.

We used above the notation c2 = c2(E) ∈ H4(F, Q) and l = c1(E) ∈ H2(F, Q), E
being as before the (restriction to F of) the tautological rank 2 vector bundle with
fiber H0(∆,O∆(1)) at ∆ ∈ F .

Proof of lemma 2.10 Introduce a formal splitting of E or equivalently formal
roots x, y of its Chern polynomial, so that

c2 = xy, l = x + y.

Then Sn−
∑

i di−1E has for formal roots the expressions kx + (n −
∑

i di − 1 − k)y,
with 0 ≤ k ≤ n −

∑
i di − 1. Thus we get

cn−
∑

i di
(Sn−

∑
i di−1E) =

n−
∑

i di−1∏

k=0

kx + (n −
∑

i

di − 1 − k)y

which one can rewrite as

cn−
∑

i di
(Sn−

∑
i di−1E) = (n −

∑

i

di)
2xy

n−
∑

i di−2∏

k=1

kx + (n −
∑

i

di − 1 − k)y.

We claim that the class Q :=
∏n−

∑
i di−2

k=1 kx + (n −
∑

i di − 1 − k)y is big on the
Grassmannian hence a fortiori on F . To see this, we apply the argument of lemma
2.8. We just have to show that

Q(x, y) · σ > 0

for all Schubert cycles of dimension n −
∑

i di − 2 on G(1, n). We now use the fact
that

(n −
∑

i

di − 1)2c2Q = cn−
∑

i di
(Sn−

∑
i di−1E).

13



Any Schubert cycle of dimension n −
∑

i di − 2 on G(1, n) is of the form σ = c2σ
′

where σ′ is a Schubert cycle of dimension n −
∑

i di on G(1, n). One then has

(n−
∑

i

di − 1)2Q(x, y) · σ = (n−
∑

i

di)
2c2Q(x, y) · σ′ = cn−

∑
i di

(Sn−
∑

i di−1E) · σ′.

One shows easily that for any Schubert cycle σ′ of dimension n −
∑

i di, one has

cn−
∑

i di
(Sn−

∑
i di−1E) · σ′ > 0

unless σ′ = σ0,n−
∑

i di+1 is the Schubert cycle of lines passing through a point and
contained in a linear space of dimension n −

∑
i di + 1. But in this case, c2σ

′ = 0.
This proves the claim.

Now we proved that cn−
∑

i di
(Sn−

∑
i di−1E) = c2Q, where Q is big on F . Assume

that there is a class P of codimension n −
∑

i di on G which is effective and of the
form −ǫln−

∑
i di + c2R, with R algebraic. As the class Q is big on F , it is in the

interior of the effective cone of F , and thus for some small ǫ′

Q − ǫ′R

is effective on F . Thus c2(Q − ǫ′R) is also effective on F and we get:

cn−
∑

i di
(Sn−

∑
i di−1E) = c2Q = ǫ′c2R + E,

with E effective. Replacing c2R by P + ǫln−
∑

i di , where P is effective, we get:

cn−
∑

i di
(Sn−

∑
i di−1E) = E + ǫ′P + ǫ′ǫln−

∑
i di ,

where E + ǫ′P is effective. By lemma 2.2, cn−
∑

i di
(Sn−

∑
i di−1E) is then big.

Proof of proposition 2.11. We give for simplicity the proof for r = 1 and
thus denote dr = d with n = 2d. Let π : F2 → F be as above. F2 is a Pn−2-bundle
over F . Let P2 → F2 be the universal plane parameterized by F2. As P2 is sent
naturally to Pn, this P2-bundle admits a natural polarization O(1). Then

P2 = P(F)

for a certain rank 3 vector bundle on F2. As for each pair (∆, Q) ∈ F2, one has
∆ ⊂ Q, one has a natural surjective map of bundles on F2

F → π∗E → 0.

Let H be its kernel and let h := c1(H) ∈ H2(F2, Q). The Pn−2-bundle F2 over F
is polarized by the line bundle L2 := detF coming from the Grassmannian G(2, n)
via the natural map F2 → G(2, n), (∆, Q) 7→ Q. From the exact sequence

0 → H → F → π∗E → 0, (2.7)

one deduces the exact sequence

0 → H⊗ Sd−1F → SdF → π∗SdE → 0.
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Observe now that the defining equation f of X induces a section of SdF which
by definition vanishes in SdE . Thus we get a section f̃ of H ⊗ Sd−1F such that
Z = V (f̃). It follows (together with some transversality arguments implying that f̃
vanishes transversally) that

[Z] = cN (H⊗ Sd−1F), N = rank Sd−1F =
d(d + 1)

2
.

It remains to compute
[Z ′] = π∗[Z].

It is clear that [Z ′] is a polynomial in l and c2. As we are interested only in showing
that the coefficient of ln−d in this polynomial is negative, we can do formally as if
E = L ⊕OF . As H⊗ Sd−1F is filtered with successive quotients isomorphic to

H⊗i ⊗ Sd−iE , i = 1 . . . , d

we get

[Z] =
∏

i=1

dcd−i+1(H
⊗i ⊗ Sd−iE)

and modulo c2 this is equal to

d∏

i=1

d−i∏

j=0

(ih + (d − i − j)l).

Observe now that by the exact sequence (2.7), the Pn−2-bundle P2 polarized by
H = L2 ⊗ π∗L−1 is isomorphic to P(K1), where K1 is the kernel of the evaluation
map V → E , so that we have the exact sequence

0 → K1 → V ⊗OF → E → 0.

By definition of Segre classes, we then have

π∗h
n−2+i = si(K

∗
1) = ci(E

∗).

As we compute modulo c2, we get:

π∗h
n−2+i = 0, i 6= 0, 1

π∗h
n−2 = 1, p∗h

n−1 = −l.

Hence it follows that we have the equality

[Z ′] = π∗(

d∏

i=1

d−i∏

j=0

(ih + (d − i − j)l)) = (αn−2 − αn−1)l
n−d mod. c2,

where we write

M :=

d∏

i=1

d−i∏

j=0

(ih + (d − i − j)l)) =
∑

i≤N

αih
ilN−i.

15



The important point is now the following: Let us factor in M all the terms
corresponding to j = d − i. Then

M = d!hd
∏

i≥1,j≥1,i+j≤d

(ih + jl).

Let M ′ :=
∏

i≥1,j≥1,i+j≤d(ih + jl) =
∑

i≤N−d βih
ilN−d−i. Then we have

αn−2 − αn−1 = d!(βn−d−2 − βn−d−1).

Thus we have to show that βn−d−2 − βn−d−1 < 0. But now we observe that the
degree of the homogeneous polynomial M ′ is N − d with N = n− 2 + n− d. Hence
deg M ′ = 2n − 2d − 2. The polynomial M ′ is symmetric of degree 2n − 2d − 2 in
l and h and it suffices to show that its coefficients βi are strictly increasing in the
range i ≤ n−d−1 = deg M ′

2 . This can checked at hand or proved by geometry using
the fact that

(d!)2(xy)dM ′(x, y) =
∏

1≤i≤d

ci+1(S
iE),

if x, y are the formal roots of E , and that the numbers (d!)2(βi−βi+1), 2i ≤ 2n−2d−2
can be interpreted as intersection numbers of

∏
1≤i≤d ci+1(S

iE) with a Schubert
cycle.

Finally, let us rephrase conjecture 2.5 in the case of subvarieties FG ⊂ F , in
terms of geometry of the Grassmannian G := G(1, n) of lines in Pn. For simplicity,
let us consider the case of hypersurfaces of degree d in Pn. The bound (0.1) then
becomes

n ≥ 2d.

Let V := H0(Pn,OPn(1)) with symmetric power SdV = H0(Pn,OPn(d)). Recall
that we denote by E the rank 2 vector bundle with fiber H0(∆,O∆(1)) on G(1, n).
There is a natural evaluation map

SdV ⊗OG → SdE (2.8)

with kernel we denote by Kd. The projective bundle

π : P(K∗
d) → G(1, n)

(where we use the Grothendieck notation) thus parameterizes pairs (f,∆) such that
f|∆ = 0. The natural projection ρ : P(K∗

d) → P(SdV ∗), which to (∆, f) associates f ,
has for fibre over f the variety Ff of lines contained in the hypersurface Xf defined
by f .

Now we consider the subvarieties Ff,G ⊂ Ff , where G has degree n−d−1. These
are defined as zero sets of generic, hence transverse, sections of Sn−d−1E . Thus their
cohomology class is given by

[FG] = cn−d(S
n−d−1E|F ).

Summarizing and applying lemma 2.2, conjecture 2.5 tells that for some ǫ > 0, (a
multiple of) the class π∗(cn−d(S

n−d−1E) − ǫln−d) is effective on the generic fiber
of the map ρ : P(K∗

d) → P(SdV ∗). An elementary Hilbert scheme argument then
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shows that we can put this in family, and combining this with the description of
the cohomology ring of a projective bundle, this gives us the following reformulation
of conjecture 2.5 in this case: we denote by H the class c1(O(1)) on the projective
bundle P(K∗

d).

Conjecture 2.12 Assume n ≥ 2d. Then for some algebraic class

α′ ∈ H2n−2d−2(P(K∗
d), Q),

and for some small ǫ > 0, the class

π∗(cn−d(S
n−d−1E) − ǫln−d) + Hα′

is effective on P(K∗
d). In other words, the class cn−d(S

n−d−1E) belongs to the interior
of the cone of degree 2n − 2d classes α on G such that π∗α + Hα′ is effective on
P(K∗

d) for some algebraic class α′ ∈ H2n−2d−2(P(K∗
d), Q).

Theorem 2.9 proves conjecture 2.12 in the range 3n− 4− (d+1)(d+2)
2 ≥ n− 3, that is

n ≥
1

2
(
(d + 1)(d + 2)

2
+ 1).

Remark 2.13 More generally, suppose we have a variety Y and a vector bundle
F → Y , with associated projective bundle π : P(F) → Y . Let h = c1(OP(F)(1)).

We can then introduce the convex cone E2k(Y,F) consisting of classes c ∈ Alg2k(Y )
such that π∗c + hc′ ∈ E2k(P(F)), for some c′ ∈ Alg2k−2(P(F)). There is an obvious
inclusion

E2k(Y ) ⊂ E2k(Y,F).

When F is ample, the whole of Alg2k(Y ) is contained in E2k(Y,F) and it follows
that E2k(Y ) is contained in the interior of E2k(Y,F). At the opposite, if F is trivial,
it is obvious that

E2k(Y ) = E2k(Y,F).

In our case, the class cn−d(S
n−d−1E) is effective and even numerically effective but

not in the interior of the effective cone of Alg2n−2d(G(1, n)). The bundle K∗
d is

generated by sections but not ample.

Remark 2.14 The conjecture cannot be improved by replacing cn−d(S
n−d−1E) by

cn−d−1(S
n−d−2E). Indeed, on a generic Fano variety of lines F in a degree d

hypersurface X, the class [FG] = cn−d−1(S
n−d−2E) of the subvariety of lines in

XG, deg G = d−n− 2 is not big. In fact, dim FG = n− 2 and FG has 0 intersection
with the variety Fx of lines through a generic point x ∈ X, which has dimension
n − d − 1 = dim F − n + 2. As Fx is moving, this implies that [FG] is not big. The
same argument works for any class in H2n−2d−2(F, Q) which is divisible by c2.

The crucial case for conjecture 2.12 is the case where n = 2d. Indeed, we have the
following:

Proposition 2.15 If the conjecture 2.12 is true for a given pair (n, d), n ≥ 2d,
then it is true for the pair (n + 1, d).
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Proof. Let us denote by Kn+1
d the kernel of the evaluation map (2.8) on G(1, n+1),

for V = H0(Pn+1,OPn+1(1)). We assume that the conjecture is satisfied for n, d
with n ≥ 2d and show that it is satisfied for n + 1, d.

Choose a pencil of hyperplanes (Ht)t∈P1 on Pn+1, with base-locus B. Then
G(1, n + 1) contains the Plücker hyperplane section GB consisting of lines meeting
B. it is singular and admits a natural desingularization

G′ → GB ⊂ G(1, n + 1)

where G′ = ⊔t∈P1G(1,Ht). We pull-back to G′ the projective bundle P(Kn+1
d

∗
), and

denote the result by
P ′ := G′ ×G(1,n+1) P(Kn+1

d

∗
)

j : P ′ → P(Kn+1
d

∗
),

We denote by πn+1 : P(Kn+1
d

∗
) → G(1, n + 1) the structural map, and let π′

n+1 :=
πn+1 ◦ j : P ′ → G(1, n + 1). We have the following properties:

1. j∗[P
′] = π∗

n+1l ∈ H2(P(Kn+1
d

∗
, Q).

2. If n′ : P ′ → P1 is the natural map, and k = c1(OP1(1)),

j∗(n
′∗k) = π∗

n+1c2 ∈ H4(P(Kn+1
d

∗
), Q).

Observe also that the cohomology of P ′ is generated by j∗H∗(P(Kn+1
d

∗
), Q) and

n′∗k, because for each fiber P ′
t of n′, the restriction map

j∗t : H∗(P(Kn+1
d

∗
), Q) → H∗(P ′

t , Q)

is surjective.
Introduce

P ′′ := ⊔t∈P1P(Kn,t
d

∗
)

where P(Kn,t
d

∗
) is the variety P(Kn

d
∗) for the hyperplane Ht. There is a natural

rational linear projection of projective bundles :

φ : P ′
99K P ′′

which to (∆, t,X) associates (∆, t,X ∩ Ht). Denote by

π′′
n+1 : P ′′ → G(1, n + 1), n′′ : P ′′ → P1

the natural maps. Then we have

π′′
n+1 ◦ φ = π′

n+1 = πn+1 ◦ j, n′ = n′′ ◦ φ.

Let h be the class c1(OP(Kn+1
d

∗

)(1)). The projective bundle P ′′ → G′′ has a

natural polarization h′′ such that

φ∗h′′ = j∗h.
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The induction assumption is that for each fiber P ′′
t of n′′, a class of the form

π′′
n+1

∗(−ǫln−d + cn−d(S
n−d−1E)) + h′′c′ with ǫ > 0 is effective on P ′′

t . Putting this
in family, we conclude that on P ′′, a class of the form

π′′
n+1

∗
(−ǫln−d + cn−d(S

n−d−1E)) + h′′c′ + n′′∗kc′′

is effective. The fact that the indeterminacy locus of φ has high codimension then
shows that

φ∗(π′′∗
n+1(−ǫln−d + cn−d(S

n−d−1E)) + h′′c′ + n′′∗kc′′)

= j∗(π∗
n+1(−ǫln−d + cn−d(S

n−d−1E))) + j∗hφ∗c′ + n′∗kφ∗c′′ (2.9)

is also effective on P ′. As noted above, the class φ∗c′′ comes from a class on P(Kn+1
d

∗
),

φ∗c′′ = j∗c′′′.

Applying j∗ to (2.9), the properties 1 and 2 above, and the projection formula, we
conclude that a class of the form

l(π∗
n+1(−ǫln−d + cn−d(S

n−d−1E)) + hc′) + (π∗
n+1c2)c

′′′

= π∗
n+1(−ǫln−d+1 + lcn−d(S

n−d−1E)) + hlc′ + (π∗
n+1c2)c

′′′

is effective on P(Kn+1
d

∗
).

As cn−d(S
n−d−1E)) is divisible by c2, we conclude that the assumptions of lemma

2.10 are satisfied on the fibers of

ρ : P(Kn+1
d

∗
) → P(SdV ∗),

where h vanishes. Thus by lemma 2.10, conjecture 2.12 is satisfied for n + 1, d.

3 On the generalized Hodge conjecture for coniveau 2

complete intersections

We prove now the following result which motivated our interest in theorem 1.2 and
conjecture 2.5. Let X be a generic complete intersection of multidegree d1 ≤ . . . ≤ dr

in Pn, and assume the bound (0.1) holds, that is

n ≥
∑

i

di + dr.

By theorem 1.2, the varieties FG ⊂ F are very moving.

Theorem 3.1 If the varieties FG satisfy conjecture 2.5, that is [FG] is big, then the
generalized Hodge conjecture for coniveau 2 is satisfied by X.
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Proof. Assume that [FG] is big. Then it follows by lemma 2.2 that for some positive
large integer N and for some effective cycle E of codimension n −

∑
i di on F , one

has:

N [FG] = ln−
∑

i di + [E]. (3.10)

(Here we could work as well with real coefficients, but as we want actually to do
geometry on E, it is better if E is a true cycle.) Now we recall from lemma 1.1
that for a ∈ Hn−r(X)prim, η = p∗q

∗a ∈ Hn−r−2(F ) is primitive with respect to l
and furthermore vanishes on FG, with dim FG = n − r − 2. Let us assume that

a ∈ Hp,q(X)prim and integrate (−1)
k(k−1)

2 ip−qη ∪ η, k = p + q − 2 = n − r − 2 over
both sides in (3.10). We thus get

0 =

∫

F
(−1)

k(k−1)
2 ip−qln−

∑
i di ∪ η ∪ η +

∫

E
(−1)

k(k−1)
2 ip−qη ∪ η.

As η is primitive, and non zero if a is non zero, by the second Hodge-Riemann

bilinear relations (cf [15], I, 6.3.2), we have
∫
F (−1)

k(k−1)
2 ip−qln−

∑
i di ∪ η ∪ η > 0. It

thus follows that ∫

E
(−1)

k(k−1)
2 ip−qη ∪ η < 0.

Let Ẽ = ⊔Ẽj be a desingularization of the support of E =
∑

j mjEj , mj > 0. Thus
we have ∑

j

mj

∫

Ẽj

(−1)
k(k−1)

2 ip−qη ∪ η < 0.

It thus follows that there exists one Ej such that

∫

Ẽj

(−1)
k(k−1)

2 ip−qη ∪ η < 0. (3.11)

Choose an ample divisor Hj on each Ẽj. By the second Hodge-Riemann bilinear
relations, inequality 3.11 implies that η

|Ẽj
is not primitive with respect to the po-

larization given by Hj, that is η ∪ [Hj] 6= 0 and in particular

η|Hj
6= 0.

In conclusion, we proved that the composed map

Hn−r(X)prim
p∗q∗
→ Hn−r−2(F ) →

⊕
Hn−r−2(Hj)

is injective, where the second map is given by restriction. If we dualize this, recalling
that dim Hj = n − r − 3, we conclude that

⊕
Hn−r−4(Hj) → Hn−r(X, Q)prim

is surjective, where we consider the pull-backs of the incidence diagrams to Hj

Pj
qj
→ X

pj ↓
Hj
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and the map is the sum of the maps qj∗p
∗
j , followed by orthogonal projection onto

primitive cohomology. As for n − r even and n − r ≥ 3, the image of
∑

j qj∗p
∗
j also

contains the class h
n−r

2 , (up to adding if necessary to the Hj the class of a linear
section of F ) it follows immediately that the map

∑

j

qj∗p
∗
j :

⊕
Hn−r−4(Hj) → Hn−r(X, Q)

is also surjective, if n − r ≥ 3 (the case n − r = 2 is trivial). This implies that
Hn−r(X, Q) is supported on the n − r − 2-dimensional variety ∪jqj(Pj), that is
vanishes on X \ ∪jqj(Pj). The result is proved.

This theorem combined with theorem 2.9 allows us to reprove and generalize the
previously known results concerning the generalized Hodge conjecture for coniveau
2 hypersurfaces (see [10]). Indeed the bound (2.6) of theorem 2.9 can also be reinter-
preted as follows (in the case of hypersurfaces): the generic hypersurface of degree
d in Pn+1 is swept-out by plans. In [10], A. Otwinowska proves that this implies the
triviality of CH1(X)Q,hom for X any hypersurface of degree d in Pn (note that it is
likely that the same can be done for complete intersections as well). From Bloch-
Srinivas argument (see [1], [15], II, proof of theorem 10.31) one can also deduce from
this that Hn−r(X)prim vanishes on the complementary set of a closed algebraic sub-
set of X of codimension 2, that is the generalized Hodge conjecture for coniveau 2
holds for X.
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[10] A. Otwinowska. Remarques sur les groupes de Chow des hypersurfaces de petit
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