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CHAPTER 1

Monte Carlo Simulation for the Spin Transport in Magnetic

Thin Films

K. Akabli and H. T. Diep

Laboratoire de Physique Théorique et Modélisation

CNRS-Université de Cergy-Pontoise, UMR 8089

2, Avenue A. Chauvin, 95302 Cergy-Pontoise Cedex - France

E-mail: khalid.akabli@u-cergy.fr , diep@u-cergy.fr

The magnetic phase transition is experimentally known to give rise to
an anomalous temperature-dependence of the electron resistivity in fer-
romagnetic crystals. Phenomenological theories based on the interaction
between itinerant electron spins and lattice spins have been suggested
to explain these observations. We give a review here on relevant works
which allowed to understand the behavior of the resistivity as a function
of temperature. We also show by extensive Monte Carlo (MC) simulation
the resistivity of the spin current from low-T ordered phase to high-T
paramagnetic phase in a ferromagnetic film. We analyze in particular
effects of film thickness, surface interactions and different kinds of im-
purities on the spin resistivity across the critical region. The origin of
the resistivity peak near the phase transition is shown to stem from the
existence of magnetic domains in the critical region. We also formulate
a theory based on the Boltzmann’s equation in the relaxation-time ap-
proximation. This equation can be solved using numerical data obtained
by our simulations. We show that our theory is in a good agreement with
our MC results. Comparison with experiments is discussed.

1. Introduction

The behavior of the resistivity in magnetic systems has been widely stud-

ied during the last 50 years. While the resistivity in nonmagnetic systems

is unanimously attributed to the effect of phonons, the origin of the spin-

dependent resistivity was not clearly understood. We had to wait until

de Gennes and Friedel’s first explanation in 19581 which was based on

the interaction between spins of conduction electrons and magnetic lat-

tice ions. Experiments have shown that the resistivity indeed depends on

1
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the spin orientation.2,3,4,5,6 Therefore, the resistivity was expected to de-

pend strongly on the spin ordering of the system. Experiments on vari-

ous magnetic materials have found in particular an anomalous behavior of

the resistivity at the critical temperature where the system undergoes the

ferromagnetic-paramagnetic phase transition.3,4,5,6

The problem of spin-dependent transport has been also extensively stud-

ied in magnetic thin films and multilayers. The so-called giant magnetore-

sistance (GMR) was discovered experimentally twenty years ago.7,8 Since

then, intensive investigations, both experimentally and theoretically, have

been carried out.9,10 The so-called ”spintronics” was born with spectacu-

lar rapid developments in relation with industrial applications. For recent

overviews, the reader is referred to the reviews by Dietl11 and Bibes and

Barthlmy12. Theoretically, in their pioneer work, de Gennes and Friedel1

have suggested that the magnetic resistivity is proportional to the spin-spin

correlation. In other words, the spin resistivity should behave as the mag-

netic susceptibility. This explained that the resistivity singularity is due

to ”long-range” fluctuations of the magnetization observed in the critical

region. Craig et al13 in 1967 and Fisher and Langer14 in 1968 criticized

this explanation and suggested that the shape of the singularity results

mainly from ”short-range” interaction at T & Tc where Tc is the transi-

tion temperature of the magnetic crystal. Fisher and Langer have shown

in particular that the form of the resistivity cusp depends on the interac-

tion range. An interesting summary was published in 1975 by Alexander

and coworkers15 which highlighted the controversial issue. To see more de-

tails on the magnetic resistivity, we quote an interesting recent publication

from Kataoka.16 He calculated the spin-spin correlation function using the

mean-field approximation and he could analyze the effects of magnetic-field,

density of conduction electron, the interaction range, etc.

Although many theoretical investigations have been carried out, to date

very few Monte Carlo (MC) simulations have been performed regarding

the temperature dependence of the dynamics of spins participating in the

current. In our recent works,17,18 we have investigated by MC simulations

the effects of magnetic ordering on the spin current in magnetic multilayers.

Our results are in qualitative agreement with measurements.19

The purpose of this chapter is to recall some important works which

have contributed to the understanding of the mechanisms that govern the

resistivity behavior of magnetic systems.

The chapter is organized as follows. Section 2 is devoted to an intro-

duction on the spin-independent transport. Section 3 shows a background
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of spin-dependent transport which will help to analyze Monte Carlo results

shown later in the chapter. In section 4 we describe our model and method.

Section 5 displays our results while section 6 is devoted to a semi-numerical

theory based on the Boltzmann’s equation. Using the results obtained with

Hoshen and Kopelman’s20 cluster-counting algorithm, we show an excel-

lent agreement between our theory and our Monte Carlo data. A general

conclusion is given in section 7.

2. Spin-independent transport

2.1. Drude’s Model

The first model describing the electron transport is the Drude’s model which

supposes that the conduction electrons in metals are free. The mean time

between two successive collisions τ is called relaxation time. The conduc-

tivity is written as σ =
(ne2τ)

m
, where n is the electron density, m its mass

and e its charge. τ is related to the mean electron velocity vf by τ =
le
vf

.

In this theory, the mean free path le, i. e. the average length travelled by

an electron between two successive collisions, is supposed to be very small

compared to the system dimension L. When le ≃ L, one has to take into

account the wave nature of the electron motion. Semi-classical or quantum

theories should be used.

Another interesting quantity is the phase-coherence length Lφ below

which the electron wave packets do not change their phase. At this stage

it is worth to mention that when the system is only weakly disordered, i.

e. (le >> λF , where λF is the Fermi wave length, we can distinguish two

regimes:

1- The ballistic regime in which the electron does not make any collision

other than by the system edges. Electronic properties are then strongly de-

pendent on the sample shape.

2- The diffusive regime in which the electron makes many collisions with

other electrons and/or impurities, the electron motion is Brownian. This

regime is what happens in most metals.

Before going to a treatment of the transport by the Boltzmann’s equation,

let us show how to calculate the magnetoresistance using the Drude’s the-

ory. We show in Fig. 1 the Hall’s experiment realized in 1879. In the absence

of an applied magnetic field, we have the Drude’s relation σ0 =
(ne2τ)

m
and

the current j = nev in the permanent regime. The main idea of the Hall’s
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experiment was to see how the magnetic field can alter the resistivity of

the metal. The setup is the following (see Fig. 1): the sample is under an

applied electric field Ex and a perpendicularly applied magnetic field Bz.

Fig. 1. Hall’s experiment.

We write the following components of the current

σ0Ex =
(eBτjy)

m
+ jx (1a)

σ0Ey = −
(eBτjx)

m
+ jy (1b)

The magnetoresistance is defined as ρ(B) =
Ex

jx
. When the Hall’s field

Ey is established, the current jy is cancelled. From the first equation, we see

that ρ(B) =
Ex

jx
= σ−1

0 . This expression gives a magnetoresistance inde-

pendent of Bz, contrary to experimental observation. The second relation

gives the Hall’s constant RH =
Ex

(jx ∗ B)
= −

1

ne
which depends only on

the charge density. A more detailed study shows that this is in fact a limit

value of the Hall’s constant.

In conclusion, the classical treatment of the electron transport cannot

account for the existence of the magnetoresistance. In the following we will

introduce a semi-classical treatment which will lead to a more .
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2.2. Semi-classical theory of conduction in metals

2.2.1. Introduction.

In the semi-classical treatment, one uses the Bloch’s theory for the electron

in a periodic potential. The electron energy is therefore divided in bands

separated by forbidden zones. In calculations of electronic properties, one

has to use in addition the Fermi-Dirac distribution to take into account

the full quantum nature of the electron. The electron velocity is given by

vn(k) =
(∇kǫn(k))

~
where n is the energy band index, k the wave vector

and ǫn(k) the electron energy.

It is interesting to note that when the electron has a wave vector on

a Brillouin’s zone edge, it is reflected by ions. The electron cannot travel

through the crystal due to this Bragg’s reflection. Other types of collisions

at low temperatures include collisions by impurities, crystal defects etc

which give rise to the existence of a resistance, through small, observed at

low T . The collisions with phonons occur only at higher T .

2.2.2. Description of the model and applications

Let us show some details of the semi-classical treatment. The main purpose

is to relate the electronic band structure to the transport properties.

Consider an electron at the position r with the wave vector k in the

energy band n. The restrictions we impose on the time evolution of these

parameters are

• n does not change with time evolution. It means that the electron

will stay in the same energy band.

• The evolution of r and k are given by

(1)
dr

dt
= vn(k) =

(∇kǫn(k))

~

(2) ~
dk

dt
= −e[E(r, t) +

vn(k) ∧ H(r, t)

c
]

• The Pauli principle is obeyed. At thermal equilibrium, the electron

density in a volume drdk is given by the Fermi-Dirac distribution

f(ǫn(k))dk

(4π3)
=

dk

(4π3)
∗ [expβ(ǫ−µ) + 1]−1 (2a)

The first condition is very strong since one has to be sure that the electric

and magnetic fields are not strong enough to cause the band ”breakdown”.

To satisfy this, we should have
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• eEa ≪ [εgap(k)]2/εf ,

• ~ωc ≪ [εgap(k)]2/εf a

where a is the lattice constant. For an electric field of 10−2V/cm, eEa is

of the order of 10−10eV . If the Fermi energy is 1eV , one reaches the field

limit for an energy gap smaller than 10−5eV . In metals, the band gap is of

the order of 10−1eV so that this condition is easily fulfilled. However for

a magnetic field such as ~ωc ≈ 10−4eV , the field limit for gaps of 10−1eV

is reached at a magnetic field of the order 10−2eV . Such a field is often

used in experiments so care should be taken to verify the second condition

mentioned above. Finally the last point we should bear in mind for a semi-

classical treatment is λ ≫ a which reminds the concept of localization of

wave packets.

It is worth to note that for a completely filled band or a completely

empty one, there is no electron current.

2.2.3. Magnetoresistance

Consider a magnetic field applied along the z direction and an electric field

along the x direction. One has

v =
1

~

∂ε(k)

∂k
(3a)

~
d
−→
k

dt
=

−e

c
v(k) ∧ H (3b)

Integrating from 0 to t, one has

~
d
−→
k

dt
=

−e

c
v(k) ∧ H − e

−→
E (4a)

c~

eH
−→uH ∧ [k(t) − k(0)] = −(r(t) − r(0)) + (

c

H
−→uH ∧

−→
E )t (4b)

The energy is written as ε(k) = ε(k) − ~
−→
k .(

c

H
−→uH ∧

−→
E ).

At the time t = τ , the above relation becomes

c~

eH
−→uH ∧

[k(τ) − k(0)]

τ
= −

(r(τ) − r(0))

τ
+ (

c

H
−→uH ∧

−→
E ) (5a)

At this stage we should distinguish two cases:
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Case of closed orbits

In this case the term (k(τ)− k(0)) is bounded and it becomes insignifi-

cant for large enough τ . One then has

(r(τ) − r(0))

τ
= (

c

H
−→uH ∧

−→
E ) (6a)

limwcτ→0j⊥ =
−nec

H
(−→uH ∧

−→
E ) (6b)

This shows that the semi-classical treatment gives in the case of closed or-

bits the same Hall’s constant given by the Drude’s model.

Case of open orbits

In this case, the current is given by

−→
j = σ(0)−→n .(−→n .

−→
E ) + σ(1)−→E (7a)

where −→n denotes the direction of the orbit in the real space. In the above

expression , one expects for strong magnetic fields σ(1) vanishes and σ(0)

should tend to a constant. This is easily understood because [k(τ) − k(0)]

does not have a limit with time evolution but increases with H. The appli-

cation of an electric field
−→
E = E(0)

−→
n′ +E(1)−→n will give rise to the following

magnetoresistance

ρ =
E.

−→
j

j
=

E(0)

j

−→
n′ .

−→
j (8a)

At strong field limit, E(1) → 0, one has

−→
j = σ(0)−→n .E(1) + σ(1)(

−→
n′ .E(0) + −→n .

−−→
E(1)) (9a)

−→
n′ .

−→
j =

−→
n′ .E(0).σ(1).

−→
n′ (9b)

ρ =
(
−→
n′ .

−→
j )2

−→
n′ .σ(1).

−→
n′

(10a)

At strong field limit the conductivity σ(1) tends to zero, so that for open

orbits the magnetoresistance can infinitely increase with increasing mag-

netic field.
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2.3. General equation for the transport

2.3.1. Boltzmann’s equation

The Boltzmann’s equation describes the time evolution of the distribution

function of the conducting particles. In the case of the conduction by elec-

trons, we will denote this function by f(r, k, t). Of course, at equilibrium,

f(r, k, t) is nothing else but the Fermi-Dirac function

f0 =
1

exp[β(ε − µ)] + 1
(11)

where β = (kBT )−1, µ is the chemical potential and ε the electron energy.

Let us write the following ”detailed balance”

∂f(r, k, t)

∂t
+

F

~
∇k(f) + v∇r(f) =

∂f

∂t
)coll (12a)

The left-hand side includes all possible causes of the electron diffusion

and the right-hand side denotes the collision term. One supposes for the

moment that electrons cannot change the energy band and their spins

cannot flip. The outgoing electron number from a volume element dk is

(
∂f

∂t
)

dkdt

(2π)3
ωk,k′f(k)(1−f(k′)) where ωk,k′ is the transition probability from

k (inside) to k′ (outside). Similarly, the number of ingoing electrons after

collisions is (
∂f

∂t
)

dkdt

(2π)3
ωk′,kf(k′)(1 − f(k)). The Boltzmann’s equation is

therefore rewritten as

∂f(r, k, t)

∂t
+

F

~
∇k(f) + v∇r(f) =

∫

dk′

(2π)3
×

[ωk′,kf(k′)(1 − f(k)) − ωk,k′f(k)(1 − f(k′))] (13)

To give an explicit expression for ωk,k′ , let us consider some principal

sources of diffusion:

• Diffusion by impurities: Diffusion by magnetic or nonmagnetic impuri-

ties can alter the wave vector and flip the electron spin

• Diffusion by phonons: Diffusion by phonons is the main cause of the

variation of the resistance with temperature

• Diffusion by electron-electron interaction: This kind of diffusion is rel-

evant in some cases such as in pure materials and at low T .



July 17, 2008 11:27 WSPC/Trim Size: 9in x 6in for Review Volume livre1

Spin Transport in Magnetic Multilayers 9

In the case where the energy change is small when going from k to k′ or

vice-versa, one can use the Fermi’s golden rule which was based on the

perturbation theory

ωk′,k =
2π

~
| < k′|Vi|k > |2δ(εk − εk′) (14a)

where Vi denotes the perturbative potential of the diffusing center. One has

to be careful because this rule is valid only for weak potentials. One sees

that

• If ε(k) 6= ε(k′) then ωk′,k and ωk,k′ vanish

• If ε(k) = ε(k′) (elastic collisions) then ωk′,k = ωk,k′ .

The right-hand side of Eq. (13) becomes for elastic collisions

∂f

∂t
)coll =

∫

dk′

(2π)3
ωk′,k[f(k′) − f(k)] (15a)

2.3.2. Relaxation time approximation

Suppose that the system is not far from equilibrium, f(k) is not very differ-

ent from f0(k). Using the relaxation time approximation
∂f

∂t
)coll ≃ −

f1(k)

τk
,

one has

f(k) = f0(k) + f1(k) (16a)

τ(k)−1 =

∫

dk′

(2π)3
ωk′,k[1 −

f1(k′)

f1(k)
] (16b)

where f1 << f0. Let us give the expression of f1(k) in the simple case

where there is only an electric field as perturbation source:

f1(k) = τ(k)vk(−
∂f0

∂εk
)eE (17a)

In imposing that the relaxation time depends only on εk, one obtains

τ(k)−1 =

∫

dk′

(2π)3
ωk′,k[1 −

k′.E

k.E)
] (18a)

Note that when there are several independent perturbations which yield

several relaxation times, we have the following Matthiessen’s rule τ−1 =
∑

i τ−1
i . This expression is not always in agreement with experiments. In

fact, it is difficult to prove that diffusions by different kinds of mechanisms

are all independent. Therefore, it has been proposed the following general-

ized Matthiessen’s rule τ−1 ≥
∑

i τ−1
i .
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2.3.3. Calculation of magnetoresistance

Consider the Boltzmann’s equation with both electric and magnetic fields

~v.e ~E(
∂f0

∂ε
) +

e

~
(~v ∧ ~B). ~∇kf1 = −

f1

τ
(19a)

For ~B = (0, 0, Bz) and ~E = (Ex, Ey, 0), one obtains

jx =
ne2

m
[<

τ

1 + ω2
cτ2

> + <
ωcτ

2

1 + ω2
cτ2

> ∗ <
τ

1 + ω2
cτ2

>−1]Ex (20a)

where ωc =
−eB

m
(cyclotron frequency). If ωcτ << 1, one has

jx =
ne2

m
[< τ > −ω2

c < τ3 > +ω2
c ∗

< τ2 >2

< τ >
]Ex (21a)

The variation due to the magnetic field is

• If ωcτ << 1 then
∇σ

σ
=

[−ω2
c < τ >< τ3 > − < τ2 >2]

< τ >2

• If ωcτ >> 1 then
∇σ

σ
=

[< τ−1 >−1 − < τ >]

< τ >

To close this section, we emphasize that we have shown some historic

treatments of the transport phenomenon with no spin dependence. The

Boltzmann’s equation was introduced to allow some developments in the

later part of this chapter. The magnetoresistance has been calculated with-

out spin effects. These will be considered in the following section.

3. Spin-dependent transport

3.1. Introduction

As said in section 1, the spin-dependent transport has been spectacularly

developed in the last 20 years. This is due to the so-called spintronics which

uses the properties of the spin current in magnetic devices for memory

storages and magnetic sensors in general.7,8,9

Already in the sixties, Fert and Campbell have shown the existence

of spin-dependent conduction.2 The conduction depends on the magnetic

ordering of the lattice: when the itinerant electron has its spin parallel to

the lattice spins, it can go through the system. Otherwise, it will suffer a

strong resistivity. As a consequence, in a ferromagnetic metal with a Curie

temperature Tc, the spin resistivity is very small for T < Tc and very
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large for T > Tc. Near Tc, the shape of the resistivity depends on several

ingredients which are specific for each material. For example, in the case of

transition metals (Fe, Co, Ni) one observes a huge peak of the resistivity ρ

at Tc.

Let us confine our discussion on the temperature dependence of the spin

resistivity. The field dependence will not be developed here. The first theory

which has attempted to explain the anomaly behavior of the resistivity at

Tc was due to Kasuya. 21 He affirmed that the variation of the magnetic

resistivity below Tc can be described by spin-dependent collisions. In this

theory, Kasuya neglected the effect of short-range interaction between spins.

Using the spin-spin correlation function for all distances, de Gennes and

Friedel1 have shown that the spin fluctuations could be the origin of the

resistivity anomaly at Tc. This result was criticized by Fisher and Langer14

on the ground that long-range correlation cannot explain the peak because

the mean free path is finite in this temperature region. Among other works

which have treated this question one can mention that of Alexander et

al.15 and Kataoka.16 We will return to these works after showing some

experimental data.

3.2. Experimental results

Let us mention here some experiments on the resistivity of several materials

showing different behaviors as a function of T . Measurements performed by

Legvold and al.22 on Gadolinium of hexagonal close-packed structure with

ferromagnetic state showed a change of slope near Tc ≃ 16 ± 1 K. They

have isolated effects of impurities smaller than 0, 02% of Mg, 0, 03% of Ca,

0, 15% of Sm and about 0, 02% of Fe. Similar measurements on Dysprosium

have confirmed the observed behavior of Gd. It is noted that there exists a

temperature range where the resistivity is constant (Fig. 2).

Other experiments made by Kawatra and al.23 on some binary compounds

of the type RX2 such as GdCo2 (Curie temperature of about 393 K) showed

the same behavior. The authors were able to distinguish contributions from

phonons and impurities by using the first derivative of the resistivity with

respect to T . It is noted that the peak is very fine and the resistivity is

asymmetric around Tc (Fig. 3).

Another interesting work was due to Schwerer and Cuddy3 who showed a

complete experiment on Ni and Fe. They showed interesting effects of im-

putities on the spin resistivity. Using the Matthieussen’s rule, they showed

the resistivity coming from magnetic and nonmagnetic impurities as a func-
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Fig. 2. Resistivity of Gadolinium (right) and Dysprosium (left)taken from Ref. 22.

Fig. 3. Resistivity ρ(T ) and its derivative dρ(T )/dT for GdCo2 taken from Ref. 23.

tion of T . Various behaviors have been then observed: for Ni one finds a

deflection with 1% Fe impurities, a peak with 1% Cu impurities, and a huge

peak with 1% Cr impurities, etc...(Fig. 4)
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Fig. 4. Resistivity ρ(T ) and its derivative dρ(T )/dT obtained for Ni (left) and Fe (right)
taken from Ref. 3.

3.3. Kasuya’s model

In transition metals (Fe, Co, Ni,...) and in rare-earth elements (Eu, Gd,

...), the resistance depends strongly on T 24(see Fig. 5). In the study of the

Fig. 5. Resistivity of some transition metals taken from Ref. 24.
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Fig. 6. Resistivity of Cobalt near the Neel temperature TNeel taken from Ref. 24.

Fig. 7. Resistivity of Europium (atomic number 63) taken from Ref. 24.

phononic resistivity (ρph), one distinguishes two regimes
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• T << ΘD (Debye temperature), the relaxation time varies as T−5

• T >> ΘD, the relaxation time varies as T−1

We note that θD corresponds to a temperature beyond which all normal

phonon modes are excited, the Debye approximation is no more valid.

The resistivity thus obeys a T 5-law at low T and a T -law at high T .

However, one observes experimentally3,4 another change of slope near Tc

for ferromagnets or near TN (Neel temperature) for antiferromagnets (see

Fig. 5 and Fig. 6). The origin of the resistivity anomaly has been discussed

by many authors among them one can mention Mott.25 According to him,

we have to take account the inter band transition because of the following

fact: the effective mass of s electrons is small with respect to that of d

electrons so the main conduction is made by s electrons. However, the

density of states of the d band is much larger than that of the s band so

the transition from s to d band is more frequent than that between s and s

states. The resistivity depends thus on the magnetic properties of d band.

It seems however that this mechanism cannot fully explain the resistiv-

ity anomaly in transition metals near the Curie temperature.

T. Kasuya 21 gave another argument: i) in the case of rare-earth el-

ements, the atomic configuration is characterized by f shells with very

narrow bands. The transition processus between bands suggested by Mott

is in fact very rare and it cannot explain the resistivity peak (Fig. 7), ii)

the Mott’s processus cannot explain the sharp and abrupt decrease of the

resistance at Tc.

T. Kasuya proposed an alternative: one has to use the effect of the ex-

change interactions between s, d and f electrons according to the system

under consideration. This observation allowed to understand qualitatively

the resistivity behavior: at low T where ferromagnetic ordering is perfect

the resistivity is zero and in the paramagnetic state, the resistivity is con-

stant.

Kasuya used the Boltzmann’s equation [Eq. (13)] with a diffusion probabil-

ity proportional to the exchange integral. Solving this equation by mean-
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field approximation, he obtained

ρ = (
3πm∗2

Ne2~2
)(S − σ)(S + σ + 1)

J2
eff

ε0
ohm, (22a)

In the expression [Eq. (22a)], σ is the mean value of the spin component

Sz and Jeff the effective exchange integral.21.

Note that the mean-field approximation may not be adequate to predict

correctly the resistivity behavior in particular its decrease above Tc.

3.4. Model by de Gennes and Friedel

The fact that the resistivity is related to the spin-spin interaction led de

Gennes and Friedel to use the spin-spin correlation to describe the resistivity

behavior.

To study explicitly they used a model where the spins S of the magnetic

ions are localized at the lattice sites. The interaction between two neighbors

is given by 2JSR.SR′ . The itinerant electrons interact with the lattice spins

by a contact Hamiltonian

HI =
∑

R,p

Gδ(R − Rp)SR.Sp (23a)

The determination, by a Born approximation, of the diffusion section σ

assuming elastic collisions allows to get an expression for the resistivity in

the case without correlation. One has then

dσ

dΩ
= σ0

S(S + 1)− < Sz >2

S(S + 1)
(24)

τ0

τ
= 1 −

< Sz >2

S(S + 1)
(25)

These relations show the dependence of the resistance on the order pa-

rameter < Sz >. As Kasuya, de Gennes and Friedel1 explained only in a

phenomenological manner the constant resistivity behavior above Tc.

We determine by the Green’s function method the mean value < Sz >
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appearing in Eq. (24) for spin 1/2 as follows26,27,28

Gi,j =< S+
i .S−

j >, (26a)

i~
dGi,j

dt
=< [S+

i , S−
j ] > δ(t, t′)− << [H, S+

i ](t);S(t′)−j >>, (26b)

H = −
J

2

∑

l,p

Sl.Sp (26c)

Solving Eq. (26b) with a Tyablikov decoupling, we obtain the magnon dis-

persion relation ǫ(k). The magnetization is given by

< Sz >=
1

2
−

2 < Sz >

N

∑

k

1

eβ~ǫ(k) − 1
(27)

We can solve this equation self-consistently to obtain < Sz > as a func-

tion of T . Replacing this into Eq. (25) we plot in Fig. 8 the inverse of the

relaxation time which is proportional to the spin resistance. A comparison

Fig. 8. Eq. (25) estimated by using the Green’s function method with
J

kBTc

= 1 and

B = 0.

with experiments on Gd, AuMn 1 shows clearly a disagreement at low T .

Now, if one uses the correlation function as the diffusion probability, one

can correctly describe the resistivity behavior at Tc and beyond. Taking

into account correlations at all distances, de Gennes and Friedel1 found
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τ0

τ
=

1

4

∫ 2

0

x3dx

1 −
Tc

T

sin(xk0d)

(xk0d)

(28a)

where x2 = 2(1− cos(θ)). This new expression is displayed in Fig. 9 where

one observes the decrease of the resistivity as T increases above Tc in agree-

ment with experimental results shown in Fig. 7 for the case of Europium

(atomic number 63). In the same figure, we also display the resistance for

 0.9
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Fig. 9. Relaxation time, Eq. (28a), versus T for different values of k0d.

different k0d, where k0 is the wave vector and d the lattice constant. For

k0d ≪ π (resp. k0d ≥ π), the effect of the correlation is strong (resp. weak).

This allows to distinguish two types of behavior for T > Tc:

• Resistivity is constant if the correlation is weak

• Resistivity decreases with increasing T if the correlation is strong.

3.5. Model by Fisher and Langer

The point raised by Fisher and Langer concerned the correlation used in

the calculation of the resistivity at Tc.
14,29 De Gennes and Friedel included

long-ranged fluctuations near Tc using an extension of the Ornstein-Zernike

approximation.30 The result near Tc is in disagreement with experiments

on Ni.13 Fisher and Langer suggested to use only short-range fluctuations

for the calculation of the resistivity at Tc. The reason was that long-range
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correlations were not compatible with the finite mean free path l of the

conduction electrons in this region of temperature. In addition, they sug-

gested to use a screening function to reduce the long-range character of the

correlation

p(R) = exp(−R/l) (29a)

τ0

τ
=

∞
∑

s=0

νsf(Rs)p(Rs)Γ(Rs), (29b)

In the expression of the relaxation time, Eq. (29b), the first term corre-

sponds to the number of spins in a cell of radius Rs and the second term is

the following decreasing function

f(R) =
1

4k4
F R

d2

dR2
(
cos(2kfR) − 1

R
) (30a)

The last term in Eq. (29b) is the spin-spin correlation function. Taking

p(R) ≡ 1, we show this function in Fig. 10 as a function of reduced temper-

ature for different Ka (K: wave vector, a: lattice constant). At small Ka

(i.e long-range) the peak is very high at at large values of Ka (short-range)

it is lowered. In addition, this calculation shows that the peak position is

slightly higher than Tc.

Fig. 10. Spin-spin correlation function versus temperature for different values of Ka.
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3.6. Kataoka’s model

Kataoka16 has built a model which combined main ingredients of the pre-

vious ones. The model was made for transition metals, it has a root in the

s− d model suggested by Kasuya describing the diffusion of the itinerant s

election by the localized d electrons. Kataoka used the collision probability

and the concept of correlation function introduced by de Gennes-Friedel

and Fisher-Langer. He solved the Boltzmann’s equation with a mean-field

approximation. His results show explicitly the effects of several important

ingredients:

• How the mean free path due to nonmagnetic diffusion is affected by the

temperature near Tc

• How the spin transport is affected by an applied magnetic field for up-

and down-spin states

• How the itinerant spin concentration affects the behavior of the resis-

tivity near Tc

• How the stability of the ferromagnetic phase modifies the resistivity.

The Hamiltonian used is written as

Hele =
∑

k,σ

ǫk,σa+
k,σak,σ

−
Jsd

N

∑

k,σ

[Sz(q)(a
+
k+q↑ak↑

−a+
k+q↓ak↓) + S−(q)a+

k+q↑ak↓ + S+(q)a+
k+q↓ak↑] (31)

where Jsd is exchange interaction s − d, S(q) the Fourier transform of the

lattice spin Si and ǫk,σ the energy of an electron of spin (σz = 1(resp. -1)

in the mean-field approximation. We have

ǫk,σ =
~

2k2

2m∗
σ

− Jsd < Sz > σz −
1

2
gµBHextσz. (32a)

The Boltzmann’s equation defined in Eq. (13) can be generalized to take

into account the spin nature and its possible flip. One can write the collision
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term as

(
dfσ(k)

dt
)c = (

J2
sd

~N2
)
∑

k′

[fσ(k′)(1 − fσ(k))ω(k′σ, kσ)

−fσ(k)(1 − fσ(k′))ω(kσ, k′σ)]

+(
J2

sd

~N2
)
∑

k′

[fσ−(k′)(1 − fσ(k))ω(k′σ−, kσ)

−fσ(k)(1 − fσ−(k′))ω(kσ, k′σ−)] (33)

The diffusion probabilities ω(kσ, k′σ) and ω(kσ, k′σ−) related to the corre-

lation function can be expressed as

ω(kσ, k′σ) = (
J2

sd

~N2
)

∫

< Sz(k − k′, 0)Sz(k
′ − k, t) > eiTσσ(k,k′)tdt, (34a)

ω(kσ, k′σ−) = (
J2

sd

~N2
)

∫

< Sσ−σ(k − k′, 0)Sσσ−(k′ − k, t) > eiT
σσ− (k,k′)tdt,

(34b)

where ”Tσσ−(k, k′) = ǫkσ − ǫk′σ−” is the transferred energy of an electron

during the transition |kσ〉 → |k′σ−〉 and S↓↑ (resp. S↓↑) represent S− (resp.

S+).

By using the relaxation time approximation and by supposing a situa-

tion very close to equilibrium, Kataoka expressed the spin resistivity as a

function of relaxation times τ↓ and τ↑ with and without spin flip

ρ =
3

2e2
[
<< τ↑ >>

m∗
↑

+
<< τ↓ >>

m∗
↓

]−1 (35)

At this stage, it is worth to express the collision probability using the spin-

spin correlation function incorporating the so-called stability parameter of

the ferromagnetic state. This parameter contains the second-nearest neigh-

bor interaction J2 which can destroy the ferromagnetic state if it is large

and antiferromagnetic (the ground state becomes then helimagnetic)

Hspin = −
1

N

∑

q

(Sz(q)Sz(−q)

+
1

2
[S+(q)S−(−q) + S−(q)S+(−q)])

−
∑

i

(2Jeff (0) < Sz > +Hext)Siz (36)
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where

Jeff (q) = J1 cos(
aq

2
) − J2 cos(aq) (37)

Note that J1 and J2 are positive and a is the lattice constant. The first term

gives rise to the ferromagnetic ordering while the second term describes the

antiferromagnetic interaction between next-nearest neighbors which is in

competition with J1. When J2/J1 ≥ 0.25, a helimagnetic structure takes

place.

The parallel susceptibility in mean-field approximation is

χ‖ =
NS2(gµB)2B′

S

kBT − 2ZJS2B′
S

(38)

where BS = Bs(gµBβSHm) is the Brillouin function and B′
s its first deriva-

tive. Hm represents the last term of the Hamiltonian. The correlation func-

tion is

< Sz(q)Sz(−q) > =
NS2kBTB′

S

kBTc[T/Tc + (aκ
‖
0)

2] − 2S2Jeff (q)B′
S

< Sx(q)Sx(−q) > = < Sy(q)Sy(−q) >=

NSkBTBS

gµBHm[1 + (aκ⊥
0 )2] − 2SJeff (q)BS

(39)

where κ0 is a phenomenological parameter describing the range of the spin-

spin correlation. The parameter κ0 will allow to test the hypothesis of Fisher

and Langer on the importance of short-ranged correlation.

Solving the Boltzmann’s equation for paramagnetic phase gives an ex-

pression very different from that of Fisher and Langer14:

ρ = ρ0S(S + 1)(W/ǫF )r(t) (40)

r(t) = (t − tc + ts)[1 − t ln(1 + t−1)] (41)

t = ts(
T

Tc
− 1) + tc (42)

ts = (2akF ξ)−2 (43)

tc = (2kF l0)
−2 (44)

where W represents the width of the conduction band and ts(ξ) is a pa-

rameter which controls the instability of the ferromagnetic state. The value

of tc(l0) shows that the mean free path is in fact finite.
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Fig. 11. Normalized resistivity versus temperature for different electron densities.

Figure 11 shows the effect of the density of itinerant electrons on the

resistivity. We observe that the peak height increases with decreasing den-

sity. This behavior is closely related to the spin-spin correlation shown in

Fig. 9. We will return to this point later.

The effect of the finite mean free path l0 phenomenologically introduced

in the expression of the correlation function is shown in Fig. 12. One

observes that as l0 decreases the peak height decreases. One sees that for

weak l0 combined with strong ξ will suppress the peak of the resistivity.

Fig. 12. Normalized resistivity versus temperature for different values of l0.
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Figure 13 shows the effect of the instability of the ferromagnetic state.

The more the ferromagnetic state is unstable, the higher the resistivity peak

becomes. In addition, the peak position moves slightly from the initial Tc.

Fig. 13. Normalized resistivity versus temperature for different values of ξ.

To summarize, we say that the model by Kataoka includes all ingredients

which affect the resistivity behavior. In spite of the fact that the solution of

this model was obtained by a mean-field approximation, the results are in

qualitative agreement with experiments provided that appropriate values

for parameters have to be used for each studied material.

3.7. Conclusion

In spite of the effort of several researchers, there exists at present no single

theory able to explain results on the magnetic resistivity in various mate-

rials and under different situations. One finds that the different theories

discussed above can be applied in different cases: while the models by de

Gennes-Friedel et by Fisher-Langer work properly in ferromagnetic metals,

the model of Haas31 is more suitable for magnetic semiconductors and the

model by Suezaki and Mori32 improved by Kasuya and Kondo33 is bet-

ter suited for antiferromagnets. Another important point emphasized by

Alexander et al. in a review15 is that one has to be careful about attempts

to compare experimental data with theoretical critical exponents associated

with the resistivity’s anomaly at Tc: while a good agreement is observed in

the temperature range 10−4 < |T −Tc|/Tc < 10−1 for ferromagnetic metals,
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there is no such agreement in rare-earth elements specially in the critical

region where fluctuations were neglected in different theories.

4. Our model and method

Due to a large number of parameters which play certainly important roles at

various degrees in the behavior of the spin resistivity, it is difficult to treat

all parameters at the same time. The first question is of course whether the

explanation provided by de Gennes and Friedel can be used in some kinds

of material and that by Fisher and Langer can be applied in some other

kinds of material. In other words, we would like to know the validity of each

of these two arguments. We will return to this point in subsection 5.6. The

second question concerns the effects of magnetic or non-magnetic impurities

on the resistivity. Note that in 1970, Schwerer and Cuddy3 have shown and

compared their experimental results with the different existing theories to

understand the impurity effect on the magnetic resistivity. However, the

interpretation was not clear enough at the time to understand the real

physical mechanism lying behind. The third question concerns the effects

of the surface on the spin resistivity in thin films. These questions are

treated hereafter.

We study here by extensive MC simulations the transport of itinerant

electrons travelling in a ferromagnetic thin film. We use the Ising model

and take into account various interactions between lattice spins and itin-

erant spins. We show that the magnetic resistivity depends on the lattice

magnetic ordering. We analyze this behavior by using a new idea: instead of

calculating the spin-spin correlation, we calculate the distribution of clus-

ters in the critical region. We show that the resistivity depends on the

number and the size of clusters of opposite spins. We establish also a Boltz-

mann’s equation which can be solved using numerical data for the cluster

distribution obtained by our MC simulation.

We take into account (i) interactions between itinerant and lattice spins,

(ii) interactions between itinerant spins themselves and (iii) interactions

between lattice spins. We include a thermodynamic force due to the gra-

dient of itinerant electron concentration, an applied electric field and the

effect of a magnetic field. For impurities, we take the Rudermann-Kittel-

Kasuya-Yoshida (RKKY) interaction between them. We describe hereafter

the details of our model.
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4.1. Model

We consider here a ferromagnetic thin film. We use the Ising model and

the face-centered cubic (FCC) lattice with size Nx × Ny × Nz. Periodic

boundary conditions (PBC) are used in the xy planes. Spins localized at

FCC lattice sites are called ”lattice spins” hereafter. They interact with

each other through the following Hamiltonian

Hl = −J
∑

〈i,j〉

Si · Sj , (45)

where Si is the Ising spin at lattice site i,
∑

〈i,j〉 indicates the sum over every

nearest-neighbor (NN) spin pair (Si,Sj), J(> 0) being the NN interaction.

In order to study the spin transport in the above system, we consider

a flow of itinerant spins interacting with each other and with the lattice

spins. The interaction between itinerant spins is defined as follows,

Hm = −
∑

〈i,j〉

Ki,jsi · sj , (46)

where si is the itinerant Ising spin at position ~ri, and
∑

〈i,j〉 denotes a sum

over every spin pair (si, sj). The interaction Ki,j depends on the distance

between the two spins, i.e. rij = |~ri − ~rj |. A specific form of Ki,j will be

chosen below. The interaction between itinerant spins and lattice spins is

given by

Hr = −
∑

〈i,j〉

Ii,jsi · Sj , (47)

where the interaction Ii,j depends on the distance between the itinerant

spin si and the lattice spin Si. For the sake of simplicity, we assume the

same form for Ki,j and Ii,j , namely,

Ki,j = K0 exp(−rij) (48)

Ii,j = I0 exp(−rij) (49)

where K0 and I0 are constants.

4.2. Method

The procedure used in our simulation is described as follows. First we study

the thermodynamic properties of the film alone, i.e. without itinerant spins,
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using Eq. (45). We perform MC simulations to determine quantities as the

internal energy, the specific heat, layer magnetizations, the susceptibility, ...

as functions of temperature T .34 From these physical quantities we deter-

mine the critical temperature Tc below which the system is in the ordered

phase. We show in Fig. 14 the lattice magnetization versus T for Nz = 8,

Nx = Ny = 20.
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Fig. 14. Lattice magnetization versus temperature T for Nz = 8. Tc is ≃ 9.58 in unit
of J = 1.

Once the lattice has been equilibrated at T , we inject N0 itinerant spins

into the system. The itinerant spins move into the system at one end, travel

in the x direction, escape the system at the other end to reenter again at

the first end under the PBC. Note that the PBC are used to ensure that

the average density of itinerant spins remains constant with evolving time

(stationary regime). The dynamics of itinerant spins is governed by the

following interactions:

i) an electric field E is applied in the x direction. Its energy is given by

HE = −eE · v, (50)

where v is the velocity of the itinerant spin, e its charge;

ii) a chemical potential term which depends on the concentration of

itinerant spins (”concentration gradient” effect). Its form is given by

Hc = Dn(r), (51)

where n(r) is the concentration of itinerant spins in a sphere of radius D2

centered at r. D is a constant taken equal to K0 for simplicity;
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iii) interactions between a given itinerant spin and lattice spins inside a

sphere of radius D1 [Eq. (47)];

iv) interactions between a given itinerant spin and other itinerant spins

inside a sphere of radius D2 [Eq. (46)].

Let us consider the case without an applied magnetic field. The simu-

lation is carried out as follows: at a given T we calculate the energy of an

itinerant spin by taking into account all the interactions described above.

Then we tentatively move the spin under consideration to a new position

with a step of length v0 in an arbitrary direction. Note that this move is

immediately rejected if the new position is inside a sphere of radius r0 cen-

tered at a lattice spin or an itinerant spin. This excluded space emulates the

Pauli exclusion principle in the one hand, and the interaction with lattice

phonons on the other hand. If the new position does not lie in a forbidden

region of space, then the move is accepted with a probability given by the

standard Metropolis algorithm.34

To study the case with impurities, we replace randomly a number of

lattice spins S by impurity spins σ. The impurities interact with each other

via the RKKY interaction as follows

HI = −
∑

〈i,j〉

L(ri, rj)σi · σj (52)

where

L(ri, rj) = L0 cos(2kF |ri − rj |)/|ri − rj |
3 (53)

L0 being a constant and kF the Fermi wave number of the lattice. The

impurity spins also interact with NN lattice spins. However, to reduce the

number of parameters, we take this interaction equal to J = 1 as that be-

tween NN lattice spins [see Eq. (45)] with however σ 6= S. We will consider

here two cases σ = 2 and σ = 0.

5. Monte Carlo Results

5.1. Simple case

We let N0 itinerant spins travel through the system several thousands times

until a steady state is reached. The parameters we use in most calculations,

except otherwise stated (for example, in subsection 5.3 for Nz) are s = S =

1 and Nx = Ny = 20 and Nz = 8. Other parameters are D1 = D2 = 1 (in

unit of the FCC cell length), K0 = I0 = 2, L0 = 17, N0 = 8 × 202 (namely

one itinerant spin per FCC unit cell), v0 = 1, kF = (
π

a
)(

n0

2
)1/3, r0 = 0.05.
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At each T the equilibration time for the lattice spins lies around 106 MC

steps per spin and we compute statistical averages over 106 MC steps per

spin. Taking J = 1, we find that Tc ≃ 9.58 for the critical temperature of

the lattice spins (see Fig. 14).

We define the resistivity ρ as

ρ =
1

n
, (54)

where n is the number of itinerant spins crossing a unit area perpendicular

to the x direction per unit of time.

We show in Figs. 15 and 16 the simulation results for different thick-

nesses. In all cases, the resistivity ρ is very small at low T , undergoes a

huge peak in the ferromagnetic-paramagnetic transition region, decreases

slowly at high T .

We point out that the peak position of the resistivity follows the vari-

ation of critical temperature with changing thickness (see Fig. 15) and ρ

at T & Tc becomes larger when the thickness decreases. This is due to the

fact that surface effects tend to slow down itinerant spins. We return to

this point in the next subsection.

The temperature of resistivity’s peak at a given thickness is always

slightly higher than the corresponding Tc.

5.2. Our interpretation

Let us discuss the temperature dependence of ρ shown in Fig. 16:

i) First, ρ is very low in the ordered phase. We can explain this by the

following argument: below the transition temperature, there exists a single

large cluster of lattice spins with some isolated ”defects” (i. e. clusters of

antiparallel spins), so that any itinerant spin having the parallel orientation

goes through the lattice without hindrance. The resistance is thus very small

but it increases as the number and the size of ”defect” clusters increase with

increasing temperature.

ii) Second, ρ exhibits a cusp at the transition temperature. We present

here three interpretations of the existence of this cusp. Note that these

different pictures are not contradictory with each other. They are just three

different manners to express the same physical mechanism. The first picture

consists in saying that the cusp is due to the critical fluctuations in the

phase transition region. We know from the theory of critical phenomena

that there is a critical region around the transition temperature Tc. In this

region, the mean-field theory should take into account critical fluctuations.
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The width of this region is given by the Ginzburg criterion. The limit of

this ”Ginzburg” region could tally with the resistivity’s peak and Ginzburg

temperature.15 The second picture is due to Fisher-Langer14 and Kataoka16

who suggested that the form of peak is due mainly to short-range spin-

spin correlation. These short-range fluctuations are known to exist in the

critical region around the critical point. The third picture comes from our

MC simulation17 which showed that the resistivity’s peak is due to the

formation of antiparallel-spin clusters of sizes of a few lattice cells which are

known to exist when one enters the critical region. Note in addition that

the cluster size is now comparable with the radius D1 of the interaction

sphere, which in turn reduces the height of potential energy barriers. We

have checked this interpretation by first creating an artificial structure of

alternate clusters of opposite spins and then injecting itinerant spins into

the system. We observed that itinerant spins do advance indeed more slowly

than in the completely disordered phase (high-T paramagnetic phase). We

have next calculated directly the cluster-size distribution as a function of T

using the Hoshen-Kopelman’s algorithm.20 The result confirms the effect of

clusters on the spin conductivity. We will show in the next section a cluster

distribution for the film studied here.

iii) Third, ρ is large in the paramagnetic phase and decreases with an

increasing temperature. Above Tc in the paramagnetic phase, the spins

become more disordered as T increases: small clusters will be broken into

single disordered spins, so that there is no more energy barrier between

successive positions of itinerant spins on their trajectory. The resistance,

though high, is decreasing with increasing T and saturated as T → ∞.

iv) Let us touch upon the effects of varying D1 and D2 at a low tem-

peratures. ρ is very small at small D1 (D1 < 0.8): this can be explained by

the fact that for such small D1, itinerant spins do not ”see” lattice spins in

their interaction sphere so they move almost in an empty space. The effect

of D2 is on the other hand qualitatively very different from that of D1: ρ

is very small at small D2 but it increases to very high value at large D2.

We conclude that both D1 and D2 dominate ρ at their small values. How-

ever, at large values, only D2 has a strong effect on ρ. This effect comes

naturally from the criterion on the itinerant spins concentration used in

the moving procedure. Also, we have studied the effect of the electric field

E both above and below Tc. The low-field spin current verifies the Ohm

regime. These effects have been also observed in magnetic multilayer.17 The

reader is referred to that work for a detailed presentation of these points.

Let us show now the effect of magnetic field on ρ. As it is well known,
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when a magnetic field is applied on a ferromagnet, the phase transition is

suppressed because the magnetization will never tend to zero. Critical fluc-

tuations are reduced, the number of clusters of antiparallel spins diminishes.

As a consequence, we expect that the peak of the resistivity will be reduced

and disappears at high fields. This is what we observed in simulations. We

show results of ρ for several fields in Fig. 17.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5  6  7  8  9  10  11  12  13  14  15

M
/M

0

T

(a)
(b)
(c)

Fig. 15. Lattice magnetization versus temperature T with different thicknesses (Nz) of
the film: crosses, void circles and black triangles indicate data for Nz=5, 8 and bulk,
respectively. Tc(bulk) ≃ 9.79, Tc(Nz = 8) ≃ 9.58 and Tc(Nz = 5) ≃ 9.47.

5.3. Effect of surface

The picture suggested above on the physical mechanism causing the vari-

ation of the resistivity helps to understand the surface effect shown here.

Since the surface spins suffer more fluctuations due to the lack of neighbors,

we expect that surface lattice spins will scatter more strongly itinerant spins

than the interior lattice spins. The resistivity therefore should be larger near

the surface. This is indeed what we observed. The effect however is very

small in the case where only a single surface layer is perturbed. To enhance

the surface effect, we have perturbed a number of layers near the surface:

we considered a sandwich of three films: the middle film of 4 layers is placed

between two surface films of 5 layers each. The in-plane interaction between

spins of the surface films is taken to be Js and that of the middle film is J .

When Js = J one has one homogeneous 14-layer film. We have simulated

the two cases where Js = J and Js = 0.2J for sorting out the surface effect.



July 17, 2008 11:27 WSPC/Trim Size: 9in x 6in for Review Volume livre1

32 K. Akabli and H. T. Diep

 0

 20

 40

 60

 80

 100

 120

 140

 0  2  4  6  8  10  12  14  16  18  20

ρ

T

(a)
(b)
(c)

Fig. 16. Resistivity ρ in arbitrary unit versus temperature T for different film thick-
nesses. Crosses (a), void circles (b) and black triangles (c) indicate data for bulk, Nz=8
and 5, respectively.

Fig. 17. Resistivity ρ in arbitrary unit versus temperature T , for different magnetic
fields. Void circles, stars, black rectangles, void triangles and black triangles indicate,
respectively, data for (a) B = 0,(b) B = 0.1J ,(c) B = 0.3J ,(d) B = 1J and (e) B = 2J .

In the absence of itinerant spins, the lattice spins undergo a single phase

transition at Tc ≃ 9.75 for Js = J , and two transitions when Js = 0.2J : the

first transition occurs at T1 ≃ 4.20 for ”surface” films and the second at

T2 ≃ 9.60 for ”middle” film. This is seen in Fig. 18 where the magnetization

of the surface films drops at T1 and the magnetization of the middle film

remains up to T2. The susceptibility has two peaks in the case Js = 0.2J .

The resistivity of this case is shown in Fig. 19: at T < T1 the whole system
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is ordered, ρ is therefore small. When T1 ≤ T ≤ T2 the surface spins are

disordered while the middle film is still ordered: itinerant spins encounter

strong scattering in the two surface films, they ”escape”, after multiple col-

lisions, to the middle film. This explains the peak of the surface resistivity

at T1. Note that already far below T1, a number of surface itinerant spins

begin to escape to the middle film, making the resistivity of the middle film

to decrease with increasing T below T1 up to T2, as seen in Fig. 19. Note

that there is a small shoulder of the total resistivity at T1. In addition, in

the range of temperatures between T1 and T2 the spins travel almost in the

middle film with a large density resulting in a very low resistivity of the

middle film. For T > T2, itinerant spins flow in every part of the system.

5.4. Effect of impurity

In this subsection, we take back Nx = Ny = 20 and Nz = 8.

5.4.1. Magnetic impurities

To treat the case with impurities, we replace randomly a number of lat-

tice spins S by impurity spins σ = 2. We suppose an RKKY interaction

between impurity spins [see Eq. (52)]. Figure 20 shows the lattice magneti-

zation for several impurity concentrations. We see that critical temperature

Tc increases with magnetic impurity’s concentration. We understand that

large-spin impurities must reinforce the magnetic order.

In Figs. 21, 22 and 23, we compare a system without impurity to

systems with respectively 1 and 2 and 5 percents of impurities. The tem-

perature of resistivity’s peak is a little higher than the critical temperature

and we see that the peak height increases with increasing impurity con-

centration (see Fig. 23). This is easily explained by the fact that when

large-spin impurities are introduced into the system, additional magnetic

clusters around these impurities are created in both ferromagnetic and para-

magnetic phases. They enhance therefore ρ.

5.4.2. Non-magnetic impurities

For the case with non-magnetic impurities, we replace randomly a num-

ber of lattice spins S by zero-spin impurities σ = 0. Figures 24, 25 and

26 show, respectively, the lattice magnetizations and the resistivities for

non-magnetic impurity concentrations 1% and 5%. We observe that non-

magnetic impurities reduce the critical temperature and the temperature
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Fig. 18. Upper figure: Magnetization versus T in the case where the system is made
of three films: the first and the third have 5 layers with a weaker interaction Js, while
the middle has 4 layers with interaction J = 1. We take Js = 0.2J . Black triangles:
magnetization of the surface films, stars: magnetization of the middle film, void circles:
total magnetization. Lower figure: Susceptibility versus T of the same system as in the
upper figure. Black triangles: susceptibility of the surface films, stars: susceptibility of
the middle films, void circles: total susceptibility. See text for comments.

of the resistivity’s peak. This can be explained by the fact that the now

”dilute” lattice spins has a lower critical temperature so that the scatter-

ing of itinerant spins by lattice-spin clusters should take place at lower

temperatures.
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Fig. 19. Resistivity ρ in arbitrary unit versus T of the system described in the previous
figure’s caption. Black triangles: resistivity of the surface films, void circles: resistivity of
the middle film, black squares: total resistivity. See text for comments.
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Fig. 20. Lattice magnetization versus temperature T with different concentrations of
magnetic impurities CI . Void circles, crosses, stars and black diamonds indicate, respec-
tively, data for (a) CI = 0%, (b) CI = 1%, (c) CI = 2% and (d) CI = 5%.

5.5. Effect of electron concentration

Let us show here the effect of the concentration of itinerant electrons. We

have shown above the results for n0 = 1/4. According to the theory of

Kataoka,16 the stronger the electron density is the smaller the resistivity

peak becomes. Physically, larger density causes stronger screening effect on

the spin-spin correlation. As a result, one expects that the correlation is
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Fig. 21. Resistivity ρ in arbitrary unit versus temperature T . Two cases are shown:
without (a) and with 1% (b) of magnetic impurities (void circles and crosses, respec-
tively). Our result using the Boltzmann’s equation is shown by the continuous curves
(see sect. IV): thin and thick lines are for (a) and (b), respectively. Note that Tc ≃ 9.68
for CI = 1%.
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Fig. 22. Resistivity ρ in arbitrary unit versus temperature T . Two cases are shown:
without and with 2% of magnetic impurities (void circles and crosses, respectively). Our
result using the Boltzmann’s equation is shown by the continuous curves (see sect. IV):
thin and thick lines are for (a) and (b), respectively. Tc ≃ 9.63 for 2% .

shorter in the system. Therefore, the peak height will be reduced as we

have seen above while discussing on the models by Fisher and Langer and

by Kataoka. What about the results of the simulations? To answer this

question, we have carried out calculations with n0 = 1/8 and n0 = 1/2
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Fig. 23. Resistivity ρ in arbitrary unit versus temperature T . Two cases are shown:
without (a) and with 5% of magnetic impurities (b) (void circles and crosses, respec-
tively). Our result using the Boltzmann’s equation is shown by the continuous curves
(see sect. IV): thin and thick lines are for (a) and (b), respectively. Tc ≃ 10.21 for 5%.
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Fig. 24. Lattice magnetization versus temperature T for different concentrations of non-
magnetic impurities: (a) CI = 0% (void circles), (b) CI = 1% (crosses) and (c) CI = 5%
(black diamonds).

for comparison with results shown above for n0 = 1/4. We show in Fig.

27 the susceptibility for n0 = 1/8, n0 = 1/4 and n0 = 1/2. We observe

that the larger density reduces the peak height of the susceptibility. Since

the resistivity is related to the susceptibility, we conclude that it will have

the same behavior under the effect of electron concentration (see discussion

below).
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Fig. 25. Resistivity ρ in arbitrary unit versus temperature T for two cases: without (a)
and with 1% of non-magnetic impurities (b) (void circles and crosses, respectively). Our
result using the Boltzmann’s equation is shown by the continuous curves (see sect. IV):
thin and thick lines are for (a) and (b), respectively.
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Fig. 26. Resistivity ρ in arbitrary unit versus temperature T for two cases: without (a)
and with 5% of non-magnetic impurities (b) (void circles and crosses, respectively). Our
result using the Boltzmann’s equation is shown by the continuous curves (see sect. IV):
thin and thick lines are for (a) and (b), respectively.

5.6. Discussion

De Gennes and Friedel1 have shown that the resistivity ρ is related to the

spin correlation < Si · Sj >. They have suggested therefore that ρ behaves

as the magnetic susceptibility χ. However, unlike the susceptibility which

diverges at the transition, the resistivity observed in many experiments
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Fig. 27. Susceptibility for n0 = 1/8, n0 = 1/4 and n0 = 1/2. Note that the peak is
smaller for higher concentration. See text for comments.

goes through a finite maximum, i. e. a cusp, without divergence. To explain

this, Fisher and Langer14 and then Kataoka16 have shown that the cusp is

due to short-range correlation. This explanation is in agreement with many

experimental data but not all (see Ref. 15 for review on early experiments).

Let us recall that < E >∝
∑

i,j < Si ·Sj > where the sum is taken over

NN (or short-range) spin pairs while Tχ ∝< (
∑

i Si)
2 >=

∑

i,j < Si · Sj >

where the sum is performed over all spin pairs. This is the reason why

short-range correlation yields internal energy and long-range correlation

yields susceptibility.

Roughly speaking, if < Si · Sj > is short-ranged, then ρ behaves as

< E > so that the temperature derivative of the resistivity, namely dρ/dT ,

should behave as the specific heat with varying T . Recent experiments have

found this behavior(see for example Ref. 5).

Now, if < Si · Sj > is long-ranged, then ρ behaves as the magnetic sus-

ceptibility as suggested by de Gennes and Friedel.1 In this case, ρ undergoes

a divergence at Tc as χ. One should have therefore dρ/dT > 0 at T < Tc

and dρ/dT < 0 at T > Tc. In some experiments, this has been found in

for example in magnetic semiconductors (Ga,Mn)As6 (see also Ref. 15 for

review on older experiments). We think that all systems are not the same

because of the difference in interactions, so one should not discard a priori

one of these two scenarios.

In this chapter, we suggest another picture to explain the cusp: when

Tc is approached, large clusters of up (resp. down) spins are formed in the
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critical region above Tc. As a result, the resistance is much larger than

in the ordered phase: itinerant electrons have to steer around large clus-

ters of opposite spins in order to go through the entire lattice. Thermal

fluctuations are not large enough to allow the itinerant spin to overcome

the energy barrier created by the opposite orientation of the clusters in this

temperature region. Of course, far above Tc, most clusters have a small size,

the resistivity is still quite large with respect to the low-T phase. However,

ρ decreases as T is increased because thermal fluctuations are more and

more stronger to help the itinerant spin to overcome energy barriers.

What we have found here is a peak of ρ, not a peak of dρ/dT . So, our

resistivity behaves as the susceptibility although the peak observed here is

not sharp and no divergence is observed. We believe however that, similar to

commonly known disordered systems, the susceptibility peak is broadened

more or less because of the disorder. The disorder in the system studied

here is due the lack of periodicity in the positions of moving itinerant spins.

6. Simple cluster theory

In this paragraph, we show a theory based on the Boltzmann’s equation in

the relaxation-time approximation. To solve completely this equation, we

shall need some numerical data from MC simulations for the cluster sizes

as will be seen below. Using these data , we show that our MC result of

resistivity is in a good agreement with this theory.

Let us formulate now the Boltzmann’s equation for our system. When

we think about the magnetic resistivity, we think of the interaction between

lattice spins and itinerant spins. We recognize immediately the important

role of the spin-spin correlation function in the determination of the mean

free-path. If we inject through the system a flow of spins ”polarized” in

one direction, namely ”up”, we can consider clusters of ”down” spins in the

lattice as ”defect clusters”, or as ”magnetic impurities”, which play the role

of scattering centers. We therefore reduce the problem to the determination

of the number and the size of defect clusters. For our purpose, we use the

Boltzmann’s equation with uniform electric field but without gradient of

temperature and gradient of chemical potential. We write the equation for

f , the Fermi-Dirac distribution function of itinerant electrons, as

(
~k.eE

m
)(

∂f0

∂ε
) = (

∂f

∂t
)coll, (55)

where k is the wave vector, e and m the electronic charge and mass, ǫ the
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electron energy. We use the following relaxation-time approximation

(
∂fk

∂t
)coll = −(

f1
k

τk
), f1

k = fk − f0
k , (56)

where τk is the relaxation time. Supposing elastic collisions, i. e. k = k′,

and using the detailed balance we have

(
∂fk

∂t
)coll =

Ω

(2π)3

∫

wk′,k(f1
k′ − f1

k )dk′, (57)

where Ω is the system volume, wk′,k the transition probability between

k and k′. We find with Eq. (56) and Eq. (57) the following well-known

expression

(
1

τk
) =

Ω

(2π)3

∫

wk′,k(1 − cos θ)

× sin θk′2dk′dθdφ, (58)

where θ and φ are the angles formed by k′ with k, i. e. spherical coordinates

with z axis parallel to k.

We use now for Eq. (58) the ”Fermi golden rule” and we obtain

(
1

τk
) =

Ωm

~32πk

∫

| < k′|V |k > |2(1 − cos θ) sin θ

×δ(k′ − k)k′2dk′dθ (59)

We give for the potential V the following expression which reminds the

form of the interactions (48)-(49)

V = V0 exp(
−r

ξ(T )
), (60)

where ξ(T ) is the size of the defect cluster and V0 a constant. We resolve

Eq. (59) with Eq. (60) and we have the following expression

(
1

τk
) = (

32V 2
0 Ωmkπ

~3
)

∫

sin θ(1 − cos θ)

(K2 + ξ−2)3
dθ, (61)

where K = |~k − ~k′| is given by

K = |~k − ~k′| = k[2(1 − cos θ)]1/2, (62)

Integrating Eq. (61) we obtain

(
1

τk
) =

32(V0Ω)2mπ

(2k~)3
ncξ

2

×[1 −
1

1 + 4k2ξ2
−

4k2ξ2

(1 + 4k2ξ2)2
] (63)
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where nc is the number of clusters of size ξ. We integrate Eq. (63) for the

interval [0, kF ] and we obtain finally

(
1

τ
) =

(4V0Ωm)2

π(~)3/2
ncξ

2

×[
1

1 + (2kF ξ)2
+ ln(1 + (2kF ξ)2) − 1] (64)

Note that although the relaxation time τ is averaged over all states in the

Fermi sphere, i. e. states at T = 0, its temperature dependence comes

from the parameters ξ and nc. These will be numerically determined in

the following. If we know τ we can calculate the resistivity by the Drude

expression

ρm =
m

ne2

1

τ
, (65)

Let us use now the Hoshen-Kopelman’s algorithm20 to determine the

mean value of ξ and the number of the cluster’s mean size, for different

temperatures. The Hoshen-Kopelman’s algorithm allows to regroup into

clusters spins with equivalent value for T < Tc or equivalent energy for

T > Tc. Using this algorithm during our MC simulation at a given T , we

obtain a ”histogram” representing the number of clusters as a function of

the cluster size. For temperature T below Tc, we call a cluster a group of

parallel spins surrounded by opposite spins, and for T above Tc a cluster is a

group of spins with the same energy. At a given T , we estimate the average

size ξ using the histogram as follows: calling Ni the number of spins in the

cluster and Pi the probability of the cluster deduced from the histogram,

we have

ξ =

∑

i NiPi
∑

i Pi
, (66)

In doing this we obtain ξ for the whole temperature range. We note that

we can fit the cluster size ξ with the following formula

ξ = A|Tc − T |ν/3, (67)

where ν is a fitting parameter and A a constant. These parameters are

different for T < Tc and T > Tc. Figure 28 and Figure 29 show the average

size and the average number of cluster versus temperature. To simplify our

approach we consider that the cluster’s geometry is a sphere with radius ξ.

Note that due to the fact that our fitting was made separately for T < Tc

and T > Tc, no effort has been made for the matching at T = Tc exactly,

but this does not affect the behavior discussed below.
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We distinguish hereafter temperatures below and above Tc in establish-

ing our theory. We write

T < Tc



















ρm = ρ0(1 + Cinfncξ
2[−1 +

1

1 + (2kF ξ)2

+ ln(1 + (2kF ξ)2)]),

ξ = (
3Ainf

16π
)1/3(Tc − T )νinf /3,

nc = (
Binf

2απ
) × exp[

−(T − TG)2

2α2
].

(68)

T > Tc















ρm = ρ∞(1 + Csupncξ
2[−1 +

1

1 + (2kF ξ)2

+ ln(1 + (2kF ξ)2)]),

ξ = (
3Asup

16π
)1/3(T − Tc)

νsup/3,

nc = Bsup exp[−D(T − Tc)] + n0.

(69)

In Eq. (68) we call TG the temperature on which the cluster of small

size are gathering to form bigger cluster. This temperature marks the limit

when one enters the critical region from below. In Eq. (68), α is the half-

width of the peak of nc shown in Fig. 29. ρ0 is the resistivity at T = 0 and

ρ∞ is that at T = ∞.

We summarize in Table 1 the different results obtained for the cases

studied by MC simulations shown above. Other parameters Ainf , Binf ,

Cinf , Asup, Bsup and Csup are fitting parameters which are not of physical

importance and therefore not given here for the sake of clarity. Using the

numerical values of Table 1 and the average cluster size and cluster number

shown in Fig. 28 and Fig. 29, we plot Eqs. (68) and (69) by continuous

lines in Figs. 21-26 to compare with MC simulations shown in these figures.

We emphasize that our theory provides a good ”fit” for simulation results.

Based on those results, we can extract the resistivity ρI corresponding

only to the addition of impurities. ρI is defined as

ρI = ρm − ρstandard, (70)

where ρstandard is the resistivity without impurities (see the first line of

Table 1). We compare now the resistivity ρI with experiments realized by
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Table 1. Various numerical values obtained by MC simulations which are used to plot Eqs. (68) and (69).

Impurity Tc TG νinf νsup α

0% S=1 9.58 7.4443 +/- 0.066 -0.9254 +/- 0.015 -0.2267 +/- 0.006 1.51875 +/- 0.07
1% σ=2 9.68 7.5006 +/- 0.054 -0.9253 +/- 0.017 -0.1449 +/- 0.006 1.62908 +/- 0.06
2% σ=2 9.63 7.7103 +/- 0.049 -0.9856 +/- 0.016 -0.1135 +/- 0.004 1.64786 +/- 0.05
5% σ=2 10.2 7.9658 +/- 0.094 -1.1069 +/- 0.016 -0.0747 +/- 0.002 2.13618 +/- 0.10
1% σ=0 9.47 7.2866 +/- 0.062 -0.9028 +/- 0.013 -0.2106 +/- 0.006 1.51766 +/- 0.06
5% σ=0 9.10 7.0105 +/- 0.054 -0.9381 +/- 0.015 -0.1607 +/- 0.006 1.47261 +/- 0.05
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Fig. 28. Mean size ξ of magnetic clusters versus temperature T for both above and
below Tc.
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Fig. 29. Number of average cluster size nc for both above and below Tc.

Schwerer and Cuddy.3 It is important to note that the change of behavior

can be explained if we use the correct value for ν, Tc, TG, etc. Figure

30 shows ρI with magnetic impurities corresponding to the Ni-Fe system ,

while Fig. 31 shows ρI in the case of non-magnetic impurities corresponding

to the Ni-Cr case.

We see that the form of ρI of the alloys Ni-Fe(1%) and Ni-Fe(0.5%)

experimentally observed3 can be compared to the curves of 1% and 2% of

magnetic impurities shown in Fig. 30. For Ni-Cr(1%) and Ni-Cr(2%), exper-

imental curves are in agreement with our results of non-magnetic impurities
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shown in Fig. 31.
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Fig. 30. Resistivity ρI in arbitrary unit versus temperature T . Void circles and black
triangles indicate data for 1% and 2% magnetic impurities, respectively.
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Fig. 31. Resistivity ρI in arbitrary unit versus temperature T . Void circles and black
triangles indicate data for 1% and 5% non magnetic impurities, respectively.

Finally, to close this section, let us show theoretically from the equa-

tions obtained above, the effects of the density of itinerant spins on the

resistivity. Figure 32 shows that, as the density n0 is increased, the peak of

ρ diminishes. Our theory is thus in agreement with our MC results shown in

section 5.5. It is noted that this behavior is very similar with that obtained
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by Kataoka.16 Let us emphasize that in the case of a weak density, one can

keep the lattice spins unchanged upon interaction with itinerant spins. In

the case of strong density, we expect that a number of lattice spins, when

surrounded by a large number of itinerant spins, should flip to accommo-

date themselves with their moving neighbors. So the lattice ordering should

be affected. As a consequence, critical fluctuations of lattice spins are more

or less suppressed, so is the peak’s height, just like in the case of an ap-

plied magnetic field. Kataoka16 has found this in his calculation by taking

into account the spin flipping: the resistivity’s peak disappears then at the

transition. We have also done this with MC simulation shown in section

5.5.
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T

Fig. 32. Resistivity ρ in arbitrary unit versus temperature T for different densities of
itinerants spins. Curves from top to bottom are for n0 = 0.2, 0.33, 0.5, 0.7, 1 and 1.5.

7. Conclusion

We have reviewed in this chapter important works leading to the under-

standing of the resistivity behavior in magnetic systems. We have used a

Monte Carlo method to study this problem which has not been used so

far. We have shown results of MC simulations on the transport of itinerant

spins interacting with localized lattice spins in a ferromagnetic FCC thin

film. Various interactions have been taken into account. We found that the

spin current is strongly dependent on the lattice spin ordering: at low T

itinerant spins whose direction is parallel to the lattice spins yield a strong

current, namely a small resistivity. At the ferromagnetic transition, the re-
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sistivity undergoes a huge peak. At higher temperatures, the lattice spins

are disordered, the resistivity is still large but it decreases with increasing T .

From the discussion given in subsection 5.6, we conclude that the resistivity

ρ of the model studied here behaves as the magnetic susceptibility with a

peak at Tc. dρ/dT , differential resistivity is thus negative for T > Tc. The

peak of the resistivity obtained here is in agreement with experiments on

magnetic semiconductors (Ga,Mn)As for example.6 Of course, to compare

the peak’s shape experimentally obtained for each material, we need to re-

fine our model parameters for each of them. But here, we were just looking

for generic effects to show physical mechanisms lying behind the temper-

ature dependence of the spin resistivity. In this spirit, we note that early

theories have related the origin of the peak to the spin-spin correlation,

while our interpretation here is based on the existence of defect clusters

formed in the critical region. This interpretation has been verified by cal-

culating the number and the size of clusters as a function of T by the use

of Hoshen-Kopelman’s algorithm. We have formulated a theory based on

the Boltzmann’s equation. We solved this equation using numerical data

obtained for the number and the size of average cluster at each T . The

results on the resistivity are in a good agreement with MC results.

The clear physical picture we provide in this work for the understand-

ing of the behavior of the resistivity in a ferromagnetic film will help to

understand properties of resistivity in more complicated systems such as

antiferromagnets, non-Ising spin systems, frustrated spin systems and dis-

ordered media.

References

1. P.-G. de Gennes and J. Friedel, J. Phs. Chem Solids 4, 71 (1958).
2. A. Fert and I. A. Campbell, Phys. Rev. Lett. 21, 1190 (1968); I. A. Camp-

bell, Phys. Rev. Lett. 24, 269 (1970).
3. F. C. Schwerer and L. J. Cuddy, Phys. Rev. 2, 1575 (1970).
4. Alla E. Petrova, E. D. Bauer, Vladimir Krasnorussky, and Sergei M. Stishov,

Phys. Rev. B 74, 092401 (2006).
5. S. M. Stishov, A.E. Petrova, S. Khasanov, G. Kh. Panova, A.A.Shikov, J.

C. Lashley, D. Wu, and T. A. Lograsso, Phys. Rev. B 76, 052405 (2007).
6. F. Matsukura, H. Ohno, A. Shen and Y. Sugawara, Phys. Rev. B 57, R2037

(1998).
7. M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P.

Etienne, G. Creuzet, A. Friederich and J. Chazelas, Phys. Rev. Lett. 61,
2472 (1988).

8. P. Grunberg, R. Schreiber, Y. Pang, M. B. Brodsky and H. Sowers, Phys.



July 17, 2008 11:27 WSPC/Trim Size: 9in x 6in for Review Volume livre1

Spin Transport in Magnetic Multilayers 49

Rev. Lett. 57, 2442 (1986); G. Binash, P. Grunberg, F. Saurenbach and W.
Zinn, Phys. Rev. B 39, 4828 (1989).
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