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POSITIVE LEGENDRIAN REGULAR HOMOTOPIES

FRANÇOIS LAUDENBACH

Abstract. In contrast with what happens for Legendrian embeddings, there always exist
positive loops of Legendrian immersions.

1. Introduction

In this note, the following is proved:

Theorem 1.1. Let L be an n-dimensional closed manifold, J1(L,R) be its space of 1-jets,
α = dz − pdq be its canonical contact form and ξ = kerα be its associated contact structure.
There exists a loop of Legendrian immersions ϕt : L → J1(L,R), t ∈ S1, starting from the

0-section and positive in the following sense:
∂ϕ

∂t
is transverse to ξ at every point. Moreover,

ϕt may be chosen C0-close to the stationary loop.1

In [4] Y. Eliashberg and L. Polterovich emphasized that the existence of positive contractible
loops of Hamiltonian contact diffeomorphisms on a contact manifold should have an important
topological significance. In [2] with S. S. Kim, they proved that such loops exist on the standard
spheres S2n+1, n > 0, but not on J1(L,R). By using invariants defined by C. Viterbo in [7],
V. Colin, E. Ferrand and P. Pushkar proved that there do not exist any positive loops of
Legendrian embeddings of L into J1(L,R) starting from the zero-section (see [1]). Thereafter,
Emmanuel Ferrand asked me about the same question in replacing embeddings by immersions;
I am grateful to him for that question. I thought that methods which are developed in the
marvellous book by Y. Eliashberg and N. Mishachev [3] could apply. This is the case as is
explained below; actually we do not apply a known h-principle, but we prove the h-principle
for the problem at hand. I thank Vincent Colin for interesting discussions on related topological
questions.

I am glad to have here the opportunity to express my deep admiration to Yasha.

1991 Mathematics Subject Classification. 53D10.
Key words and phrases. Legendrian immersion, positive regular homotopy.
1As a consequence, the theorem holds for any contact manifold (M, ξ) and any Legendrian immersed sub-

manifold L (apply the tubular neighborhood theorem for Legendrian immersions in a contact manifold). I am
grateful to the referee for this remark and, more generally, for his very careful reading of the first version.
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2 FRANÇOIS LAUDENBACH

2. Field of transverse loops

Let X be the Reeb vector field on J1(L,R) associated to α, that is the unique contact vector
field such that α(ξ) = 1. A transverse loop will be an immersed closed curve which is transverse
to ξ.

Proposition 2.1. There exists a smooth family of transverse loops passing through every point
in L, identified with the 0-section of J1(L,R). More precisely, there exists ϕ : L×S1 → J1(L,R)
such that:

1) ϕ(x, 0) = x for every x ∈ L;

2)
∂ϕ

∂t
(x, t) = X

(

ϕ(x, t)
)

when t is close to 0 in S1 (here t stands for the variable in S1);

3)
∂ϕ

∂t
(x, t) is transverse to ξ for every (x, t) ∈ L× S1.

Proof. Here we think of S1 as [−1,+1] with identified end points. If X t denotes the flow of
X, we define the required family by ϕ(x, t) = X t(x) when t ∈ [−1/2,+1/2]. For extending ϕ
to L× S1, we will use a suitable family of contact Hamiltonians.

We choose a triangulation T of L and a finite open covering of L by charts {Oi}i∈I such
that each simplex σ is contained in some Oi(σ) and, when τ is a face of σ, Oi(τ) ⊂ Oi(σ). Let
Ui = J1(Oi,R). We are going to construct ϕ so that ϕ(σ × S1) ⊂ Ui(σ) for each σ ∈ T .

We first describe a transverse loop passing through a vertex A. Let A± = X±3/4(A). We
choose a smooth path γ from A+ to A− in Ui(A) avoiding X t(A), t ∈ [−1/2,+1/2]; it is not re-
quired to be transverse to ξ. It may be viewed as the trajectory of A+ during a contact isotopy
ψs, s ∈ [0, 1], generated by some time dependent contact Hamiltonian hs. We assume that hs

is constant on a small interval of the Reeb orbit [X−ε
(

γ(s)
)

, X+ε
(

γ(s)
)

]. The Hamiltonian is
extended to J1(L,R) with compact support in Ui(A) avoiding X t(A), t ∈ [−1/2,+1/2]. The

arc ψ1

(

X t(A)
)

, t ∈ [−1/2,+3/4] is transverse to ξ, starts at X−1/2(A) and ends at X−3/4(A).

Moreover, it is vertical, i.e. tangent to
∂

∂z
, near its end points. Therefore this arc can be

smoothly closed by adding the vertical interval J(A) = {X t(A) | t ∈ [−3/4,−1/2]}. In general
the resulting loop is only immersed with possible double points in J(A).

Now, assume recursively that ϕ is already constructed on ∂σ × S1, where σ is a simplex of
T . We perform a similar construction where A is replaced by x running in σ. We have to
find a family of paths γx from x+ to x− in Ui(σ), avoiding X t(x), t ∈ [−1/2,+1/2], depending
smoothly on x and extending the given family on ∂σ. As the dimension of Ui(σ) is much bigger
than the dimension of σ, there is no obstruction for solving this homotopy problem. �

Remark. By rescaling it is easy to make the diameter of each loop in the family ϕ less than
any positive ε.

In the next step, we will thicken each tranverse loop ϕx, x ∈ L, from the family ϕ yielded
by proposition 2.1, into an immersed tube equipped with a contact action of S1, depending
smoothly on x. Even forgetting that the action has to be contact, such a family of thickenings
is not so obvious to get, except when ξ is a trivial bundle. Of course one tranverse loop may
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be thickened into a tube with a S1-action, but a problem appears when one tries to do it in a
family. For that, we will take care of the concept of trivialization. For x ∈ L, we use the same
notation ϕx for denoting the immersed curve ϕ(x, S1) or its parametrization t ∈ S1 7→ ϕ(x, t).
We think of νx := ξ|ϕx as its normal bundle, which is a trivial bundle since the loop lies in a
chart. Classically, a trivialization of νx is a framing. But, if ξ is not a trivial bundle, such a
framing does not exist if it is required to depend continuously on x. We use another definition
of trivialization.

Definition 2.2. Let A be a submanifold of J1(L,R), with a base point a. A trivialization of
ξ|A is a smooth field of linear isomorphisms πz : ξ(z) → ξ(a), z ∈ A.

For instance, if A is a convex Darboux chart, we have a canonical trivialization obtained by

parallelism and projection along
∂

∂z
. Therefore, if σ is a simplex in T and x ∈ σ, the Darboux

chart Ui(σ) induces a canonical trivialization on νx using ϕ(x, 0) = x as a base point of ϕx.
When τ is a face of σ, for x ∈ τ we have two trivializations of νx: one when ϕx is viewed as a
loop in Ui(σ) and the other one when it is viewed as a loop in Ui(τ). But, if the triangulation is
fine enough and the diameter of the loops ϕx is small enough, both trivializations are close to
each other. Arguing in this way, we have the following.

Lemma 2.3. There exists a smooth family of trivializations πx,t : ξ(ϕ(x, t)) → ξ(x), (x, t) ∈
L×S1. This family may be viewed as a family of linear actions of S1 on νx, depending smoothly
on x ∈ L.

Proof. The question is to find a global section of some bundle E over L × S1 whose fiber at
(x, t) is the space of linear isomorphims πx,t : ξ

(

ϕ(x, t)
)

→ ξ(x). Two such isomophisms differ
by an automorphim of ξ(x) depending on t. Therefore we introduce the group bundle A over
L × S1 whose fiber Ax,t over (x, t) is the group of linear automorphisms of ξ(x). Around the
identity section in A we choose n disk sub-bundles V1 ⊂ V2 . . . ⊂ Vn such that, if f and g are
in Vj ∩ Ax,t, then f−1 is in Vj and f ◦ g is in Vj+1. As above, we choose the triangulation T
fine enough and the diameters of the loops ϕx small enough so that the following condition is
fulfilled:

for each simplex σ ∈ T and any face τ , and for any x ∈ τ , the canonical trivializations
of νx associated to the Darboux charts Ui(σ) and Ui(τ) differ by a section of V1 over
{x} × S1.

Now the wanted section of E will be constructed recursively over the skeleta T [k]×S1. Let σ be
a k-simplex of T . Assume that we have a smooth family of trivializations πx,t of νx for x ∈ ∂σ
and assume that, for any (k − 1)-face τ of σ, it differs from the canonical trivialization associ-
ated to Ui(τ) by a section of Vk−1. Hence it differs from the canonical trivialization associated
to Ui(σ) by a section of V1 ◦ Vk−1 ⊂ Vk. As the fiber of Vk is contractible, two sections of Vk are
homotopic and the family {πx,t} extends over σ × S1. �
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Proposition 2.4. There exists a family of closed immersed tubes θx : Dx×S
1 → J1(L,R), x ∈

L, where Dx is a small 2n-dimensional disk centered at x and tangent to ξ(x) at x, with the
following properties:

1) θx depends smoothly on x ∈ L;
2) θx(x, t) = ϕ(x, t) for every (x, t) ∈ L× S1;
3) for z ∈ Dx, θx(z, 0) = θx(z, 1) = z and, for t close to 0 = 1 in S1, θx(z, t) = X t(z);
4) S1 acts on the source of θx by contact diffeomorphims with respect to the contact struc-

ture θ∗x(ξ).

Proof. According to lemma 2.3, we have a family of linear S1-actions on the 2n-disk bun-
dle νr

x of radius r about the 0-section in νx, x ∈ L; here an S1-invariant metric is used. By
choosing an exponential map exp : ξ → J1(L,R) and taking r small enough, exp(νr

x) is a
family of immersed tubes θx : Dx × S1 → J1(L,R), x ∈ L, which meets the wanted conditions
but the contactness; here Dx is the fiber of the tube at x. The contact form α induces on
Dx a Liouville form λx for the symplectic structure induced by dα on Dx. Hence we get an
S1-invariant contact form on the tube: α̃x = dt+λx. So we have two contact forms on Dx×S

1,
θ∗x(α) and α̃x. The underlying plane fields are both transverse to the S1-orbits and coincide
along the core of the tube {x} × S1. Gray’s stability theorem [5] applies relatively to the core
curve and yields a conjugation of the germs of both contact structures along the core. Carry-
ing the S1-action over this conjugation we fulfill condition 4) on a small tube around {x}×S1. �

We thicken the disk Dx into a 2n+1-ball Bx contained in the cylinder Cx := ∪s∈[−ε,+ε]X
s(Dx).

A point z ∈ Cx reads z = Xs(y), y ∈ Dx, s ∈ [−ε,+ε]. The immersion θx obviously extends
as a map (not an immersion) Θx : Bx × S1 → J1(L,R) by the following formula:

Θx(z, t) = θx(y, t+ s) .

For a given x ∈ L, t 7→ Θx(−, t) is a periodic positive contact regular homotopy2 of Bx into
J1(L,R) starting from Bx →֒ J1(L,R) at t = 0 (in fact, if Bx is small, it is an isotopy). The
family of the germs of Θx along {x}×S1 may be thought of as a formal solution of the problem
that theorem 1.1 solves. In the next section we follow the book by Eliashberg-Mishachev [3]
for modifying this formal solution into a genuine solution.

3. Towards a genuine solution

In the sequel, it is more convenient to work with a cubication C (cell decomposition made
of cubes) instead of a triangulation of L. By adding the barycenter of each simplex of a
triangulation one easily gets a cubication. In the sequel the germ at x of some periodic homotopy
Θ : B × S1 → J1(L,R) will mean the germ of Θ along {x} × S1.

Proposition 3.1. There exist the following families:
1) For each edge σ ∈ C whose end points are x0 and x1, there exist a small neighborhood Bσ

of σ in J1(L,R) and a periodic positive contact regular homotopy Θσ : Bσ × S1 → J1(L,R)
starting from Bσ →֒ J1(L,R) at t = 0 and whose germ at {xi} is the one of Θxi

for i = 0, 1.

2We recall that a regular homotopy is a homotopy through immersions.
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2) There exists a smooth family Θ1
x, x ∈ L, of periodic positive contact regular homotopies,

defined near x, whose germ at x is the one of Θσ when x ∈ σ.

Proof. Take the barycentric parametrization of σ, γ(u) with u ∈ [0, 1], and a fine subdivision

u0 = 0, u1 = 1/N, . . . , uN = 1. Let xk = γ(uk), u
′
k =

uk + uk+1

2
and x′k = γ(u′k).

Lemma. If N is large enough, there exists a periodic Hamiltonian contact isotopy F t, t ∈ S1,
of Bxk

with support in 2/3Bxk
, being Identity at t = 0, such that:

i) Θxk
◦ F is a positive regular homotopy, where the composition is meant at each time

t ∈ S1.
ii) x′k belongs to 1/3Bxk

and the germ of Θxk+1
at x′k is the one of Θxk

◦ F .

Proof of the lemma. If N is large enough, Θxk+1
(x′k, t) belongs to the ball Θxk

(1/3Bxk
, t)

for every t ∈ [0, 1]. Therefore, near {x′k}×S1, Θxk+1
can be lifted to the source of Θxk

; in other
words, the germ of Θxk+1

along {x′k} × S1 has a time preserving factorization through Θxk
.

This lift is a periodic contact Hamiltonian isotopy of embeddings of a small ball centered at x′k
into 1/3Bxk

. Moreover, if N is large, it can be chosen ε-close to Identity in the C1-topology.
It extends as a Hamiltonian isotopy F of Bxk

supported in 2/3Bxk
and 2ε-close to Identity. In

general, such an F is not a periodic isotopy; F 1 is Identity only on a neighborhood N(x′1) of
x′1 and outside 2/3Bxk

. But being C1-close to Identity, F 1 is isotopic to Identity by a contact
Hamiltonian isotopy supported in W := 2/3Bxk

\ N(x′1); indeed, the group Diffcont(W, ∂W )
is locally contractible3. This allows us to modify F so that it becomes a periodic isotopy. As
Θxk

is a positive regular homotopy, if F is close enough to Identity, Θxk
◦F is still positive. �

For 0 < k < N , let Bk := Bxk
and let Θ′

k denote the modified regular homotopy described
above. We also choose a contact Hamiltonian diffeomorphism ψk with support in a small
neighborhood of some ray Rk in Bk, leaving a neighborhood of x′k−1 and x′k fixed, and moving
xk into Bk \ (2/3Bk). We look at the path γ′ defined by:

γ′(u) = ψk

(

γ(u)
)

when 0 < k < N and u ∈ [u′k−1, u
′
k],

γ′(u) = γ(u) when u ∈ [0, u′0] or u ∈ [u′N−1, 1] .

We think of the process changing γ to γ′ as a making waves process on σ, according to the
terminology of Bill Thurston in [6].

We now define a positive contact regular homotopy Θ′ on a neighborhood of γ′ by the
following formulas which are matching:

Θ′
(

γ′(u), t
)

= Θ′
k(γ

′(u), t
)

when 0 < k < N and u ∈ [uk, u
′
k],

Θ′
(

γ′(u), t
)

= Θk(γ
′(u), t

)

when 0 < k ≤ N, u ∈ [u′k−1, uk] or k = 0, u ∈ [0, u′0].

This regular homotopy has the property which is required in point 1), except that it is not
defined near σ but near the path γ′.

If the rays Rk are chosen to be mutually disjoint and so that Rk ∩ L = {xk} for every k,
there is a Hamiltonian contact diffeomorphism ψ, with compact support in J1(L,R), such that

3Diff(W, ∂W ) is locally contractible and there is a locally trivial fibration Diffcont(W, ∂W ) →֒
Diff(W, ∂W ) → Cont(W, ∂W ) whose base is the locally contractible space of contact structures coinciding
with a given one along the boundary.
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γ′ = ψ ◦ γ and ψ leaves the other edges of C fixed. So we define for every t ∈ S1

Θt
σ = ψ−1 ◦ (Θ′)

t
◦ ψ.

It is well-defined on a small neighborhood of σ and t 7→ Θt
σ is still a positive homotopy as ψ is

independent of t ∈ S1. Hence point 1) is proved.

2) When x ∈ σ, it is not difficult to interpolate between Θx and the germ of Θσ at x (interpolate
between ψ and Identity and between Θk and Θ′

k if x = γ(u), u ∈ [uk, u
′
k]). This interpolation

extends when x is close to σ. Using a partition of unity, one easily finds a family Θ1
x with the

desired property. �

Applying proposition 3.1 above simultaneously to each 1-cell of C yields a positive contact
regular homotopy defined near the 1-skeleton. So we have a periodic contact positive regular
homotopy Θ1 defined near the 1-skeleton together with a family of Θx defined near each point
x ∈ L. For going further, as in [3], we need a parametric version of 3.1.

Proposition 3.2. Let σ be a 2-cell in C, τ be a 1-face of σ and τ ∗ be a non-parallel 1-face of
σ; so σ is foliated by intervals τ(y) parallel to τ , starting at y ∈ τ ∗ and ending at a point of the
edge opposite to τ ∗. Then there exist periodic positive contact regular homotopies Θτ(y), y ∈ τ ∗,
defined near τ(y) and depending smoothly on y. Moreover its germ at any point of ∂σ is the
one of Θ1.

Proof. Note that σ is a square. Clearly the proof we have done for one edge in 3.1 can be
performed with parameters. When y ∈ ∂τ ∗ (y = 0 or 1), as Θ1 is already defined, it is not
necessary to replace τ(y) by a very much oscillating C0-approximation of τ(y). In other words,
the contact diffeomorphism ψ from the proof of 3.1 can be interpolated with Identity when y
approaches one end point of τ ∗. �

Proof of theorem 1.1. Here we explain how to construct a periodic positive contact regular
homotopy defined near a 2-cell σ of C extending Θ1, the regular homotopy we have near the 1-
skeleton L[1]. When doing it for all 2-cells simultaneously, we get the desired regular homotopy
Θ2 defined near the 2-skeleton L[2]. And one goes on recursively until Θn which is the desired
regular homotopy.

For constructing Θ2 near σ, we use proposition 3.2 which yields a 1-parameter family Θ1(y) of
periodic contact regular homotopy defined near τ(y). As in the case of a 1-simplex (proposition
3.1), we discretize the y-interval, deform slightly Θ1 (τ(yk)) so that they glue together and
yield a periodic contact regular homotopy near ψ(σ), where ψ is a contact diffeomorphism of
J1(L,R), making waves on σ. The process changing σ to ψ(σ) is the 2-dimensional analogue
of the one that we have described very precisely for a 1-cell; it is a universal process once we
know Θ1 (τ(y)) for every y ∈ τ ∗. �
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