Jean-Guillaume Dumas
email: jean-guillaume.dumas@www-lmc.imag.fr

Clément Pernet
email: clement.pernet@imag.fr@www-lmc.imag.fr

Jean-Louis Roch
email: jean-louis.roch@imag.fr@www-id.imag.fr

Guillaume Dumas

Clement Pernet}

Adaptive triangular system solving

come

Introduction

Large-scale applications and software systems are getting increasingly complex. To deal with this complexity, those systems must manage themselves in accordance with high-level guidance from humans. Adaptive and hybrid algorithms enable this self-management of resources and of structured inputs. In this paper, we first propose a classification of the different notions of adaptivity. For us, an algorithm is adaptive when there is a choice at a high level between at least two distinct algorithms, each of which could solve the same problem [START_REF] Cung | Adaptive and hybrid algorithms: classification and illustration on triangular system solving[END_REF]. The choice is strategic, not tactical. It is motivated by an increase of the performance of the execution, depending on both input/output data and computing resources. An adaptive algorithm may be -simple: O(1) choices are performed whatever the input (e.g. its size) is. Notice that, while only a constant number of choises are done, each choice can be used several times (an unbounded number of times) during the execution.

-baroque: the number of choices is not bounded: it depends on the input (e.g. its size).

While choices in a simple adaptive alogrithm may be defined statically before any execution, some choices in baroque adaptive algorithms are necessarily computed at run time or pre-computed. The choices may be performed based on machine parameters. But there exist efficient algorithms that do not base their choices on such parameters. For instance, cache-oblivious algorithms have been successfully explored in the context of regular [START_REF] Frigo | Cache-oblivious algorithms[END_REF] and irregular [START_REF] Bender | Cache-oblivious b-trees[END_REF] problems, on sequential and parallel machine models [START_REF] Bender | Concurrent cacheoblivious b-trees[END_REF].

They do not use any information about memory access times, or cache-line or disk-block sizes. This motivates a second distinction based on the information used:

-An adaptive algorithm is oblivious, if its control flow depends neither on the particular values of the inputs nor on static properties of the resources. -An adaptive algorithm is tuned, if a strategic decision is made based on static resources such as memory specific parameters or heterogeneous features of processors in a distributed computation.

A tuned algorithm is engineered if a strategic choice is inserted based on a mix of the analysis and knowledge of the target machine and input patterns. An adaptive algorithm is self-tuned if the choices are automatically computed by an algorithm. -An adaptive algorithm is introspective if it avoids any machine or memoryspecific parameterization. Strategic decisions are made based on resource availability or input data properties, both discovered at run-time (such as idle processors). For instance, a strategic decision is made based on assessment of the algorithm performance on the given input up to the decision point.

In this paper we want to use adaptive algorithms to improve exact linear algebra performances. Indeed, exact matrix multiplication, together with matrix factorizations, over finite fields can now be performed at the speed of the highly optimized numerical BLAS routines [START_REF] Goto | Anatomy of High-Performance Matrix Multiplication[END_REF][START_REF] Whaley | Automated Empirical Optimizations of Software and the ATLAS Project[END_REF]. This has been established by the FFLAS and FFPACK libraries [START_REF] Dumas | Finite Field Linear Algebra Subroutines[END_REF][START_REF] Dumas | FFPACK: Finite Field Linear Algebra Package[END_REF]. We now discuss the implementation of exact solvers for triangular systems with matrix right-hand side (or equivalently left-hand side). This is also the simultaneous resolution of n triangular systems. The resolution of such systems is e.g. the main operation in block Gaussian elimination. For solving triangular systems over finite fields, the block algorithm reduces to matrix multiplication and achieves the best known algebraic complexity. After recalling the block recursive scheme of triangular system solving we detail in section 2 two distinct sequential adaptive degenerations. The first one is a reduction to the numerical routine dtrsm and the second one is a delaying of the modulus operation. Then we compare their respective behaviors in practice and propose a new self-tuned cascading sequential triangular solver. Then, in section 3, we propose to adapt the work stealing parallel scheduler to obtain a generic baroque coupling of sequential and parallel algorithms and use this scheme to propose a parallel triangular solver. As a conclusion we then propose a generic recursive framework enabling the automation of the process of adaptation in section 4.

A more detailed classification of adaptive and hybrid algorithms as well as some preliminary results on the sequential variants of triangular solving have been presented in [START_REF] Cung | Adaptive and hybrid algorithms: classification and illustration on triangular system solving[END_REF]. We here propose a new self-tuned cascading sequential algorithms and more experimental results.

2 Data tuned exact triangular system solving 2.1 Triangular system solving with matrix right-hand side

In the following, we consider without loss of generality that the system to solve is upper triangular and the unknown is a matrix at its right-hand side. Thus we consider the system AX = B where A is a m × m non singular upper triangular matrix and X and B are m × n matrices. We consider the case m ≤ n.

From now on we will denote by ω the exponent of square matrix multiplication (e.g. from 3 for classical, to 2.375477 for Coppersmith-Winograd). Moreover, we can bound the arithmetical cost of a m × k by k × n rectangular matrix multiplication (denoted by R(m, k, n)) as follows:

R(m, k, n) ≤ C ω m z n z k z z ω where z = min(m, k, n) [9].
This system resolution can be reduced to matrix multiplication by a block recursive algorithm. In the following, we first recall it and then present two variants improving its efficiency. At last, we combine them into a cascade algorithm taking benefit of each of their advantage.

Scheme of the block recursive algorithm

The recursive algorithm 1 is based on a recursive splitting of the matrices into blocks and a divide and conquer approach. With m = n and classical matrix multiplication, the arithmetic cost of this algorithm is T RSM (m) = m 3 as shown e.g. in [START_REF] Dumas | FFPACK: Finite Field Linear Algebra Package[END_REF]Lemma 3.1]. We now also give the cost of the triangular matrix multiplication, TRMM, and of the triangular inversion, INVT, as we will need them in the following sections. To perform the multiplication of a triangular matrix by a dense matrix, one can use a similar block decomposition:

1. X 1 :=trmm (A 1 , B 1); 2. B 1 := B 1 + A 2 X 2 ; 3. X 2 :=trmm (A 3 , B 2); The cost is thus T RM M (m, n) = T RM M (m/2, n)+R(m/2, m/2, n). The latter is T RM M (m, n) = m 2 n with classical matrix multiplication.

Now the inverse of the matrix

A 1 A 2 A 3 is the matrix A -1 1 -A -1 1 A 2 A -1 3 A -1 3 , so the cost of its computation is IN V T (m) = 2IN V T (m/2) + 2T RM M (m/2, m/2). The latter is IN V T (m) =
) */ A A 1 A 2 A 3 X X 1 X 2 = B B 1 B 2 X 2 :=trsm(A 3 , B 2) B 1 := B 1 -A 2 X 2 X 1 :=trsm(A 1 , B 1) return X end 2.

A tuned cascading algorithm

Degenerating to the BLAS "dtrsm" Matrix multiplication speed over finite fields was improved in [START_REF] Dumas | Finite Field Linear Algebra Subroutines[END_REF][START_REF] Pernet | Implementation of Winograd's matrix multiplication over finite fields using ATLAS level 3 BLAS[END_REF] by the use of the numerical BLAS1 library: the elements of the input matrices are converted to floating point representations, thus enabling the use of the efficient numerical linear algebra subroutines, and the result is converted back to a finite field representation afterwards. This computation corresponds to an injection of the finite field into Z. The conversion back to the finite field is made possible if the computation only involved additions and multiplications and if now overflow of the integer representation has occured. Therefore this technique can be applied to the trsm routine under the following conditions:

-the triangular matrix must have a unit diagonal to avoid the n divisions by each of the diagonal entries of the triangular matrix -all intermediate integral result must be representable in the floating point mantissa, so the growth of the coefficients must be controlled.

For the first point, it suffices to factorize the triangular matrix A = AD, where U is unit triangular and D is diagonal (D is exactly the diagonal of A). After solving the unit diagonal triangular system U Y = B (without division), there only remains to compute X = D -1 Y by n divisions over the finite field. This normalization leads to an additional cost of O(mn) arithmetic operations (see [START_REF] Dumas | FFPACK: Finite Field Linear Algebra Package[END_REF] for more details).

We now deal with the control of the coefficients growth. The kth row of the solution matrix X is a linear combination of the (nk) last rows of X, already computed. This imply an exponential growth of the value of the coefficients, or equivalently, a linear growth in their size, with respect to the system dimension. More precisely, if the finite fields elements are represented by integers between 0 and p -1, the system must satisfy

p -1 2 p n-1 + (p -2) n-1 < 2 ma (1)
where m a is the size of the mantissa [START_REF] Dumas | FFPACK: Finite Field Linear Algebra Package[END_REF]. Under this condition, the resolution over the integers using the BLAS trsm routine is exact. For instance, with a 53 bits mantissa, this gives quite small matrices, namely at most 55 × 55 for p = 2, at most 4 × 4 for p ≤ 9739, and at most p = 94906249 for 2 × 2 matrices. Nevertheless, this technique is speed-worthy in many cases.

In the following, we will denote by S BLAS (p) the maximal matrix size for which the BLAS resolution is exact. We can now build the first cascade algorithm, BLASTrsm: the recursive block algorithm is used until the block size is lower than S BLAS (p), where the BLAS resolution is then applied.

Interleaving delayed modulus

The block recursive algorithm consist in several matrix multiplications of different sizes. Over a finite field, this imply numerous unnecessary modular reductions, after each block multiplication. Therefore, we propose to delay these reductions: the matrix multiplications are performed over Z, and the reduction is only applied when necessary. Over Z, the matrix multiplication remains correct as long as

k(p -1) 2 < 2 mA , (2
)
where k is the common dimension of the two matrices to be multiplied.

U = i i B 1..i-1 B i V X X i 1..i-1

Fig. 1. Splitting for the double cascade trsm algorithm

This equation defines a second threshold S DEL : for k < S DEL , the matrix multiplication can be performed without modular reductions. To combine it with the previous threshold S BLAS , we define S SP LIT as the larger multiple of S BLAS lower than S DEL . From these two thresholds, one can build the splitting of the system, shown on figure 1.

Algorithm 2: trsm-blas-del : Recursive Blas Delayed

Data: A ∈ Z /pZ m×m , B ∈ Z /pZ m×n Result: X ∈ Z /pZ m×n s.t. AX = B begin Compute SBLAS(p) from equation (1) Compute SDEL from equation (2) SSPLIT ← Min(m/2, SDEL) /* Adjusting SSPLIT to a multiple of SBLAS */ SSPLIT ← (SSPLIT/SBLAS)SBLAS foreach block column of A of dimension m × SSPLIT of the form 2 4 Vi Ui 0 3 5 do Xi = trsm del(Ui, Bi) Xi = Xi mod p B1...i-1 = B1...i-1 -ViXi B1...i-1 = B1...i-1 mod p return X end
Algorithm 2 is a loop on every block of column dimension S DEL . For each of them, a triangular system is solved using algorithm 3, a modular reduction is performed and the solution is updated by a matrix multiplication. Algorithm 3 is simply the adaptive algorithm, formed by the block recursive algorithm 1 and the BLAS resolution with dtrsm. The matrix multiplication are delayed, since the dimension is supposed to satisfy equation [START_REF] Frigo | Cache-oblivious algorithms[END_REF]. So the only modular reductions are performed after the call to dtrsm.

Experiments

We now compare four implementations of the trsm routine:

Pure recursive (pure-rec): simply algorithm 1, Recursive-BLAS (rec-BLAS): the cascade algorithm formed by the recursive algorithm and the BLAS routine dtrsm, Recursive-Delayed (rec-delayed) : the recursive algorithm, with delayed matrix multiplication (rec-BLAS-delayed without the cascade to dtrsm) Recursive-BLAS-Delayed (rec-BLAS-delayed): the double cascade algorithm (algorithm 2)

We compare these four variants on finite fields with different characteristics, so as to make the parameters S BLAS and S DEL vary as in the following On the experiments of figure 2, the matrix B is square (m = n). One can first notice the gain provided by the use of dtrsm by comparing the curves rec-BLAS and pure-rec for p = 5. This advantage shrinks when the characteristic gets larger, since S BLAS = 2 for p = 1 048 583 or p = 8 388 61. Now the delaying of the modular reduction improves by 500Mfops the speed of computation. This gain similar for p = 5 and p = 1 048 583 since in both cases n < S DEL and there is therefore no modular reduction between the matrix multiplications.

ˇ) */ A X B z }| { » A1 A2 A3 -z }| { » X1 X2 - = z }| { » B1 B2 - X2 :=trsm del(A3, B2) B1 := B1 -A2X2 ; /*
Lastly for p = 8 388 617, the splitting in blocks of size S DEL is much faster than the variants rec-delayed and rec-blas-delayed. The variants pure-rec and rec-BLAS are penalised by their dichotomic splitting, creating too many modular reductions after each matrix multiplication. But we still can not explain the reason why the variant rec-blas-delayed is faster than rec-delayed for p = 8 388 617, whereas it is slightly slower for p = 5 or p = 1 048 583.

3 Resource introspective exact triangular system solving

Parallel adaptive algorithms by work-stealing

Cilk [START_REF] Frigo | The implementation of the cilk-5 multithreaded language[END_REF], Athapascan/Kaapi [START_REF] Jafar | A checkpoint/recovery model for heterogeneous dataflow computations using work-stealing[END_REF] and Satin [START_REF] Van Nieuwpoort | Satin: Simple and efficient java-based grid programming[END_REF] are parallel programming interfaces that support nested parallelism and implement a work-stealing scheduling Pure-rec Rec-BLAS Rec-delayed Rec-BLAS-Delayed Fig. 2. Comparison of the trsm variants for p = 5, 1 048 583, 8 388 617, on a Pentium4-3, 2Ghz-1Go [START_REF] Arora | Thread scheduling for multiprogrammed multiprocessors[END_REF][START_REF] Acar | The data locality of work stealing[END_REF] based on the work first principle.. A program explicits parallelism by recursively forking tasks; a task is a procedure call that can be performed on any computational resource. In Athapascan/Kaapi (resp. Cilk), tasks are crated using a fork(resp. spawn) instruction: fork f(args), where f is the name of the function and args its effective parameters. Due to recursion, at execution, forkinstructions define a fork tree T , similarly to the procedure calls tree in a sequential program. The tree T describes only task creations, not synchronization and data dependencies that exist between tasks, that define another DAG G, also unfolded at run time, which in general is not a tree. Any schedule that respect dependencies in G is valid; among all parallel schedules, a parallel width (or breadth) first parallel schedule (BFS) consists in executing tasks according to a breadth first trasversal of the tree T but additionally respecting synchronizations defined by G. While in Cilk (and Satin), G is restricted to be serie-parallel, Kaapi enables to program more general dependencies graph. However, both are based on a sequential lexicographic semantics defined only by T : a depth first sequential execution (DFS), that executes tasks sequentially according to a depth first traversal of the tree T , is a valid schedule. Indeed, when a process creates a task, this task creation can be interpreted: either locally as a sequential function call according to DFS, with small overhead with respect to a direct function call and no synchronization overhead; or as a new thread creation on another process that will perform the task, with then synchronization overhead between both processes to migrate the task and to merge its results. Then the program implements a parallel algorithm (BFS) that can also be executed as a sequential one (DFS). The (recursive) choices between both are performed by the work-stealing schedule. In a work-stealing schedule [START_REF] Arora | Thread scheduling for multiprogrammed multiprocessors[END_REF][START_REF] Acar | The data locality of work stealing[END_REF], each process manages a local double-ended queue (deque) where it stores the tasks it has created, at the bottom of the deque. When a processor completes a task or blocks on a synchronization, two cases arise. Either its local deque contains some ready tasks: then it executes the first one corresponding to a depth-first sequential execution (DFS), by popping from the bootom of its deque. Or its local deque contains no ready task, then the process becomes a thief: it randomly scans the deque of the other processors (steal request), until finding one that contains ready tasks; then it steals a ready task from the top of this victim deque, according to BFS order in the local tree of task on the victim. This stealing operation then corresponds to a breadth first execution (BFS). The work stealing hybrids two algorithms, a DFS schedule and a BFS one. Since each parallel task creation can be performed either by a sequential call (DFS algorithm) or by creation of a new thread (BFS algorithm) depending on resource idleness, any parallel program with non-fixed degree of parallelism is an adaptive baroque algorithm. Because the choice does not depend on the input size but only on resource idleness, the algorithm is adaptive. Even if the workstealing is an hybrid of both a sequential (DFS) and parallel (BFS) schedule, the algorithm (i.e. the tree T and the data dependencies in G) remains the same, since a single algorithm is executed. In the next section, we extend this model to hybrid two distinct algorithms, one sequential the other parallel, based on the workstealing.

Baroque coupling of sequential and parallel algorithms

We present the coupling, based on workstealing, of a sequential algorithm f seq and a parallel one f par that both solve the same problem f . Following [START_REF] Daoudi | Algorithmes parallèles à grain adaptatif et applications[END_REF][START_REF] Roch | On-line adaptive parallel prefix computation[END_REF], we assume that the sequential algorithm performs a first part of the sequential computation (called ExtractSeq) and then performs a recursive terminal call to f to complete the computation. Besides, we assume that the sequential algorithm is such that at any time of its execution, the sequence of operations that completes the algorithm f seq can be performed by another parallel recursive (fine grain) algorithm f par . The operation that consists in extracting the last part of the sequential computation in progress to perform it in parallel with f par is called ExtractPar. After completion of f par , the final result is computed by merging both the result of the first part computed by f seq (not affected by ExtractPar) and the result of the ExtractPar part computed by f par . More precisely, given a sequential algorithm f seq (resp. parallel f par), the result r of its evaluation on an input x is denoted f seq (x) (resp. f par (x)). We assume that x has a list structure with a concatenation operator ♯ and that there exists an operator ⊕ (not necessarily associative) for merging the results. At any time of evaluation of f seq (x), x can be split into x 1 ♯x 2 , due to either an ExtractSeq or an ExtractPar operation on x. The result computed by the parallel algorithm is then f par (x) = f (x 1) ⊕ f (x 2). We assume that both results f seq (x) and f par (x) are equivalents with respect to a given measure. In the restricted framework of list homomorphism [START_REF] Bird | Introduction to the Theory of Lists[END_REF], this hypothesis can be written as f (x♯y) = f (x) ⊕ f (y). However, it is possible to provide parallel algorithms for problems that are not list homomorphisms [START_REF] Cole | Parallel Programming with List Homomorphisms[END_REF] at the price of an increase in the number of operations. To decrease overhead related to choices for f between f seq and f par , f seq is the default choice used. Based on a workstealing scheduling, f par is only chosen when a processor becomes idle, which leads to an ExtractPar operation. This exception mechanism may be implemented by maintaining during any execution of f seq (x) a lower priority process ready to perform an ExtractPar operation on x resulting in an input x 2 for f par only when a processor becomes idle. Then the overhead due to choices is only related to the number of ExtractPar operations actually performed. To analyze this number, we adopt the simplified model of Cilk-5 [START_REF] Frigo | The implementation of the cilk-5 multithreaded language[END_REF] also valid for Kaapi [START_REF] Jafar | A checkpoint/recovery model for heterogeneous dataflow computations using work-stealing[END_REF]; it relies on the bound on the number of steals requests performed by the workstealing (see theorems 9 in [START_REF] Arora | Thread scheduling for multiprogrammed multiprocessors[END_REF]). Let T) be the execution time on a sequential processor (i.e. work) of f seq (resp. f par), and let T (par) ∞ be the execution time of f par on an unbounded number of identical processors.

Theorem 1. When the adaptive program is executed on a machine with m identical processors, the expected number of choices f par instead of f seq for f is bounded by (m -1).T (par) ∞ Proof. On an infinite number of processors, all the computation is performed by f par ; the parallel time of the adaptive algorithm is then T (par) ∞

. The execution is based on the workstealing schedule. From theorem 9 in [START_REF] Arora | Thread scheduling for multiprogrammed multiprocessors[END_REF], the expected number of steal requests is bounded by T (par) ∞ on each processor (Graham's bound), except for the one running f seq . The latter only executes the sequential algorithm, but is subject to ExtractPar, due to steal requests from the others. This is true for any execution of such adaptive baroque algorithm.

The consequence of this theorem is that for a fine grain parallel algorithm that satisfies

T (par) ∞ ≪ T (seq) 1
, even if the adaptive algorithm is baroque (non constant number of choices), the overhead in time due to choices in the adaptive algorithm is negligible when compared to the overall work.

Remark. The overhead due to the default call to ExtractSeq can also be reduced. Ideally, ExtractSeq should extract a data whose computations by f par would require a time at least T (par) ∞ , which is the critical time for f par . In the next section we apply the above coupling of a sequential and a parallel algorithm to the TRSM algorithm.

Baroque introspective parallel Trsm

The previous algorithm takes benefit of parallelism at the level of Blas matrix product operations. However, using the scheme proposed in §3.2, it is possible to obtain an algorithm with more parallelism in order to decrease the critical time when more processors are available. Furthermore, this also improves the performance of the distributed work-stealing scheduler. Indeed, while X 2 and B 1 are being computed, additional idle processors may proceed to the parallel computation of A -1 1 . Indeed, X 1 may be computed in two different ways:

i. X 1 = T RSM (A 1 , B 1): the arithmetic cost is T 1 = k 3 and T ∞ = k; ii. X 1 = T RM M (A -1 1 , B 1): the cost is the same T 1 = k 3 but T ∞ = log k.
Indeed the version (ii) with TRMM is more efficient on a parallel point of view: the two recursive calls and the matrix multiplication in (ii) (TRMM) are independent. They can be performed on distinct processors requiring less communications than TRSM. Since precomputation of A -1

1
increases the whole arithmetic cost, it is only performed if there are extra unused processors during the computation of X 2 and B 1 ; the latter has therefore higher priority. The problem is to decide the size k of the matrix A 1 that will be inverted in parallel. With the optimal value of k, the computation of A -1 1 completes simultaneously with that of X 2 and B 1 . This optimal value of k depends on many factors: number of processors, architecture of processors, subroutines, data. The algorithm presented in the next paragraph uses the oblivious adaptive scheme described in 3.2. to estimate this value at runtime using the introspective coupling of a "sequential" algorithm f s with a parallel one f p .

Parallel introspective TRSM Th parallel introspective TRSM algorithm 4 consists in computing concurrently in parallel (Figure 3):

-"sequential" computation (f s) at high priority: bottom-up computation of X = T RSM (A, B) till reaching k, implemented by the parallel BUT algorithm (Bottom-Up TRSM - §5); all processes that perform parallel BLAS operations in BUT are executed at high priority; -parallel computation (f p) at low priority: parallel top-down inversion of A till reaching k, implemented by TDTI algorithm (Top Down Triangular Inversion - §6); all processes that participates in parallel TDTI are executed at low priority.

(k BUT -k B)..k BUT :   A 2,1 A 2,2 A 3,1 A 3,2 A 3,3   X 2,1 X 2,2 =   B 1 B 2,1 B 2,2   k BUT := k BUT -k B ; endmutex X 2,2 :=trsm (A 3,3 , B 2,2); B 1 := B 1 -A 2,2 X 2,2 ; B 2,1 := B 2,1 -A 3,2 X 2,2 ; X 2,1 :=BUT A 2,1 ; A 3,1 ; B 1 B 2
+ k I)..k BUT ;   A 2,1 A 2,2 A 3,1 A 3,2 A 3,3   endmutex Parallel A -1 3,1 :=Inverse(A 3,1); T := A -1 1 .A 2,1 ; endpar A ′ 2,1 = -T.A -1 3,1 ; Let A ′ -1 1 = A -1 1 A ′ 2,1 A -1 3,1 and A ′ 2 =
A 2,2 A 3,2 ;

Mutual Exclusion k T DT I := k T DT I + k I ; endmutex A -1 3,3 :=TDTI(A ′ -1

1 ;A ′ 2 ;A 3,3); end Definiton of parameters k I and k B Parameters k B (resp. k I) corresponds to the ExtractSeq (resp. ExtractPar) operations presented in §3.2. The choice of their values is performed at each recursive step, depending on resources availability. This section analyzes this choice in the case where only one system is to be solved, i.e. n = 1. Let r = k BUTk T DT I .

-On the one hand, to fully exploit parallelism, k B should not be larger than the critical time T ∞ of TDTI, i.e. k B = log 2 r.

-On the other hand, in order to keep an O(n 2) number of operations if no more processors become idle, the number of operations O(k 3 I) required by T DT I should be balanced by the cost of the update, i.e. k I .r, which leads to k I = √ r.

With those choices of k I and k B , and assuming that there are enough processors, the number of choices for k I (and so k B) will then be O(√ r); the cost of the resulting adaptive algorithm becomes

T 1 = O(n 2) and T ∞ = O(√ n log 2 (n)), a
complexity similar to the one proposed in [START_REF] Pan | Work-preserving speed-up of parallel matrix computations[END_REF] with a fine grain parallel algorithm, while this one is coarse grain and dynamically adapts to resource idleness. Notice that if only a few processors are available, the parallel algorithm will be executed at most on one block of size √ n. The BUT algorithm will behave like the previous tuned TRSM algorithm. Also, the algorithm is oblivious to the number of resources and their relative performance.

Generic framework for adaptive algorithms

The previous general adaptive algorithm for Trsm is based on the coupling of various recursive algorithms self-adapting to input data and processor load. In this section we generalize this coupling in order to provide a generic scheme for baroque adaptive algorithms based on recursive choices performed at runtime.

Recursive representation

Let f be a problem with input set I and output set O. For the computation of f , an adaptive algorithm is based on the composition of distinct algorithms (f i) i=1,...,k , each solving the problem f . The sequential and parallel algorithms presented in the previous sections are all instances of distinct f i for the computation of f =Trsm. Since an algorithm is finite, the number k ≥ 2 of algorithms is finite; however, each of those algorithms may use additional parameters, based on the inputs, outputs or machine parameters (e.g. number of processors). Generalizing previous algorithms for Trsm, we assume that each of those algorithms is written in a recursive way: to solve a given instance of f , algorithm f i reduces it to subcomputations instances of f of smaller sizes. Adaptivity then consists in choosing for each of those subcomputations the suited algorithm f j to be used (fig. 4). This choice can be implemented in various ways. For instance, f may be implemented as a pure virtual function, each of the f i being an inherited specialization.

The benefits of this recursive approach is that the work already performed before any choice is automatically reused by the new variant taking over. In this way the overhead of the adaptive strategy is only that of the performed tests. In the TRSM case some of these tests can even be statically pre-computed. Furthermore, this recursive scheme can also give way to complexity improvements: a fast practicable algorithm with bad worst-case complexity can be used to perform the first part of the work ; then a proven better algorithm with slower practicable performances can be used in a smaller part of the problem. This has been successfully used e.g. in the case of the integer determinant [START_REF] Dumas | An introspective algorithm for the determinant[END_REF].

Algorithm f i (I n, input, O output, . . .) { . . . f(n-1, . . .) ; . . . f(n / 2, . . .) ; . . . }; Fig. 4. Recursive description of an adaptive algorithm f i .

Overhead due to choices and workstealing

For baroque algorithms the choices between the different f i 's are performed at runtime . Therefore an important problem is related to reducing the overhead related to the computation of each choice with respect to the arithmetic cost of the computation. Also, for a given subcomputation, a default given algorithm f 1 is favored; but this choice may be changed under some exceptional circumstances depending on values or machine parameters. Then, if the total number of such exceptions is small with respect to the total number of subcomputations, the overhead due to choices may become negligible. For instance, in the case of workstealing schedule, a sequential execution is the default choice. We assume that this default choice corresponds to the algorithm f 1 . Based on theorem 1, the expected number of choices different from f 1 is bounded with respect to the critical time T ∞ of the execution on an unbounded number of processors. Also, we assume that any of the (possibly many) algorithms f i that may be chosen by the workstealing when a processor becomes idle (ExtractPar operation) have a critical time bounded by T ∞ on an infinite number of processors. Then the expected number of choices different from f 1 on a finite number p of processor is O(T ∞) on any processor, whatever the value of p and the whole number of operations performed. In the case of workstealing, the overhead due to choices is then bounded.

Conclusion

Designing efficient adaptive algorithms is the key to get most of the available resources and most of the structure of the inputs. We have shown e.g. for exact linear algebra or for combinatorial optimization Branch&X [START_REF] Cung | Adaptive and hybrid algorithms: classification and illustration on triangular system solving[END_REF], that this is true for numerous applications. From a classification of the distinct forms of adaptive algorithms, we have proposed in this paper a generic framework to express this adaptivity. On a single simple example, namely solving linear systems, we show that several of these "adaptivities" can appear. This enables an effective adaptation of the algorithm and a nice way to adapt automatically its behavior, independent of the execution context. This is true in a parallel context where coupling of algorithms is critical to obtain a high performance.

The resulting algorithm is quite complex but can be nearly automatically generated in our simple framework. The requirements are just to provide recursive versions of the different methods. In the AHA group, such coupling are studied in the context of many examples: vision and adaptive 3D-reconstruction, linear algebra in general, and combinatorial optimization.

Algorithm 4 : 1 =Fig. 3 .

 413 Fig. 3. Parallel introspective TRSM

, 1 ;Algorithm 6 :

 16 end Top down triangular inversion of A 1 Algorithm 6 is a block inversion of the top part of the triangular matrix. It is fully parallel as it computes the next triangular inverse while updating the upper rectangular part. TDTI: Top-down triangular inverse Data: A -1 1 ; A 2 ; A 3 . Result: A -1 , k T DT I . begin Mutual Exclusion if k T DT I ≥ k BUT then Return; k I := Choice(1..(k BUTk T DT I)); Split remaining columns of A 2 and A 3 into k T DT I ..(k T DT I + k I) and (k T DT I

table :

 : Algorithm 3: trsm del

	Data: A ∈ Z /pZ Result: X ∈ Z /pZ m×m , B ∈ Z /pZ m×n s.t. AX = B m×n , m must be lower than nDEL
	begin	
	if m ≤ nBLAS then	
	X = dtrsm(A, B) ;	/* the BLAS routine */
	X = X mod p	
	else /* (splitting of the matrix into blocks of dimension ¨m 2 ˝and ˚m 2

www.netlib.org/blas

This work is supported by the INRIA-IMAG project AHA, aha.imag.fr.