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The form of topological derivatives for integral shape functional is derived for a class of semilinear elliptic equations. The convergence of finite element approximation for the topological derivatives is shown and the error estimates in the L ∞ norm are obtained. Results of numerical experiments which confirm the theoretical convergence rate are presented.

Introduction 1.Topological derivatives in shape optimization

Topological derivatives are introduced for linear problems in [START_REF] Sokolowski | Modelling of topological derivatives for contact problems[END_REF], and for variational inequalities in [START_REF] Sokolowski | Introduction to shape optimization[END_REF]. The mathematical theory of asymptotic analysis is applied in [START_REF] Nazarov | Asymptotic analysis of shape functional[END_REF], [START_REF] Nazarov | Self-adjoint extensions for the Neumann Laplace and applications[END_REF] for derivation of topological derivatives in shape optimization of elliptic boundary values problems. The numerical solutions of the shape optimization problems for variational inequalities obtained by the level set method combined with the topological derivatives are presented in [START_REF] Fulmanski | A level set method in shape and topology optimization for variational inequalities[END_REF] In the paper we present the topological derivatives for semilinear elliptic boundary value problems. In the first part, the asymptotic analysis is performed for a class of the second order semilinear elliptic equations. In the second part the convergence of the finite element approximation for the topological derivatives is established, and results of numerical experiments are presented.

The topological sensitivity analysis aims to provide an asymptotic expansion of a shape functional with respect to the size of a small hole created inside the domain. For the sake of simplicity we assume that the hole is located at the origin, but the same results hold for the center of the hole being an arbitrary point in Ω. For a criterion j(Ω) = J (u Ω ; Ω)

where Ω ⊂ | N (N = 2 or 3) and u Ω is a solution of a of partial differential equation defined over Ω, this expansion can be generally written in the form:

j(Ω \ (O + ω ε )) -j(Ω) = f (ε)T Ω (O, ω) + o(f (ε)). (1) 
Here ε and O denote respectively the diameter and the center of the hole, ω is a fixed domain containing the origin O and f (ε) is a positive function tending to zero with ε → 0. The coefficient T Ω is commonly called the topological derivative.

Semilinear elliptic equation

Let Ω and ω be bounded domains in | 3 with the smooth boundaries ∂Ω and ∂ω and the compact closures Ω and ω, respectively. The origin O of the coordinate system is assumed to belong to the domains Ω and ω. The following sets are introduced:

ω ε = x ∈ | 3 : ξ := ε -1 x ∈ ω , Ω(ε) := Ω \ ω ε , (2) 
where x = (x 1 , x 2 , x 3 ) are Cartesian coordinates in the domain Ω and ε > 0 is a small parameter. The upper bound ε 0 > 0 is chosen in such a way that for ε ∈ (0, ε 0 ] the set ω ε belongs to the domain Ω. We can diminish the value of ε 0 > 0 in the sequel, if necessary, however, the notation for the bound ε 0 remains unchanged. The set ω ε is called hole, or opening, in the domain Ω(ε).

In this paper, we consider a nonlinear elliptic problem in the singularly perturbed domain Ω(ε) :

-∆ x u ε (x) = F (x, u ε (x)), x ∈ Ω(ε),

u ε (x) = 0, x ∈ ∂Ω(ε). (3) 
Here F ∈ C 0,α (Ω × |) and f ∈ L 2 (Ω) are given functions, independent of the parameter ε. The asymptotic analysis in the linear case is well known (see monographs [START_REF] Il | in: Matching of asymptotic expansions of solutions of boundary value problems[END_REF], [START_REF] Mazja | Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten[END_REF]), e.g. for the Dirichlet boundary value problem for the Poisson equation:

-∆ x u ε (x) = f (x), x ∈ Ω(ε), u ε (x) = 0, x ∈ ∂Ω(ε), (4) 
According to the method of compound asymptotic expansions [START_REF] Mazja | Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten[END_REF], in asymptotic analysis of (4) there appear two limit problems. The first one is obtained by formally taking ε = 0, e.g. filling the hole ω ε :

-∆ x u(x) = f (x), x ∈ Ω, u(x) = 0, x ∈ ∂Ω, (5) 
and the second one is the boundary value problem which furnishes the leading boundary layers term:

-∆ ξ w(ξ) = 0, ξ ∈ | 3 \ ω, w(ξ) = -u(O), ξ ∈ ∂ω, (6) 
where u(O) is the value at the origin of the solution of (5).

As in [START_REF] Mazja | On the asymptotic behavior of solutions of elliptic boundary value problems with irregular perturbations of the domain[END_REF] (see also [START_REF] Mazja | Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten[END_REF]; §5.7), for the nonlinear problem (3) we obtain also two limit problems, the first limit problem is nonlinear

-∆ x v(x) = F (x, v(x)), x ∈ Ω, v(x) = 0, x ∈ ∂Ω, (7) 
and the second limit problem is the linear exterior problem [START_REF] Demlow | Sharply localized pointwise and W -1 ∞ estimates for finite element methods for quasilinear problems[END_REF] with u(O) := v(O) given by the solution to [START_REF] Frehse | Asymptotic L ∞ -error estimates for linear finite element approximations of quasilinear boundary value problems[END_REF]. Our aim in this paper is the construction of asymptotic approximations for solutions to (3) in such a way that we are able to obtain an expansion of a given shape functional

J (u ε ; Ω(ε)) = Ω(ε) J(x, u ε (x))dx, (8) 
of the first order with respect to ε, namely,

J (u ε ; Ω(ε)) = J (v; Ω) + εT Ω (O) + o(ε), (9) 
(cf. ( 1)), where

J (v; Ω) = Ω J(x, v(x))dx, (10) 
and T Ω is the topological derivative of the functional J .

Beside that we need the linearized problem [START_REF] Frehse | Asymptotic L ∞ -error estimates for linear finite element approximations of quasilinear boundary value problems[END_REF], which gives us the regular terms in the asymptotic approximation,

-∆ x V (x) -F ′ v (x, v(x))V (x) = F(x), x ∈ Ω, V (x) = g(x), x ∈ ∂Ω (11) 
The solution V is but the so-called adjoint state. The adjoint state is introduced in order to simplify the expression for the topological derivative. Appropriate function spaces are employed to analyze the solvability of all boundary value problems introduced above.

The weighted Hölder spaces Λ l,α β (Ω) are defined [START_REF] Mazja | Estimates in Lp and Hölder classes and the Miranda-Agmon maximum principle for solutions of elliptic boundary value problems in domains with singular points on the boundary[END_REF] as the closure of C ∞ c (Ω \ O) (smooth functions vanishing in the vicinity of O) in the norm

Z; Λ l,α β (Ω) = l k=0 sup x∈Ω |x| β-l-α+k |∇ k x Z(x)| + sup x,y∈Ω,|x-y|< |x| 2 |x| β |x -y| -α |∇ l x Z(x) -∇ l y Z(y)|.
The standard norm in the Hölder space C l,α (Ω) looks as follows:

Z; C l,α (Ω) = l k=0 sup x∈Ω |∇ k x Z(x)| + sup x,y∈Ω,|x-y|< |x| 2 |x -y| -α |∇ l x Z(x) -∇ l y Z(y)|.
Here l ∈ {0, 1, ...}, α ∈ (0, 1) and β ∈ |.

Now we introduce several assumptions which are required to define the topological derivatives:

(H1) The limit problem [START_REF] Frehse | Asymptotic L ∞ -error estimates for linear finite element approximations of quasilinear boundary value problems[END_REF] has a solution v ∈ C 2,α (Ω) and F ∈ C 0,1 (Ω × |) with a certain α ∈ (0, 1).

(H2) The linear problem [START_REF] Il | in: Matching of asymptotic expansions of solutions of boundary value problems[END_REF] with

F ∈ C 0,α (Ω), g ∈ C 2,α (∂Ω) has a unique solution V ∈ C 2,α (Ω), V ; C 2,α (Ω) ≤ c( F; C 0,α (Ω) + g; C 2,α (∂Ω) ). ( 12 
)
Here and in the sequel c stand for a positive constant that may change from place to place but never depends on ε.

(H3) F ′ v ∈ C 0,α (Ω × |).
If (H3) holds true and F ′ v (x, v(x)) ≤ 0 for x ∈ Ω, (H2) is also satisfied. Hypothesis (H2) means the existence and uniqueness of classical solutions to the linearized problem in Hölder spaces C 2,α (Ω) with the a priori estimate [START_REF] Jackowska-Strumillo | On numerical solution of shape inverse problems[END_REF]. It turns out that the linear mapping for problem [START_REF] Il | in: Matching of asymptotic expansions of solutions of boundary value problems[END_REF] 

S : {F, g} -→ V, (13) 
is an isomorphism in the Hölder spaces

C 2,α (Ω) → C 0,α (Ω) × C 2,α (∂Ω)
. By a general result in [START_REF] Mazja | Estimates in Lp and Hölder classes and the Miranda-Agmon maximum principle for solutions of elliptic boundary value problems in domains with singular points on the boundary[END_REF], (see also [START_REF] Nazarov | Elliptic Problems in Domains with Piecewise Smooth Boundaries[END_REF]; Ch. 3,4) the operator remains to be an isomorphism in weighted Hölder spaces under the proper choice of indices.

Theorem 1. Under assumptions (H2) and (H3), the mapping [START_REF] Kondratiev | Boundary problems for elliptic equations in domains with conical or angular points[END_REF] considered in the weighted Hölder spaces

S : Λ 0,α β (Ω) × C 2,α (∂Ω) -→ Λ 2,α β (Ω) is an isomorphism if and only if β -α ∈ (2, 3).
The following result on asymptotics is due to [START_REF] Kondratiev | Boundary problems for elliptic equations in domains with conical or angular points[END_REF][START_REF] Mazja | Estimates in Lp and Hölder classes and the Miranda-Agmon maximum principle for solutions of elliptic boundary value problems in domains with singular points on the boundary[END_REF] (see also [START_REF] Mazja | On the behavior of solutions to quasilinear elliptic boundary-value problems in a neighborhood of a conical point[END_REF] and, e.g., [START_REF] Nazarov | Elliptic Problems in Domains with Piecewise Smooth Boundaries[END_REF]; Ch. 3, 4). Theorem 2. If the right hand side in [START_REF] Il | in: Matching of asymptotic expansions of solutions of boundary value problems[END_REF] F ∈ Λ 0,α γ (Ω) and γ -α ∈ (1, 2), then the solution V to [START_REF] Il | in: Matching of asymptotic expansions of solutions of boundary value problems[END_REF] can be decomposed V (x) = V (x) + V (O) and the following estimate holds

|V (O)| + V ; Λ 2,α γ (Ω) ≤ c( F; Λ 0,α γ (Ω) + g; C 2,α (∂Ω) ). (14) 
An assertion, similar to Theorem 1, is valid for the perforated domain Ω(ε) as well. The following result is due to [START_REF] Mazja | On the asymptotic behavior of solutions of elliptic boundary value problems with irregular perturbations of the domain[END_REF] (see also [START_REF] Mazja | Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten[END_REF], Ch. 2.4, [START_REF] Nazarov | Elliptic Problems in Domains with Piecewise Smooth Boundaries[END_REF], Ch. 6).

Theorem 3. Under assumptions (H2) and (H3), the linearized problem

-∆ x v ε (x) -F ′ v (x, v(x))v ε (x) = F ε (x), x ∈ Ω(ε), v ε (x) = g ε (x), x ∈ ∂Ω(ε) ( 15 
)
is uniquely solvable and the solution operator

S ε : {F ε , g ε } -→ v ε ( 16 
)
is bounded in the weighted Hölder spaces

S ε : Λ 0,α β (Ω(ε)) × Λ 2,α β (∂Ω(ε)) -→ Λ 2,α β (Ω(ε)) . Moreover, in the case β -α ∈ (2, 3) the estimate v ε ; Λ 2,α β (Ω(ε)) ≤ c β ( F ε ; Λ 0,α β (Ω(ε)) + g ε ; Λ 2,α β (∂Ω(ε)) ) ( 17 
)
is valid, where the constant c β is independent of ε ∈ (0, ε 0 ].

Remark Since |x| ≥ cε > 0 in Ω(ε), the weighted norm •; Λ 2,α β (Ω(ε)) is equivalent to the usual norm •; C 2,α (Ω(ε)) , however, the equivalence constants depend on ε. Thus Λ 2,α β (Ω(ε)) and C 2,α (Ω(ε)) coincide algebraically and topologically but are normed in different way. The norm of operator S ε is uniformly bounded for ε ∈ (0, ε 0 ] for any β, although the constant c β depends on ε provided β / ∈ (2, 3), that is, the norm of the inverse operator is uniformly bounded in ε ∈ (0, ε 1 ] only in the case of β ∈ (2, 3).

For the nonlinear problem (3), we shall use the classical solutions to boundary value-problem [START_REF] Casas | Uniform convergence of the FEM. Applications to state constrained control problems[END_REF], which means that for given F ∈ C 0,α (Ω × |), α ∈ (0, 1), the solutions lives in C 2,α (Ω), we refer to [START_REF] Ladyzhenskaya | tseva: Linear and quasilinear elliptic equations[END_REF] and [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF] for a result on the existence and uniqueness of solutions to semilinear elliptic boundary value-problems. It means, in particular, that problem (3) admits the unique solution u ε ∈ C 2,α (Ω(ε)) for some 0 < α < 1 and for all ε ∈ [0, ε 0 ).

Topological derivative for semilinear problems in 3D

We present here the complete analysis of the semilinear elliptic problem in three spatial dimensions. Such an analysis is interesting on its own, since in the existing literature there is no elementary derivation of the form of topological derivatives for nonlinear problems besides [START_REF] Mazja | On the asymptotic behavior of solutions of elliptic boundary value problems with irregular perturbations of the domain[END_REF], (see also [START_REF] Mazja | Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten[END_REF],Ch. 5.7) i.e., using the asymptotic approximations of solutions to non linear PDE's. There are some results on topological derivatives of shape functional for non linear problems, see e.g., [START_REF] Amstutz | Topological sensitivity analysis for some nonlinear PDE system[END_REF], however such results are given in terms of the one term exterior approximation of the solutions and without asymptotically exact estimate.

Formal asymptotic analysis

Referring to [START_REF] Mazja | Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten[END_REF], we set

u ε (x) = v(x) + w(ε -1 x) + εv ′ (x) + ..., (18) 
where v, v ′ and w are components of regular and boundary layer types, respectively. Thus,

-∆ x v(x) -ε -2 ∆ ξ w(ξ) -ε∆ x v ′ (x) + ... = F (x, v(x) + w(ε -1 x) + εv ′ (x) + ...) = F (x, v(x)) + (w(ε -1 x) + εv ′ (x))F ′ v (x, v(x)) + ... (19) 
In view of [START_REF] Frehse | Asymptotic L ∞ -error estimates for linear finite element approximations of quasilinear boundary value problems[END_REF], the first terms on the left and the right are cancelled and, moreover, w satisfies the problem [START_REF] Demlow | Sharply localized pointwise and W -1 ∞ estimates for finite element methods for quasilinear problems[END_REF] with

u(O) = v(O), -∆ ξ w(ξ) = 0, ξ ∈ | 3 \ ω, w(ξ) = -v(O), ξ ∈ ∂ω, (20) 
while the boundary datum comes from the relation

v(x) + w(ε -1 x) + εv ′ (x) = v(O) + w(ε -1 x) + O(ε), x ∈ ∂ω ε .
We have

w(ξ) = -v(O)P (ξ) ( 21 
)
where P is the capacitary potential [START_REF] Landkof | Fundamentals of modern potential theory. Izdat[END_REF][START_REF] Pólya | Isoperimetric inequalities in mathematical phisics[END_REF], e.g., a harmonic function in | 3 \ ω such that P (ξ) = 1 on ∂ω and

P (ξ) = |ξ| -1 cap(ω) + O(|ξ| -2 ), (22) 
where cap(ω) is the capacity of the set ω. Since

w(ε -1 x) = -|x| -1 εv(O)cap(ω) + O(ε 2 |x| -2 ), (23) 
we collect coefficients on ε in ( 19) and obtain

-∆ x v ′ (x) -v ′ (x)F ′ v (x, v(x)) = -aΦ(x)F ′ v (x, v(x)), x ∈ Ω, v ′ (x) = aΦ(x), x ∈ ∂Ω, (24) 
where a = 4πv(O)cap(w) and Φ(x) = (4π|x|) -1 is the fundamental solution of the Laplace equation in | 3 .

Since a direct calculation yields

F ′ (•, v)Φ ∈ Λ 0,α γ (Ω) with any γ > 1 + α, we obtain the solution v ′ ∈ Λ 2,α β (Ω) of problem (24) such that v ′ -v ′ (O) ∈ Λ 2,α γ (Ω) where β -α ∈ (2, 3
) and γ -α ∈ (1, 2) can be taken arbitrarily.

Justification of asymptotic

We search for a solution of problem (3) in the form

u ε (x) = v(x) + w(ε -1 x) + εv ′ (x) + ûε (x) (25) 
where ûε is a small remainder, satisfying the problem

   -∆ x ûε (x) = Fε (x; û), x ∈ Ω(ε), ûε (x) = ĝε Ω (x), x ∈ ∂Ω, ûε (x) = ĝε ω (x), x ∈ ∂ω(ε). (26) 
Here

Fε (x; û) = F (x, v(x) + w(ε -1 x) + εv ′ (x) + ûε (x)) -F (x, v(x)) -ε(v ′ (x) -aΦ(x))F ′ v (x, v(x)), ĝε Ω (x) = -w(ε -1 x) -aεΦ(x), ĝε ω (x) = -v(x) + v(O) -εv ′ (x). (27) 
We are going to employ the Banach contraction principle and, thus, we need to estimate the norms of [START_REF] Sokolowski | On topological derivative in shape optimization[END_REF].

Owing to ( 21), ( 22), the function x → w(ε -1 x) + aεΦ(x) is smooth on the surface ∂Ω, where |x| ≥ c > 0, and

|w(ε -1 x) + aεΦ(x)| ≤ |v(O)||P (ξ) -cap(ω)|ξ| -1 | ≤ cε 2 |x| -2 ≤ cε 2 , |∇ k x w(ε -1 x) + aε∇ k x Φ(x)| ≤ ε -k |v(O)||∇ k ξ P (ξ) -cap(ω)∇ k ξ |ξ| -1 | ≤ cε -k |ξ| -2-k = cε 2 |x| -2-k ≤ cε 2 . ( 28 
)
Hence, by the above inequalities for the function x → w(ε -1 x) + aεΦ(x), we obtain the following estimates of the norm of ĝε Ω in the weighted Hölder space :

ĝε Ω ; Λ 2,α β (∂Ω) ≤ c ĝε Ω ; C 2,α (∂Ω) ≤ c ĝε Ω ; C 3 (∂Ω) ≤ cε 2 . (29) 
Moreover, for β -β ′ > 0, we have

ĝε ω ; Λ 2,α β (∂Ω) ≤ c( sup x∈∂ωε 2 k=0 |x| β-2-α+k (|∇ k x (v(x) -v(O))| + ε|∇ k x v ′ (x)| + sup x,y∈∂ωε |x| β |x -y| -α (|∇ 2 x v(x) -∇ 2 y v(y)| + ε|∇ 2 x v ′ (x) -∇ 2 y v ′ (y)|)) ≤ c(ε β-1-α v; C 2,α (Ω) + ε 1+β-β ′ v ′ ; Λ 2,α β ′ (Ω) ). (30) 
Notice that v ′ ∈ Λ 2,α β ′ (∂Ω) with arbitrary β ′ ∈ (2 + α, 3 + α), we shall further select the indices β and β ′ in an appropriate way. Let us denote

F(x, V (x)) = F (x, v(x) + V (x)) -F (x, v(x)) -V (x)F ′ v (x, v(x)). ( 31 
) so that Fε (x; ûε ) = F(x, w(ε -1 x) + εv ′ (x) + ûε (x)) + (w(ε -1 x) + εaΦ(x) + ûε (x))F ′ v (x, v(x)). (32) Since (x → F ′ v (x, v(x))) ∈ C 0,α (Ω)
, by (H3), we take into account representation [START_REF] Nazarov | Asymptotic analysis of shape functional[END_REF] together with the inequality β -α > 2 and, as a result, we obtain

(w + εaΦ)F ′ v ; Λ 0,α β (Ω(ε)) ≤ c sup x∈Ω(ε) |x| β-α |x| ε -2 + sup x,y∈Ω(ε),|x-y|<|x|/2 |x| β |x -y| -α x ε - y ε |x| ε -3 ≤ cε 2 sup x∈Ω(ε) (|x| β-α |x| -2 + |x| β+1-α |x| -3 ) ≤ cε 2 .
(33) To estimate the first term on the right of (32), we need the following assumption on the mapping F: (H4) With a certain κ ∈ (0, 1), the inequality |F(x, V (x))| ≤ c|V (x)| 1+κ and the following relations are valid:

|F(x, V 1 (x)) -F(y, V 2 (y))| ≤ c(|x -y| α (|V 1 (x)| + |V 2 (y)|) 1+κ + |V 1 (x) -V 2 (y)|(|V 1 (x)| κ + |V 2 (y)| κ )), |F(x, V 1 (x)) -F(x, V 2 (x)) -(F(y, V 1 (y)) -F(y, V 2 (y)))| ≤ c|V 1 (x) -V 2 (x) -(V 1 (y) -V 2 (y))|(|V 1 (x)| κ + |V 2 (x)| κ + |V 1 (y)| κ + |V 2 (y)| κ ),
In other words, the mapping F enjoys the Hölder condition in both arguments and has a power-law growth in the second one; moreover, the second order difference satisfies estimate [START_REF] Kondratiev | Boundary problems for elliptic equations in domains with conical or angular points[END_REF].

Lemma 1. 1) Let V ∈ Λ 2,α
β (Ω(ε)) and β -α ∈ (2, 3), α ∈ (0, 1), κ ∈ (0, 1). Then, for x ∈ Ω(ε) and |x -y| < |x|/2, the estimates

|x| β-α |V (x)| 1+κ ≤ c V ; Λ 2,α β (Ω(ε)) 1+κ , |x| β-(β-α) κ 1+κ |x -y| -α |V (x) -V (y)| ≤ c V ; Λ 2,α β (Ω(ε)) are valid.
2) Under the same restrictions on α, β, κ and x, y as above

|x| β-α |w(ε -1 x)| 1+κ ≤ cε 1+κ , |x| β-(β-α) κ 1+κ |x -y| -α |w(ε -1 x) -w(ε -1 y)| 1+κ ≤ cε.
Proof. First, we readily show the first assertion :

|x| β-α |V (x)| 1+κ ≤ |x| β-α |x| -(1+κ)(β-2-α) (|x| β-2-α |V (x)|) 1+κ ≤ |x| 2-κ(β-2-α) V ; Λ 2,α β (Ω(ε)) 1+κ
The second inequality has followed from the relation

2 -κ(β -2 -α) ≥ 2 -1(3 -2 -α) > 1 > 0. Since 1 2 |x| < |y| < 3 2
|x|, in view of |x -y| < |x|/2 and using the Newton-Leibnitz formula, we conclude that

|x| β-(β-α) κ 1+κ |x -y| -α |V (x) -V (y)| 1+κ ≤ c|x| β-(β-α) κ 1+κ |x -y| -α |x| -β+1+α |x -y| sup x∈Ω(ε)) (|x| β-1-α |∇ x V (x)|) ≤ c|x| β-(β-α) κ 1+κ |x| 1-α |x| -β+1+α V ; Λ 2,α β (Ω(ε)) ,
while applying the inequalities

β -(β -α) κ 1 + κ + 1 -α -β + 1 + α = 2 -(β -α) κ 1 + κ ≥ 2 -(β -α -2)κ 1 + κ > 0.
Based on the assumptions β -α > 2 and 1 + κ < 2, we prove the second assertion. We have

|x| β-α |w(ε -1 x)| 1+κ ≤ c|x| β-α (1 + |x| ε ) -1-κ = cε 1+κ |x| β-α (ε + |x|) 1+κ ≤ cε 1+κ .
Owing to the estimate |P (ξ)| ≤ c(1 + |ξ|) -1 for the capacity potential and the boundary condition [START_REF] Nazarov | Self-adjoint extensions for the Neumann Laplace and applications[END_REF], it follows that

|x| β-(β-α) κ 1+κ |x -y| -α |w(ε -1 x) -w(ε -1 y)| ≤ c|x| β-(β-α) κ 1+κ |x -y| -α | x ε - y ε |(1 + |x| ε ) -2 sup ξ∈| 3 \ω (1 + |ξ|) 2 |∇ ξ w(ξ)|) ≤ cε|x| β-(β-α) κ 1+κ |x| 1-α (ε + |x|) -2 ≤ cε
Indeed, in the first inequality we have again applied the Newton-Leibnitz formula, in the second inequality we have used that

|∇ ξ P (ξ)| ≤ c(1 + |ξ|) -2 and β -α -(β -α) κ 1 + κ = β -α 1 + κ ≥ 1.
We now list the necessary estimates based on Lemma 1 and (H5). We start with the boundedness of the first term in (32) multiplied by a weight. We obtain

|x| β-α |F(x, w(ε -1 x) + εv ′ (x) + ûε (x))| ≤ c|x| β-α (|w(ε -1 x)| 1+κ + ε 1+κ |v ′ (x)| 1+κ + |û ε (x))| 1+κ ) ≤ c(ε 1+κ + ûε ; Λ 2,α β (Ω(ε)) 1+κ ). (34) 
Second, we verify the boundedness of the weighted difference, namely,

|x| β |x -y| -α |F(x, =V (x) w(ε -1 x) + εv ′ (x) + ûε (x)) -F(y, V (y))| ≤ c(|x| β (|V (x)| 1+κ + |x -y| -α |V (x) -V (y)|(|V (x)| κ + |V (y)| κ )) ≤ c(ε 1+κ + ûε ; Λ 2,α β (Ω(ε)) 1+κ + (ε κ + ûε ; Λ 2,α β (Ω(ε)) κ )|x| β-(β-α) κ 1+κ |x -y| -α {|w( x ε ) -w( y ε )| + ε|v ′ (x) -v ′ (y)| + |û ε (x) -ûε (y)}) ≤ c(ε 1+κ + ûε ; Λ 2,α β (Ω(ε)) 1+κ ), (35) 
Now, we deduce the local Lipschitz continuity of the first part of mapping (32):

|x| β-α |F(x, =V1(x) w(ε -1 x) + εv ′ (x) + ûε 1 (x)) -F(x, =V2(x) w(ε -1 x) + εv ′ (x) + ûε 2 (x))| ≤ c|x| β-α |û ε 1 (x) -ûε 2 (x)|(|V 1 (x)| κ + |V 2 (x)| κ ) ≤ c ûε 1 -ûε 2 ; Λ 2,α β (Ω(ε)) (ε κ + ûε 1 ; Λ 2,α β (Ω(ε)) + ûε 2 ; Λ 2,α β (Ω(ε)) ), (36) 
Finally, we prove the local Lipschitz continuity for the weighted second order differences of the mapping F(., V i (.)), i = 1, 2. Indeed, we have

|x| β |x -y| -α |F(x, V 1 (x)) -F(x, V 2 (x)) -(F(y, V 1 (y)) -F(y, V 2 (y)))| ≤ c|x| β-(β-α) κ 1+κ |x -y| -α |(V 1 (x) -V 2 (x)) -(V 1 (y) -V 2 (y))|(ε κ + ûε 1 ; Λ 2,α β (Ω(ε)) + ûε 2 ; Λ 2,α β (Ω(ε)) ) ≤ c ûε 1 -ûε 2 ; Λ 2,α β (Ω(ε)) (ε κ + ûε 1 ; Λ 2,α β (Ω(ε)) κ ) (37)
The above estimates allow us to apply the Banach fixed point theorem to verify the existence of the remainder ûε . To this end, we rewrite problem [START_REF] Sokolowski | Introduction to shape optimization[END_REF] in the form of an abstract equation in the Banach space R = Λ 2,α β (Ω(ε)), namely,

ûε = Gû ε (38) 
where Gû ε = S ǫ ( Fε (.; ûε ), ĝε Ω , ĝε ω ) and S ε denotes isomorphism [START_REF] Mazja | On the asymptotic behavior of solutions of elliptic boundary value problems with irregular perturbations of the domain[END_REF]. Let ûε belong to the ball B ⊂ R of radius Cε 1+κ . We further need to verify two properties. First, the mapping C maps the ball B into itself,

B ∋ ûε ⇒ Gû ε ∈ B, (39) 
and, second, the mapping becomes a strict contraction on the ball, i.e.,

Gv -Gw; R ≤ k v -w; R , v, w ∈ R with k < 1. (40) 
By ( 29), (30), (33) and (34), (35), we have

Gû ε ; R ≤ c( Fε ; Λ 0,α β (Ω(ε)) + ĝε Ω ; Λ 2,α β (Ω(ε)) + ĝε ω ; Λ 2,α β (Ω(ε)) ) ≤ c(ε 1+κ + ûε ; R 1+κ + ε 2 + ε β-1-α + ε 1+β-β ′ ). (41) 
Let us fix β, α and β ′ , κ such that

(1, 2) ∋ β -α -1 ≥ 1 + κ, (42) 
β -β ′ ≥ κ. (43) 
Recall that β -α and β ′ -α belong to the interval (2, 3). Thus, to satisfy (43), we must put β -α near 3 (satisfying (42) as well) and β ′ -α near 2. This allows to create a gap of any length κ ∈ (0, 1). If (42) and (43) hold true, we obtain

Gû ε ; R ≤ c(4ε 1+κ + ûε ; R 1+κ ) ≤ Cε 1+κ , while the desired inequality C ≥ c(4 + C 1+κ ε (1+κ)κ
) is achieved by a proper choice of the constant C (e.g., C = 5c) and the bound for the parameter ε 0 in the condition ε ∈ (0, ε 0 ]. By virtue of (36) and (37), the estimate

Gv -Gw; R ≤ c(ε κ + 2C κ ε (1+κ)κ ) k v -w; R
is valid. The necessary relation k < 1 can be achieved by diminishing, if necessary, the upper bound ε 0 for ε again.

Theorem 4. Let the indices β, α and κ ∈ (0, 1) satisfy (42) and β -2 > κ, while (H2) and (H4) hold true. Then there exist positive constants C and ε 0 such that for ε ∈ (0, ε 0 ], the non-linear problem [START_REF] Sokolowski | Introduction to shape optimization[END_REF] has a unique small solution ûε , namely,

ûε ; Λ 2,α β (Ω(ε)) ≤ Cε 1+κ . ( 44 
)
Consequently, the singularity perturbed problem (3) has at least one solution [START_REF] Sokolowski | Modelling of topological derivatives for contact problems[END_REF].

In the theorem we have proven the existence of a small remainder ûε in (25), i.e;, we have verified that problem (3) has a unique solution in a small ball centred at the approximate asymptotic solution. If the uniqueness of the solution ûε is known, for exemple, F in (3) gives rise to a monotone operator, the remainder is unique without any smallness assumption.

The formal asymptotic of the shape functional

We have

J (u ε ; Ω(ε)) = Ω(ε) J(x, v(x))dx + Ω(ε) (w(ε -1 x) + εv ′ (x))J ′ v (x, v(x))dx + ... = Ω J(x, v(x))dx + ε Ω (v ′ (x) -aΦ(x))J ′ v (x, v(x))dx + . . . (45) 
We now introduce the following assumption:

(H5) J ∈ C 0,α (Ω × |), J ′ v ∈ C 0,α (Ω × |) Let p ∈ C 2,α (Ω) be a solution of the problem -∆ x p(x) -F ′ v (x, v(x))p(x) = J ′ v (x, v(x)), x ∈ Ω, p(x) = 0, x ∈ ∂Ω. (46) 
Integrating by parts in

Ω \ ❇ δ = {x ∈ Ω : |x| > δ} yields Ω (v ′ (x) -aΦ(x))J ′ v (x, v(x))dx = -lim δ→0 Ω\❇ δ (∆ x p(x) + F ′ v (x, v(x))p(x))(v ′ (x) -aΦ(x))dx = -lim δ→0 Ω\❇ δ p(x)(∆ x + F ′ v (x, v(x)))(v ′ (x) -aΦ(x))dx -lim δ→0 ∂Ω ∂ n p(x)(v ′ (x) -aΦ(x))dx + lim δ→0 ∂❇ δ (∂ |x| p(x)(v ′ (x) -aΦ(x)) -p(x)∂ |x| (v ′ (x) -aΦ(x)))dx.
By [START_REF] Raviart | Introduction à l'analyse numérique des équations aux dérives partielles[END_REF], we have v ′ (x) -aΦ(x) = 0 for x ∈ Ω and

(∆ x + F ′ v (x, v(x)))(v ′ (x) -aΦ(x)) = ∆ x v ′ (x) + v ′ (x)F ′ v (x, v(x)) -aΦ(x)F ′ v (x, v(x)) = 0.
On the other hand,

∂ |x| p(x)(v ′ (x) -aΦ(x)) = O(δ -1
) and, hence,

Ω (v ′ (x) -aΦ(x))J ′ v (x, v(x))dx -lim δ→0 ∂❇ δ (∂ |x| p(x)(v ′ (x) -aΦ(x)) -p(x)∂ |x| (v ′ (x) -aΦ(x)))dx = -a lim δ→0 ∂❇ δ p(0)(4π|x| 2 ) -1 ds x = -ap(0) = -4πv(O)p(0)cap(ω).
Thus,

J (u ε ; Ω(ε)) = J (v; Ω) -ε4πv(O)p(0)cap(ω) + ... (47) 
Let similarly to the first inequality in (H4) the following assumption be valid: (H6) With σ ∈ (0, 1),

|J(x, v(x) + V (x)) -J(x, v(x)) -V (x)J ′ v (x, v(x))| ≤ c|V (x)| 1+σ .
Using this assumption leads to the relation

|J (u ε ; Ω(ε)) -J (v; Ω(ε)) - Ω(ε) (w(ε -1 x) + εv ′ (x) + ûε (x))J ′ v (x, v(x))dx| ≤ c Ω(ε) |w(ε -1 x) + εv ′ (x) + ûε (x)| 1+σ dx ≤ c Ω(ε) x ε -1-σ + |x| -(1+σ)(β-2-α) × (ε 1+σ v ′ ; Λ 2,α β (Ω) 1+σ + ûε (x); Λ 2,α β (Ω) 1+σ ) dx ≤ cε 1+σ   1 ε r -1-σ r 2 dr + 1 ε r -(1+σ)(β-2-α) r 2 dr(ε 1+σ + ε (1+κ)(1+σ ) ≤ cε 1+σ .
Here we have taken into account that 1 + σ ≤ 2, (1 + σ)(β -2 -α) ≤ 2, and both the integrals, extended on the interval (0, 1), do converge. It suffices to mention the following inequalities:

|J (u ε ; Ω(ε)) -J (v; Ω)| ≤ c mes 3 (ω ε ) ≤ cε 3 , Ω(ε) |w(ε -1 x) + aεΦ(x)||J ′ v (x, v(x))|dx ≤ c 1 ε r ε -2 rdr ≤ cε 2 , Ω(ε) |û ε ||J ′ v (x, v(x))|dx ≤ cε 1+κ Ω(ε) |x| -(β-2-α) dx ≤ cε 1+κ .
This confirms the formal calculations performed in section 2.2. Let us formulate the main result in three dimensions.

Theorem 5. Under the assumptions listed above, we have

|J (u ε ; Ω(ε)) -J (v; Ω) + ε4πv(O)p(0)cap(ω)| ≤ cε 1+min(σ,κ) .
3 Topological derivative for mixed semilinear elliptic problem in two spatial dimensions

The numerical analysis is performed in two spatial dimensions. Therefore, we introduce a mixed semilinear problem and analyze the asymptotic in such a case. Since the proof uses the same arguments as in three spatial dimensions, we provide only the formal analysis and impose the Neumann boundary conditions on the hole boundary ∂ω ε . Note that the Dirichlet condition on ∂ω ε changes crutially the form of asymptotic expansions (cf. [START_REF] Il | in: Matching of asymptotic expansions of solutions of boundary value problems[END_REF] and [START_REF] Mazja | On the asymptotic behavior of solutions of elliptic boundary value problems with irregular perturbations of the domain[END_REF], [ [START_REF] Mazja | Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten[END_REF]; Ch. 5.7]).

Formal asymptotic analysis

Let Ω and ω be bounded domains in the plane | 2 . We consider the nonlinear mixed problem in the singularly perturbed domain Ω(ε), defined in (2):

   -∆ x u ε (x) = F (x, u ε (x)), x ∈ Ω(ε), u ε (x) = 0, x ∈ ∂Ω, ∂ n u ε (x) = 0, x ∈ ∂ω ε . ( 48 
)
Referring to [START_REF] Il | in: Matching of asymptotic expansions of solutions of boundary value problems[END_REF], [START_REF] Mazja | Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten[END_REF], especially to [START_REF] Mazja | On the asymptotic behavior of solutions of elliptic boundary value problems with irregular perturbations of the domain[END_REF] and [[17] § 5.7], we set

u ε (x) = v(x) + εw 1 (ε -1 x) + ε 2 w 2 (ε -1 (x) + ε 2 v ′ (x) + ..., (49) 
where v, v ′ and w 1 , w 2 are component of regular and boundary layer types, respectively. Precisely, v is a smooth solution of problem [START_REF] Frehse | Asymptotic L ∞ -error estimates for linear finite element approximations of quasilinear boundary value problems[END_REF] in the two dimensional entire domain Ω. The Taylor formula yields

v(x) = v(O) + x T ∇ x v(O) + 1 2 x T ∇ 2 x v(O)x + O(|x| 3 ).
The second term w 1 in the symmetric ansatz (49) becomes a solution of the exterior problem

-∆ ξ w 1 (ξ) = 0, ξ ∈ | 2 \ ω, ∂ n(ξ) w 1 (ξ) = -∂ n(ξ) ξ T ∇ x v(O), ξ ∈ ∂ω, (50) 
Such a solution admits the asymptotic representation

w 1 (ξ) = - 1 2π ξ T |ξ| 2 m(ω)∇ x v(O) + O(|ξ| -2 ), |ξ| → ∞,
where m denotes the virtual mass matrix, see [START_REF] Pólya | Isoperimetric inequalities in mathematical phisics[END_REF]. Then the third term w 2 in (32) satisfies the problem

-∆ ξ w 2 (ξ) = 0, ξ ∈ | 2 \ ω, ∂ n(ξ) w 2 (ξ) = -∂ n(ξ) 1 2 ξ T ∇ x v(O)ξ, ξ ∈ ∂ω, (51) 
For such a solution, we write down the classical asymptotic representation

w 2 (ξ) = c 2π ln 1 |ξ| + O( 1 |ξ| ) |ξ| → ∞,
where the constant c in the above equality can be calculated as follows:

∂ω ∂ n(ξ) w 2 (ξ)ds ξ = - ∂❇ R ∂ ∂|ξ| c 2π ln 1 |ξ| dξ = c. (52) 
By the Green formula, we compute the left boundary integral

- ∂ω ∂ n(ξ) 1 2 ξ T ∇ 2 x v(O)ξds ξ = ω ∆ ξ 1 2 ξ T ∇ 2 x v(O)ξdξ = mes 2 ω∆ x v(O) = -mes 2 ωF (O; v(O)). (53) 
Finally, the fourth term v ′ in (32) is to be found from the Dirichlet problem

       -∆ x v ′ (x) = (- 1 2π x T |x| 2 m(ω)∇ x v(O) - 1 2π ln ε |x| mes 2 ωF (O; v(O)) + v ′ (x))F ′ v (x, v(x)), x ∈ Ω, v ′ (x) = 1 2π x T |x| 2 m(ω)∇ x v(O) + 1 2π ln ε |x| mes 2 ωF (O; v(O), x ∈ ∂Ω, (54) 

The formal asymptotics of the shape functional

We introduce the following hypotheses:

(H7) F ∈ C 0,α (Ω × |), F ′ v ∈ C 0,α (Ω × |) for some α ∈ (0, 1) and F ′ v ≤ 0. (H8) J ∈ C 0,α (Ω × |), J ′ v ∈ C 0,α (Ω × |)
By the monotonicity of F , the Lax-Milgram Lemma and the regularity of J, the problem

-∆ x p(x) -F ′ v (x, v(x))p(x) = J ′ v (x, v(x)), x ∈ Ω, p(x) = 0, x ∈ ∂Ω. ( 55 
)
admits a unique solution p ∈ C 2,α (Ω).

We replace the solution u ε by its asymptotic representation (32). As a result we obtain the first asymptotic term of order ε 2 for the shape functional

J (u ε ; Ω(ε)) = Ω(ε) J(x, v(x))dx + Ω(ε) (εw 1 (ε -1 x) + ε 2 w 2 (ε -1 x) + ε 2 v ′ (x))J ′ v (x, v(x))dx + ... = J (v; Ω(ε)) + ε 2 Ω(ε) - 1 2π x T |x| 2 m(ω)∇ x v(O) - 1 2π ln ε |x| mes 2 ωF (O; v(O)) + v ′ (x))J ′ v (x, v(x) dx + ... = J (v; Ω) -ε 2 mes 2 ωJ(O; v(O)) +ε 2 Ω - 1 2π x T |x| 2 m(ω)∇ x v(O) - 1 2π ln ε |x| mes 2 ωF (O; v(O)) + v ′ (x) J ′ v (x, v(x))dx + ... ( 56 
)
Now we replace the right-hand side of (55 ) according to the equation and twice integrate by parts in the domain

Ω \ ❇ δ = {x ∈ Ω : |x| > δ}. We have Ω (- 1 2π x T |x| 2 m(ω)∇ x v(O) - 1 2π ln ε |x| mes 2 ωF (O; v(O)) + v ′ (x))J ′ v (x, v(x))dx = -lim δ→0 Ω\❇ δ (∆ x p(x) + F ′ v (x, v(x))p(x))(- 1 2π x T |x| 2 m(ω)∇ x v(O) - 1 2π ln ε |x| mes 2 ωF (O; v(O)) + v ′ (x))dx = -lim δ→0 Ω\❇ δ p(x)(∆ x + F ′ v (x, v(x)))(- 1 2π x T |x| 2 m(ω)∇ x v(O) - 1 2π ln ε |x| mes 2 ωF (O; v(O)) + v ′ (x))dx -lim δ→0 ∂Ω ∂ n p(x)(- 1 2π x T |x| 2 m(ω)∇ x v(O) - 1 2π ln ε |x| mes 2 ωF (O; v(O)) + v ′ (x))dx -lim δ→0 ∂❇ δ (∂ |x| p(x)(- 1 2π x T |x| 2 m(ω)∇ x v(O) - 1 2π ln ε |x| mes 2 ωF (O; v(O)) + v ′ (x)) -p(x)∂ |x| (- 1 2π x T |x| 2 m(ω)∇ x v(O) - 1 2π ln ε |x| mes 2 ωF (O; v(O)) + v ′ (x))dx.
On the other hand, the boundary condition (54) implies that

- 1 2π x T |x| 2 m(ω)∇ x v(O) - 1 2π ln ε |x| mes 2 ωF (O; v(O)) + v ′ (x) = 0. (57) 
Furthermore, for the linearized operator ∆ x + F ′ v , the inequality

(∆ x + F ′ v (x, v(x))) + - 1 2π x T |x| 2 m(ω)∇ x v(O) - 1 2π ln ε |x| mes 2 ωF (O; v(O)) + v ′ (x) = ∆ x v ′ (x) + v ′ (x)F ′ v (x, v(x)) + - 1 2π x T |x| 2 m(ω)∇ x v(O) - 1 2π ln ε |x| mes 2 ωF (O; v(O)) F ′ v (x, v(x)) = 0 is valid because the function x → - 1 2π x T |x| 2 m(ω)∇ x v(O) - 1 2π ln ε |x| mes 2 ωF (O; v(O)
is harmonic. Hence, we obtain that

Ω - 1 2π x T |x| 2 m(ω)∇ x v(O) - 1 2π ln ε |x| mes 2 ωF (O; v(O)) + v ′ (x))J ′ v (x, v(x) dx -lim δ→0 ∂❇ δ ∂ |x| p(x) - 1 2π x T |x| 2 m(ω)∇ x v(O) - 1 2π ln ε |x| mes 2 ωF (O; v(O)) -p(x)∂ |x| - 1 2π x T |x| 2 m(ω)∇ x v(O) - 1 2π ln ε |x| mes 2 ωF (O; v(O) dx -lim δ→0 2 i,j,k=1 ∂❇ δ x i |x| ∂p ∂x i (O) - 1 2π x k |x| 2 m kj ∂v ∂x j (O) -(p(O) + x i ∂p ∂x i (O)) - 1 2π x j |x| 3 m jk ∂v ∂x k (O) dx + lim δ→0 ∂❇ δ 2 i=1 (p(O) + x i ∂p ∂x i (O)) × 1 2π 1 |x| mes 2 ωF (O; v(O)) dx -lim δ→0 ∂❇ δ   2 i,j,k=1 x i |x| ∂p ∂x i (O) - 1 π x k |x| 2 m kj ∂v ∂x j (O) -p(O) 1 2π 1 |x| mes 2 ωF (O; v(O)) dx lim δ→0 ∂❇ δ   2 i,j=1 x i |x| ∂p ∂x i (O) 1 π x i |x| 2 m ij ∂v ∂x j (O) +p(O) 1 2π 1 |x| mes 2 ωF (O; v(O)) dx = F (O; v(O))mes 2 ωp(O) + ∇ x p(O) T m(ω)∇ x v(O).
Thus, recalling (56) we conclude that the relation

J (u ε ; Ω(ε)) = J (v; Ω) + ε 2 [-mes 2 ωJ(O; v(O)) + F (O; v(O))mes 2 ωp(O) + ∇ x p(O) T m(ω)∇ x v(O)] + ... (58) 
confirms the following result: Theorem 6. Under the assumptions (H1), (H7) and (H8), the following asymptotic expansion is valid :

J (u ε ; Ω(ε)) = J (v; Ω) + ε 2 [-mes 2 ωJ(O; v(O)) + F (O; v(O))mes 2 ωp(O) + ∇ x p(O) T m(ω)∇ x v(O)] + ...

Finite element approximations of topological derivatives

Our aim in this section is to compute a numerical approximation of the topological derivative of the shape functional [START_REF] Fulmanski | A level set method in shape and topology optimization for variational inequalities[END_REF], with u ε the solution of the problem (48) and give L ∞ -estimates of the error.

Family of finite elements

In Ω we consider a family of triangulations {T h } h>0 . With each element T ∈ T h , we associate two parameters ρ(T ) and σ(T ), where ρ(T ) denotes the diameter of the set T , and σ(T ) is the diameter of the largest ball contained in T . We set h = max T ∈T h ρ(T ). We make the following assumptions on the triangulations.

(H10) Regularity assumption : there exists σ > 0 such that ρ(T ) σ(T ) ≤ σ for T ∈ T h and h > 0.

(H11) Inverse assumption : there exists ρ > 0 such that h ρ(T )

≤ ρ for T ∈ T h and h > 0.

(H12) We denote by Ω h = ∪ T ∈T h T the domain obtained by a triangulation, with Ω h its interior and with ∂Ω h its boundary. Then we assume that the vertexes of T h placed on the boundary ∂Ω h belongs also to ∂Ω.

Consider the spaces

V h = v h ∈ C(Ω) : v h | T ∈ P 1 (T ) for T ∈ T h and v h = 0 in Ω \ Ω h } and W h = v h ∈ C(Ω h ) : v h | T ∈ P 1 (T ) for T ∈ T h ,
where P 1 (T ) is the space of polynomials of degree 1 on T . V h is a vector subspace of H 1 0 (Ω) and W h is a subspace of H 1 (Ω).

We use the Lagrange interpolation operator

Π h : C(Ω) → W h
being Π h z the unique element in W h such that Π h z(x i ) = z(x i ) for every node x i of the triangulation. In the case of a function z vanishing on ∂Ω, we extended Π h z to Ω by zero and we denote this extension by Π h z too. In the last case we have that Π h z ∈ V h .

Numerical solution of semilinear problem

By vitrue of the assumption F ∈ C 0,1 (Ω × |) and by the mean value theorem, we deduce the following local Lipschitz condition: for all M > 0 there exists c M > 0 such that

|F (x, v 1 ) -F (x, v 2 )| ≤ c M |v 1 -v 2 |, x ∈ Ω, |v 1 |, |v 2 | ≤ M. (59) 
Using classical arguments we can deduce from the monotonicity of F (x, .) and ( 59), the existence of a unique solution to [START_REF] Frehse | Asymptotic L ∞ -error estimates for linear finite element approximations of quasilinear boundary value problems[END_REF] in H 1 0 (Ω) ∩ C(Ω); we refer to [START_REF] Stampacchia | Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus[END_REF] for the boundedness of the solution. From to the convexity of Ω, we can deduce that the solution is in H 2 (Ω) (see [START_REF] Ladyzhenskaya | tseva: Linear and quasilinear elliptic equations[END_REF]).

The weak formulation of the equation ( 7) is the following

a(v, z) = (F (x, v), z) L 2 (Ω) , z ∈ H 1 0 (Ω), (60) 
where

a(v, z) = Ω ∇v(x)∇z(x)dx.
The numerical approximation v h of v is then the solution of the problem:

F ind v h ∈ V h such that a(v h , z h ) = (F (x, v h ), z h ) L 2 (Ω) , for any z h ∈ V h . ( 61 
)
The proof of the existence of a solution of (61) is well known (see [START_REF] Stampacchia | Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus[END_REF]). It is enough to apply, in a convenient way, Browder's fixed point theorem along with the monotonicity of F (x, .).

We rewrite problem (55 ) in the form

-∆p(x) = F 0 (x, p(x)), x ∈ Ω, p(x) = 0, x ∈ ∂Ω, (62) 
where

F 0 (x, p(x)) = F ′ v (x, v(x))p(x)+J ′ (x, v(x)
). F 0 is linear with respect to the second variable, then F 0 ∈ C 0,1 (Ω×

|).

Then the variational formulation of the linear problem (55 ) is the following,

a(p, z) = (F 0 (x, p), z) L 2 (Ω) , z ∈ H 1 0 (Ω). (63) 
Thus, that numerical approximation of p is the solution of the variational problem

F ind p h ∈ V h such that a(p h , z h ) = (F 0 (x, p h ), z h ) L 2 (Ω) for any z h ∈ V h . (64) 
Due to the hypothesis (H1) and (H7) the linear problem (64) have a solution in space V h . In the next section we give L ∞ -estimates for the finite element approximation of v, ∇v, p, ∇p and the topological derivatives in the case of semilinear elliptic problem.

4.3 Convergence of finite element approximation for semilinear problem [START_REF] Frehse | Asymptotic L ∞ -error estimates for linear finite element approximations of quasilinear boundary value problems[END_REF] and for adjoint state problem (55)

We are going to use the recent results on the convergence of finite element method in W 1,∞ spaces. The topological derivative is a point wise expression depending on the values of the state equation solution, the adjoint state, as well as the value of the gradient of these functions. In order to derive the error estimates in the L ∞ norm for the topological derivative it is required to have in hand the error estimates in the W 1,∞ norm for the solutions of the semilinear equation as well as the linear adjoint state equation. The results presented below lead to the error estimate for the topological derivative. We refer the reader to [START_REF] Casas | Uniform convergence of the FEM. Applications to state constrained control problems[END_REF], [START_REF] Demlow | Sharply localized pointwise and W -1 ∞ estimates for finite element methods for quasilinear problems[END_REF], [START_REF] Frehse | Asymptotic L ∞ -error estimates for linear finite element approximations of quasilinear boundary value problems[END_REF], for the proofs of the error estimates for linear and semilinear elliptic equations.

The following L ∞ -estimate for the approximation by finite elements of solutions to problem [START_REF] Frehse | Asymptotic L ∞ -error estimates for linear finite element approximations of quasilinear boundary value problems[END_REF] was proved in [START_REF] Casas | Uniform convergence of the FEM. Applications to state constrained control problems[END_REF].

Theorem 7. Let v and v h be solutions of the variational problems ( 60) and (61), respectively. Then there exists a constant

C > 0 independent of h such that v -v h ; L ∞ (Ω h ) ≤ Ch v; H 2 (Ω) .
In addition, assuming that Ω h ⊂ Ω, we have the following estimates proved in [START_REF] Demlow | Sharply localized pointwise and W -1 ∞ estimates for finite element methods for quasilinear problems[END_REF] (see also [START_REF] Frehse | Asymptotic L ∞ -error estimates for linear finite element approximations of quasilinear boundary value problems[END_REF])

Theorem 8. Let v and v h be solutions of the variational problems ( 60) and ( 61), respectively. Then there exists a constant C > 0 independent of h such that

∇v -∇v h ; L ∞ (Ω h ) ∞ ≤ Ch v; H 2 (Ω) .
On the other hand, we have the following L ∞ -estimates for the approximation of solutions to the linear problem (55 ): Theorem 9. Let x 0 ∈ Ω and let p and p h be solutions of the variational problems ( 63) and ( 64) respectively. Then there exists a constant C > 0 independent of h such that

p -p h ; L ∞ (Ω h ) + ∇p -∇p h ; L ∞ (Ω h ) ≤ Ch p; H 2 (Ω) .

L ∞ -estimates for the approximation of the topological derivative

We denote by T Ω,h the numerical approximation by finite element method of the topological derivative T Ω . Then

T Ω,h (O) = -mes 2 (ω)J(O, v h (O)) + ∇ x p h (O) T m(ω)∇ x v h (O) + F (O, v h (O))mes 2 (ω)p h (O). (65) 
We obtain

|T Ω (O) -T Ω,h (O)| = | -mes 2 (ω)[J(O, v(O)) -J(O, v h (O))] +[∇ x p(O) T m(ω)∇ x v(O) -∇ x p h (O) T m(ω)∇ x v h (O)] +[F (O, v(O))mes 2 (ω)p(O) -F (O, v h (O))mes 2 (ω)p h (O)]| ≤ mes 2 (ω)|J(O, v(O)) -J(O, v h (O))| +|∇ x p(O) T m(ω)∇ x v(O) -∇ x p h (O) T m(ω)∇ x v h (O)| +mes 2 (ω)|F (O, v(O))p(O) -F (O, v h (O))p h (O)|. (66) 
We have

|J(O, v(O)) -J(O, v h (O))| ≤ c v -v h ; L ∞ (Ω h ) . (67) 
It follows that

|T Ω (O) -T Ω,h (O)| ≤ c v -v h ; L ∞ (Ω h ) + |∇ x p(O) T m(ω)∇ x (v(O) -v h (O))| +|∇ x (p(O) -p h (O)) T m(ω)∇ x v h (O)| + mes 2 (ω)|F (O, v(O))(p(O) -p h (O))| +mes 2 (ω)|(F (O, v(O)) -F (O, v h (O)))p h (O)|. (68) 
Thanks to (54) we obtain

|F (O, v(O)) -F (O, v h (O))| ≤ c 2 v -v h ; L ∞ (Ω h ) , (69) 
and therefore

|T Ω (O) -T Ω,h (O)| ≤ c 1 v -v h ; L ∞ (Ω h ) + c 2 ∇ x (v(O) -v h (O)); L ∞ (Ω h ) +c 3 ∇ x (p(O) -p h (O)); L ∞ (Ω h ) + c 4 p(O) -p h (O); L ∞ (Ω h ) . (70) 
Finally, by the Theorems 8 and 9, we deduce the following result.

Theorem 10. The following error estimate hold for the approximation of the topological derivatives

|T Ω (O) -T Ω,h (O)| ≤ Ch( v; H 2 (Ω) + p; H 2 (Ω) ). (71) 

Numerical examples

In this section we presents some numerical examples to show us the behavior of topological derivative approximation w.r.t. the evolution of discretization step size. We derive errors and verifies that the computed error satisfy the Theorem (10) estimate in each case.

For each of the examples we choose the domain Ω as a square (0, 1) × (0, 1) and the following energy functional

J (v; Ω) = 1 2 Ω |∇v(x)| 2 dx + 1 4 Ω v 4 (x)dx - Ω f (x)v(x)dx ( 72 
)
where v is the solution of the nonlinear problem

-∆ x v(x) = -v(x) 3 + f (x), x ∈ Ω, v(x) = 0, x ∈ ∂Ω. ( 73 
)
We take different right-hand side f in each of the examples. The size of discretization is determined by h, which decrease in each iteration. We compute the error in 20 iteration strarting with h = 0.2 and reduce it by 0.01 in each step.

Example 1. In the first example the function f is given by

f (x) = f (x 1 , x 2 ) = (x 2 1 + x 2 
2 ) sin πx 1 sin πx 2 3 + 2 π 2 (x 2 1 + x 2 2 ) -2 sin πx 1 sin πx 2 -4π (x 1 cos πx 1 sin πx 2 + sin πx 1 cos πx 2 )

We calculate the exact solution of (73) The exact and numerical approximation of the topological derivative is presented in Figure 1 . In Figure 2 we plot the relative evolution of the error and the behavior of the error w.r.t. the discretization step size. In this case u(x 1 , x 2 ) = x 1 (x 1 -1)x 2 (x 2 -1) The exact topological derivative and it numerical approximation are presented in Figure 3 and in Figure 4 we show the relative evolution of the error and the behavior of the error w.r.t. the discretization step size.

Example 3. In the last example we take f (x 1 , x 2 ) = 100x 2 1 x 2 2 (x 1 -1) 2 (x 2 -1) 2 3 -200 x 2 1 (x 1 -1) 2 (6x 2 2 -6x 2 + 1) + x 2 2 (x 2 -1) 2 (6x 2 1 -6x 1 + 1) then u(x 1 , x 2 ) = 100x 2 1 x 2 2 (x 1 -1) 2 (x 2 -1) 2 , and p(x 1 , x 2 ) = -50x 2 1 x 2 2 (x 1 -1) 2 (x 2 -1) 2 . In this last example the exact topological derivative and it numerical approximation are presented in Figure 5 and in Figure 6 we show the relative evolution of the error and the behavior of the error w.r.t. the discretization step size. 

Conclusion

In the paper the form of topological derivatives of integral shape functional is obtained for semilinear elliptic boundary value problems in two and three spatial dimensions. The finite element method is used to compute an approximation of the topological derivatives. The convergence analysis of the finite element method is performed in two spatial dimensions. Since the application of topological derivatives in shape optimization requires pointwise values we provide L ∞ -estimates for finite element approximations. The result of computations confirm the apriori estimate of the numerical approximation error. The presented results can be used for shape and topology optimization for semilinear elliptic boundary value problems.

u(x 1 x 2 1 + x 2 2

 122 , x 2 ) = x 2 1 + x 2 2 sin πx 1 sin πx 2 and the corresponding adjoint state p(x 1 , x 2 ) = -1 2 sin πx 1 sin πx 2

Figure 1 :

 1 Figure 1: Topological derivative: exact T Ω (left) and approximate T Ω,h (right).

Example 2 .

 2 Let us chosef (x) = f (x 1 , x 2 ) = (x 1 (x 1 -1)x 2 (x 2 -1)) 3 -2 (x 2 (x 2 -1) + x 1 (x 1 -1))

Figure 2 :

 2 Figure 2: Error :|T Ω -T Ω,h | ∞ /|T Ω | ∞ .

Figure 3 :

 3 Figure 3: Topological derivative: exact T Ω (left) and approximate T Ω,h (right).

Figure 4 :

 4 Figure 4: Error : |TΩ -T Ω,h | ∞ /|T Ω | ∞ .

Figure 5 :

 5 Figure 5: Topological derivative: exact T Ω (left) and approximate T Ω,h (right).

Figure 6 :

 6 Figure 6: Error : |TΩ -T Ω,h | ∞ /|T Ω | ∞ .
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