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Abstract. We identified 17 magnetic clouds (MCs) with du-
rations longer than 30 h, surveying the solar wind data ob-
tained by the WIND and ACE spacecraft during 10 years
from 1995 through 2004. Then, the magnetic field struc-
tures of these 17 MCs were analyzed by the technique of the
least-squares fitting to force-free flux rope models. The anal-
ysis was made with both the cylinder and torus models when
possible, and the results from the two models are compared.
The torus model was used in order to approximate the curved
portion of the MCs near the flanks of the MC loops. As a re-
sult, we classified the 17 MCs into 4 groups. They are (1)
5 MC events exhibiting magnetic field rotations through an-
gles substantially larger than 180◦ which can be interpreted
only by the torus model; (2) 3 other MC events that can be
interpreted only by the torus model as well, though the rota-
tion angles of magnetic fields are less than 180◦; (3) 3 MC
events for which similar geometries are obtained from both
the torus and cylinder models; and (4) 6 MC events for which
the resultant geometries obtained from both models are sub-
stantially different from each other, even though the observed
magnetic field variations can be interpreted by either of the
torus model or the cylinder model. It is concluded that the
MC events in the first and second groups correspond to those
cases where the spacecraft traversed the MCs near the flanks
of the MC loops, the difference between the two being at-
tributed to the difference in distance between the torus axis
and the spacecraft trajectory. The MC events in the third
group are interpreted as the cases where the spacecraft tra-
versed near the apexes of the MC loops. For the MC events
in the fourth group, the real geometry cannot be determined
from the model fitting technique alone. Though an attempt
was made to determine which model is more plausible for
each of the MCs in this group by comparing the characteris-
tics of associated bidirectional electron heat flows, the results
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were not very definitive. It was also found that the radii of the
flux ropes obtained from the torus fitting tend to be generally
smaller than those obtained from the cylinder fitting. This
result raises a possible problem in estimating the magnetic
flux and helicity carried away from the Sun by the MCs.

Keywords. Interplanetary physics (Interplanetary magnetic
fields; Solar wind plasma)

1 Introduction

Coronal mass ejections (CMEs) launch plasma clouds from
the solar atmosphere into interplanetary space which are now
referred to as interplanetary coronal mass ejections (ICMEs).
ICMEs are identified by several characteristic features in the
interplanetary medium, as reviewed by Gosling (1990) and
Neugebauer and Goldstein (1997). Solar wind signatures of
ICMEs include the increase of He++ (Hirshberg et al., 1972;
Borrini et al., 1982), the abnormally low proton temperature
(Gosling et al., 1973; Richardson and Cane, 1995), the bidi-
rectional electron heat flow (Gosling et al., 1987), and the
magnetic cloud (Burlaga et al., 1981; Marubashi, 2000; Lep-
ping et al., 2006), though the regions of these ICME signa-
tures do not necessarily coincide with each other.

An interplanetary magnetic cloud (MC) can occupy the
whole body of an ICME or a significant part of it. The global
configurations of MCs in interplanetary space and their inter-
nal magnetic structures provide important information about
the connection between ICMEs and their causative CMEs,
which is crucial for developing models for the generation
mechanism of CMEs. MCs are also important to magne-
tosphere dynamics, because they usually carry strong south-
ward magnetic fields (Zhao et al., 2001) that strongly drive
geomagnetic activity (e.g. Dungey, 1961; Tsurutani and Gon-
zalez, 1997, and references therein).
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Fig. 1. (a)A schematic depicting a global configuration of an MC
and two spacecraft passages: the apex passage (A), and the flank
passage (F).(b) A sketch of a torus-shaped flux rope representing
the part of an MC for the flank passage. Provided that the spacecraft
traverses the MC from point I through point E, the vector from C1 to
C2 is taken as the equivalent local direction of the MC axis, where
C1 and C2 are the centers of two cross-sectional circles passing
through points I and E, respectively.

An MC’s global configuration is proposed to be a loop
extending from the Sun with both legs rooted on the Sun
(Marubashi, 1989, 1997; Burlaga et al., 1990), and the in-
ternal magnetic field structure to be a magnetic flux rope, as
is depicted in Fig. 1a (Goldstein, 1983; Marubashi, 1986;
Burlaga, 1988; Lepping et al., 1990; Bothmer and Schwenn,
1998). When a spacecraft encounters an MC, the magnetic
field vectors generally exhibit the rotation characteristic of
the flux rope structure. The geometry of an MC at the loca-
tion of the encounter with the spacecraft can be determined
by comparing the observed magnetic field variations with
those calculated from the magnetic flux rope model. When
the spacecraft traversed near the apex of the loop, as is shown
by passage A, the MC’s geometry can be analyzed by using a
cylinder model, because the local geometry can be taken ap-
proximately to be that of a straight cylinder. When the space-
craft traversed MCs near the flank of the loop, as is shown by
passage F, however, curvature of the MCs must be taken into
consideration to explain the observed magnetic field varia-
tions. The curvature effects can be taken into account by
using a torus-shaped flux rope model. Figure 1b shows how
a torus shape is applied as a proxy of the curved portion of
the MC loop. Here, points I and E are the entry and exit
of a spacecraft through the MC, respectively, and the torus
shape is assumed only for the region bounded by two cross
sections passing I and E. We can define the local orientation
of the torus MC to be the orientation of a vector connecting
C1 and C2, the centers of the two cross-sectional circles. It
should be emphasized that the torus-shaped flux rope model

is applied only for the limited portion of the MC loop, and it
is not intended to imply that the entire torus could represent
the global flux rope.

While many studies have been made to analyze an MC’s
geometry with cylindrical flux rope models (Lepping et
al., 1990; Bothmer and Schwenn, 1998; Shimazu and
Marubashi, 2000; Mulligan et al., 1998, 2001; Lynch et al.,
2003; Lepping et al., 2006), only a few studies were made
with torus models (Marubashi, 1997, 2000; Romashets and
Vandas, 2003), or with other different models (Vandas and
Geranios, 2001; Vandas and Romashets, 2003). Judging
from the proposed global configuration of MCs, there should
be more encounters with MCs near the flank than identified
thus far.

In this study, we attempted to identify in a systematic
way as many MC events as possible that require consider-
ing the curvature effects of the global configuration. For
this purpose, we examined the solar wind data obtained by
the WIND and ACE spacecraft during 10 years, from 1995
through 2004, with special attention to identifying the MC
events with durations longer than 30 h, which corresponds to
about two times the most frequently observed MCs (Lepping
et al., 2006). The selection of long-duration events is based
on an idea that the durations of spacecraft passage through
MCs tend to be longer when traversed near the flanks of loop
structures of MCs compared with those cases when traversed
near the apex, as is expected from Fig. 1a. As a result, we
identified 17 long-duration MCs. Then, we performed the
model fitting analysis for these 17 events with both cylin-
der and torus models, when possible, and compared the re-
sults from the two different models. This comparison shows
that the 17 MC events are categorized into several different
groups: such as (1) MCs which can be well interpreted only
by the torus model, (2) MCs for which both the cylinder and
torus models provide satisfactory fitting results with similar
geometries, and (3) MCs for which the two models provide
satisfactory fitting results but their geometries are substan-
tially different from each other.

In the next section, we present the overview of the selected
17 MCs used in this investigation. Section 3 describes the
two flux rope models, a cylinder model and a torus model,
which are applied to the fitting analysis. In Sect. 4, we show
the results of fitting with the two models for the selected 17
MCs, and attempt to determine which model is more satis-
factory in interpreting each MC observation by an intercom-
parison between the two fitting results. Finally in Sect. 5, we
summarize the results and give the possible impacts of the
present study, especially for the torus-shaped MCs, on our
understanding of the ICME physics.

2 Event selection

We surveyed solar wind data obtained from the WIND and
ACE spacecraft during 10 years from 1995 through 2004,
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Table 1. Magnetic cloud information.

EVENT START END 1T a SHOCK(D) SHOCK(I) ROT. AVERAGE AVERAGE AVERAGE BDE DATA
NO. YR MON DAY/TIME DAY/TIME HR DAY/TIME DAY/TIME ANGLE b Brms/Bc He++/H+ Tp/T d

ex D.PAe SOURCE

1 95 10 18/19:00 20/01:30 30.5 18/10:30 19/17:51 178 0.041 0.058 0.83 180◦ WIND
2 96 05 27/15 – 28/23 – 32 – – −125 0.063 – 0.71 0◦ WIND
3 96 12 24/03 – 25/11:31 32.5 – – 194 0.038 0.053 0.94 180◦ WIND
4 97 10 01/17 – 02/23:51 30.8 01/01:41 – −75 0.037 0.044 0.32 0◦ WIND
5 98 01 07/02:49 08/12 – 33.2 06/13:28 – −209 0.042 0.053 0.76 0◦ WIND
6 98 02 04/03 – 05/22 – 43 – – −329 0.036 0.027 0.53 0◦ WIND
7 98 03 04/19 – 06/05 – 34 04/10:58 – −109 0.036 0.104 0.64 UNI 0◦ ACE
8 98 05 02/11:48 03/21:08 33.3 01/21:21 03/16:59 59 0.033 0.130 0.10 180◦ ACE
9 98 06 24/13 – 25/22:45 33.8 – 25/15:43 −180 0.023 0.049 0.42 0◦ ACE

10 98 08 20/09 – 21/20:22 35.4 19/18:40 – 175 0.031 0.049 1.39 180◦ WIND
11 98 11 08/18 – 10/01 – 31 08/04:21 – 286 0.027 0.065 0.39 MIX ACE
12 00 10 03/16:55 05/05 – 36.1 03/01:01 05/03:29 228 0.040 0.049 0.32 0◦ WIND
13 01 03 19/21 – 22/06 – 57 19/11:33 – −194 0.042 0.058 0.71 180◦ WIND
14 01 05 09/15 – 10/22:43 31.7 – – 86 0.079 0.081 0.41 180◦ WIND
15 02 04 18/01 – 19/11 – 34 17/10:21 19/08:02 53 0.021 0.120 0.28 MIX ACE
16 03 10 22/17:57 24/02:27 32.5 – – 12 0.028 0.090 0.15 MIX ACE
17 04 04 03/23:53 05/13:30 37.6 03/08:55 – −190 0.021 0.098 0.29 MIX ACE

a1T is the duration of the encounter with the magnetic cloud.
b The rotation angle of the magnetic field vector within the magnetic cloud projected on the Y-Z plane.
c Brms is the combination of the RMS values of Bx, By, and Bz obtained from underlying high-resolution measurements.
d Tp is the measured proton temperature andTex is the proton temperature expected from the solar wind speed statistically.
e BDE D.PA is the dominant pitch angle within the associated bidirectional electron fluxes.

in search of the long-duration magnetic clouds. The solar
wind plasma and field data used in this survey are from the
Solar Wind Experiment (SWE) (Ogilvie et al., 1995) and the
Magnetic Field Investigation (MFI) (Lepping et al., 1995) on
the WIND spacecraft, and the Solar Wind Electron Proton
Alpha Monitor (SWEPAM) (McComas et al., 1998) and the
Magnetic Field Experiment (MAG) (Smith et al., 1998) on
the Advanced Composition Explorer (ACE).

In order to make this survey as complete as possible, we
first made plots of the magnetic field vectors, such as that
shown in the bottom diagram of Fig. 2, for all the data pe-
riod. Then, using the plots, we selected the long-duration
MCs by the criteria: (1) the magnetic fields are relatively
strong (≥10 nT); (2) the smooth rotations of magnetic field
vectors are clear, being free from a significant interrupting
interval; and (3) the durations of such intervals are longer
than 30 h. As a result of this survey, we identified 17 MCs
with long durations.

Table 1 lists the 17 long-duration MCs we identified and
the specific characteristics of the MCs. The first 4 columns
indicate the event identification No., the start and end times,
and the durations of the MCs. When the boundaries of the
MCs are identified by any discontinuous changes in the mag-
netic field and plasma parameters, the start and end times are
shown in the unit of minutes, otherwise, they are given in the
unit of hours. The next 2 columns show the arrival times of
shocks associated with the MCs. Two kinds of shocks are
shown in the table. One is the shock probably driven by the
ICME relevant to each MC, and the other is an internal shock

probably having overtaken the ICME from behind (Collier et
al., 2007). The driven shocks are seen in 11 cases, and the
internal shocks in 5 cases. The next 5 columns present five
characteristic quantities related to the solar wind signatures
which are generally used when identifying ICMEs: the mag-
netic field rotation, the degree of magnetic field fluctuations,
the enhancement of He++ abundance, the abnormally low
proton temperature, and the bidirectional electron heat flux.
Finally, the last column indicates the spacecraft providing the
data source for the present analysis.

We briefly describe the characteristics of the MCs sum-
marized in Table 1. Column 7 lists the angle of the mag-
netic field rotation in the plane perpendicular to the Earth-
Sun line (YZ-plane). The rotation angles here are calculated
using the magnetic field vectors averaged over the first 3 h
and over the last 3 h of the MCs traversed by the spacecraft.
We used 3-h averages to avoid errors in estimating the rota-
tion angles due to possible sudden direction changes near the
MC boundaries. Though this averaging may cause underes-
timation of the rotation angles, its effect is not very large. It
should be pointed out that some of the MCs exhibit the mag-
netic field rotations through angles substantially exceeding
180◦. Column 8 shows the degree of fluctuations in the mag-
netic field, defined by the ratio of standard deviations to the
average intensity. Though we did not deduce typical values
of the degree of fluctuations in the background solar wind,
it will be seen later in many examples that this quantity is
much reduced within MCs. Column 9 lists the values of the
He++/H+ number density ratio averaged within the MCs. A

www.ann-geophys.net/25/2453/2007/ Ann. Geophys., 25, 2453–2477, 2007
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recent statistic study by Richardson and Cane (2004) showed
that the enhanced ratio of He++/H+ (>0.06) is indicative of
ICMEs. It should be noted here that the He++/H+ ratios
are seen to be generally enhanced within these MCs, com-
pared to the surrounding regions, even though the averages
are less than 0.06, as will be seen later for several examples.
Event 6 was the only exceptional case in that it exhibits no
enhancement in this composition ratio. Column 10 shows
the averages within the MCs of the ratio of observed pro-
ton temperature,Tp, to the proton temperature statistically
expected from the solar wind speed,Tex (Lopez, 1987). It
is seen that the proton temperature ratios are appreciably
lower than those for the background solar wind, except for
two cases (Events 3 and 10). Column 11 denotes the pitch
angles of the dominant electron fluxes in the energy range
100–300 keV, taken by visual inspection of the plots from
the WIND/3DP Plasma instrument (Lin et al., 1995) and
from the ACE/SWEPAM phase 3 data plots. (The data are
accessible through the websites http://sprg.ssl.berkeley.edu/
wind3dp/ and http://swepam-pub.lanl.gov/plots/ele/stea/, re-
spectively.) Bidirectional electron fluxes are generally seen
in association with the 17 MCs, of which the dominant pitch
angles are easily identified. In some cases, however, the di-
rections of dominant fluxes switched from 0◦ to 180◦ or vice
versa during the MC intervals, and in one case the electron
heat flux was unidirectional. These cases are indicated by
marks, MIX and UNI, respectively. In summary, in most of
the 17 MCs we see plasma and field signatures which are
widely accepted to be characteristic of ICMEs, as was pre-
viously pointed out (Gosling, 1990; Neugebauer and Gold-
stein, 1997).

3 Fitting with two flux rope models

In examining the geometry of the MCs listed in Table 1,
we apply a model fitting technique using two types of flux
rope models, a cylinder model and a torus model. This
section briefly describes each of these two models so that
the meanings of model parameters can be understood. Ap-
pendix A and Appendix B give the expressions needed for
calculations of magnetic fields and velocity variations which
should be observed when the spacecraft traversed these mod-
els. The nonlinear least-squares fitting technique is described
in Marubashi (2002).

3.1 Cylinder model

We use the constant-α force-free model, including a self-
similar expansion, which was originally proposed by Farru-
gia et al. (1992, 1993), with a slight modification based on a
proposal by Shimazu and Vandas (2002). In this model, the
flux rope radius,r, the expansion velocity,v, and the mag-
netic field,B, at timet after the time of the first encounter
with a spacecraft, are presented by the following expressions.

Here, the cylindrical coordinates,ρ, ϕ, ζ , are used with the
ζ -axis along the axial magnetic field of the flux rope.

r(t) = r0(1 + Et) (1)

vρ(t) = {Eρ/(1 + Et)} eρ(ρ ≤ r) (2)

B(t) = Bϕeϕ + Bζ eζ (3)

Bϕ = sB0J1(αρ)/(1 + Et)2 (4)

Bζ = B0J0(αρ)/(1 + Et)2 (5)

HereJ0 andJ1 are Bessel functions of the first kind of order
0 and 1, respectively,B0 is the magnetic field intensity at the
cylinder axis at timet=0, andE is a parameter expressing
the expansion rate. In the force-free field, the electric current
flows parallel or anti-parallel to the magnetic field, and they
correspond tos=1 ands=−1, respectively. This parameter
also denotes the sign of magnetic field chirality,s=1 for right-
handed ands=−1 for left-handed. In Eqs. (4) and (5),α is
chosen so thatαr gives the first zero ofJ0 (i.e. αr∼=2.405).
It should be noted here thatα changes with time while it is
constant spatially.

The expansion effect onBϕ was proposed originally to be
in proportion to (1+Et)−1 (Farrugia et al., 1992). This depen-
dency comes from the assumption that the expansion does
not occur in the direction of the cylinder axis when a cylinder
of infinite length is considered. Later, Shimazu and Vandas
(2002) showed that the effect is given by Eq. (4) when the
expansion along the cylinder axis is considered. The force-
free condition is maintained throughout the passage of MC
by this modification.

The parameters of MCs to be determined by the model
fitting are summarized below.

1. U0: the bulk flow velocity of the solar wind, or the speed
of the MC at the center. The solar wind velocity varia-
tion within an MC is taken as the vector sum of the con-
stant flow velocityU0 and the expansion velocity given
by Eq. (2).

2. B0 and r0: the intensity of the magnetic field at the
cylinder axis and the radius of the MC cylinder at time
t=0, as described above.

3. θa , φa , andp: the latitude and longitude angles of the
cylinder axis and the impact parameter. The latitude
and longitude angles are given in GSE coordinates. The
impact parameter is given by the distance from theζ -
axis to the spacecraft trajectory (assumed to be along
the GSEX-axis) normalized byr0. This quantity is de-
fined to be measured along the vector product of two
vectors: one parallel to the X-axis and the other parallel
to theζ -axis.

Ann. Geophys., 25, 2453–2477, 2007 www.ann-geophys.net/25/2453/2007/
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4. E: the expansion rate. In the self-similar expansion
(Farrugia et al., 1993),E is related to the time period
T0 during which the flux rope expansion had proceeded
before the first encounter with the spacecraft asE=1/T0.

5. s: the sign of the magnetic field chirality of the MC.

The set of 7 parameters listed in 1-4 above determines the
duration of the MC passage by the spacecraft. Because the
durations of MCs are given by observations, it can be said
that there is one relationship among the 7 parameters. This
relationship is utilized in the fitting procedure, as described
in Appendix A. The parameters is fixed throughout the fit-
ting procedure. The selection can be made after trying the
fitting with boths=1 ands=−1.

3.2 Torus model

Romashets and Vandas (2003) presented the expression for
the force-free magnetic field inside a toroidal magnetic cloud
which is valid for any ratio of the minor radius to the major
radius of the torus. We use this model with one modifica-
tion to include the expansion effect. In the toroidal coordi-
nates,µ, η, andψ (see Romashets and Vandas, 2001, for
the toroidal coordinates), the surface of a torus with the ma-
jor radiusRM and the minor radiusrm is given by an equa-
tion µ=µ0, where coshµ0=RM /rm. If we adopt a factorE
to express the expansion effect in an analogous form to the
cylinder model, three magnetic field components at timet

are given by the following equations.

Bµ = 0 (6)

Bη=−sBT
ε coshµ(coshµ− cosη)

2 sinh3µ(1+Et)2
F(1+α̃0,1+β̃0,2, ξ) (7)

Bψ = BT
coshµ− cosη

sinhµ(1 + Et)2
F(α̃0, β̃0,1, ξ), (8)

whereξ=− sinh−2µ, F is the hypergeometric function,

F(α̃, β̃, γ̃ , ξ) = 1+
α̃β̃

γ̃

ξ

1!
+
α̃(α̃ + 1)β̃(β̃ + 1)

γ̃ (γ̃ + 1)

ξ2

2!
+. . . , (9)

andα̃0=(1+
√

1−4ε2)
/

4, β̃0=(1−
√

1−4ε2)
/

4, withε, the

first root ofF(α̃0, β̃0,1,− sinh−2µ0)=0. BT is a parameter
to determine the intensity of the toroidal magnetic field. It
should be noted thatBT is different from either the field in-
tensity along the axis of a torus or the maximum field inten-
sity inside the torus (Romashets and Vandas, 2003).

The parameters to be determined by fitting to the torus
model are briefly explained below.

1. UT 0 andDf : The velocity of MC at timet ,UT (t), is as-
sumed to be decelerated with a deceleration factor,Df ,
so that the MC speed changes in interplanetary space as:

UT (t) = UT 0 −Df t (10)

The observed solar wind velocity within the MC is taken
as the sum ofUT (t) and the expansion velocity anal-
ogous to the cylinder case. The deceleration was in-
troduced in the torus model fitting, because observed
changes in the solar wind velocity cannot be reproduced
by only the expansion effect.

2. RM , rm0, andBT : The major radius and the minor ra-
dius at timet=0, and the field intensity parameter de-
scribed above. The minor radius of the torus at timet is
given by:

rm(t) = rm0(1 + Et) (11)

In the present fitting, we treatRM as a time-independent
parameter. Strictly, this treatment is not self-consistent,
but inclusion of expansion effects onRM makes the cal-
culations much more complicated. It is hoped that this
simplification does not affect the results of the analysis
very much.

3. θn, φn, py , andpz: the latitude and longitude angles
of the normal vector of the plane, defined by the axial
field of the torus, and the two parameters defining the
spacecraft trajectory relative to the torus axis (see Ap-
pendix B).

4. E: the expansion rate, same as for the cylinder fitting.

5. s: the sign of the magnetic field chirality of the MC.

In the torus fitting, we need two parameters for defining the
size of an MC, and two parameters for defining the space-
craft trajectory relative to the MC, while one parameter is
sufficient for each of them in the cylinder fitting. In addition,
we introduced a new parameter,Df , to better reproduce the
velocity profiles in the torus fitting. Thus, we have a set of
10 parameters in the torus fitting, as described in 1-4, among
which there is one functional relationship as in the cylinder
fitting.

In the least-squares fitting process, we search for a set of
parameters that provides us with the geometry of the space-
craft passage through the flank of the MC loop, such as
shown that in Fig. 1a, as far as possible. The actual pro-
cedures are as follows. First, we find a set of parameters,
by trial and error attempts, that yields magnetic field vari-
ations qualitatively similar to the observed variations under
the conditions that (1) the equivalent local orientation of the
MC axis is directed within 30◦ from the X-axis and (2)|py|,
|pz|<1.0. Then we execute the fitting routine starting with
the parameter set as a first guess.

As a result of these procedures, we encounter two differ-
ent situations. In 9 cases, the fitting routine attained conver-
gence, yielding all parameters as well determined. For the
remaining 8 cases, we found the tendency that the rms dif-
ference between the observed and calculated values became

www.ann-geophys.net/25/2453/2007/ Ann. Geophys., 25, 2453–2477, 2007
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Table 2. Magnetic cloud parameters determined by the fitting to the torus flux rope model.

EVENT Ra
M

ra
m0 θb

n φb
n SgnBxb pc

y pc
z pc Bd

T
Ue
T 0 De

f
H f E×48g Ermsh

NO. (AU) (AU) (◦) (◦) (rm0) (rm0) (rm0) (nT) (km/s) (km/s/h) (L/R) (/48HR)

1 0.6 0.1035 52.0 230.0 + 3.154 −1.985 0.045 34.6 344.6 −4.66 R 0.91 0.237
2 0.273 0.0565 −82.3 337.1 – −0.444 0.639 0.398 10.7 401.5 2.03 L −0.24 0.226
3 0.6 0.0181 28.3 81.4 – −0.715 0.011 0.704 13.8 384.4 2.28 R −0.07 0.286
4 0.399 0.1041 35.1 65.0 − 0.282 0.693 0.556 14.8 482.0 2.14 L −0.09 0.294
5 0.527 0.0255 −69.2 304.2 + 0.720 0.044 0.620 29.8 407.2 1.82 L 0.54 0.182
6 0.201 0.0542 −7.9 277.6 + 0.117 0.150 0.040 16.2 358.4 1.61 L 0.21 0.113
7 0.307 0.0920 −12.4 50.9 – −0.506 1.194 0.072 16.7 348.9 0.71 L 0.29 0.184
8 0.6 0.0332 −69.6 284.3 + −0.394 −0.230 0.322 22.0 599.0 6.23 L 1.49 0.148
9 0.6 0.0532 −45.4 244.7 – −0.494 −0.077 0.489 14.5 530.9 5.13 L 0.00 0.200
10 0.201 0.0527 28.2 250.3 + 0.985 −0.377 0.358 17.6 340.2 1.33 R 0.01 0.225
11 0.214 0.0440 −45.8 111.2 + 0.879 −0.125 0.509 26.2 508.0 2.95 R 0.53 0.233
12 0.241 0.0426 −10.4 102.5 + 0.908 −0.455 0.200 21.0 422.7 1.16 R 0.34 0.212
13 0.355 0.0750 49.2 244.2 – −0.880 −0.393 0.355 20.8 446.7 2.93 L 0.14 0.170
14 0.6 0.0587 69.3 36.0 + −0.272 0.702 0.428 11.8 451.9 1.17 R 0.38 0.269
15 0.6 0.1127 73.3 341.8 + 0.639 1.484 0.641 25.8 496.4 1.61 R 0.57 0.154
16 0.6 0.0766 39.4 81.2 – 0.231 1.058 0.876 22.3 561.4 4.81 L 0.62 0.182
17 0.6 0.0333 −80.9 50.7 + 0.588 0.181 0.286 13.3 498.2 3.71 L −0.51 0.209

a RM is the major radius of torus (constant), andrm0 is the minor radius of torus at the time of encounter.
b θn andφn are the latitude and longitude angles of a vector normal to the torus plane defined by the axial magnetic field.SgnBx indicates,
by the sign of the Bx component of the axial field, on which side of the torus the spacecraft encountered.
c (py ,pz) indicates the position in the YZ plane of the spacecraft track from the torus axis.p is the minimum distance from the torus axis to
the spacecraft; all in units ofrm0.
d BT is a parameter to determine the intensity of the toroidal magnetic field; see Sect. 3.2.
eUT 0 is the velocity of MC at the time of encounter, and changes afterwards asUT (t)=UT 0−Df t .
f H , handedness (R for right-handed, L for left-handed).
g is the increase in the torus minor radius in 48 h as a result of self-similar expansion.
h Erms is the error-estimating figure defined as the rms difference between observed and calculated fields divided by the maximum observed
field intensity.

smaller and smaller with the increase inRM , but that the fit-
ting routine collapsed before convergence was attained. In
such cases, we tried fitting withRM fixed, using different
values in the range of 0.3–1.2 AU (a factor 4 difference). The
results of these calculations show that we obtain generally
similar values for the equivalent local orientation, but obvi-
ously with changes seen in other parameters. Appendix C
shows the dependence of the fitting results on the values of
RM in more detail.

4 Results of fitting

We performed the model fitting with the hourly averaged data
for the 17 MCs listed in Table 1 with both cylinder and torus
models, when possible. Table 2 presents the results obtained
from the torus model. For 9 MC eventsRM is presented in
3 digits. They are MC events for whichRM could be deter-
mined by the least-squares fitting. For other MCs, we present
the results obtained by takingRM=0.6 AU as a representa-
tive value (cf. Russell et al., 2003, obtainedRm=∼0.8 AU by

multispacecraft observations). Listed in the table are 10 pa-
rameters described in Sect. 3.2 and 4 additional quantities,
SgnBx, p,H , andErms. SgnBx is the sign of theBX compo-
nent of the axial field, indicating which side of the MC loop
the spacecraft traversed (See Fig. 1 and Appendix B for more
details). p is the minimum distance (inrm0 unit) from the
torus axis to the spacecraft during the passage, with the ex-
pansion effect included (Note thatpy andpz are measured in
the YZ plane, so that they do not indicate the minimum dis-
tance directly).H is the handedness (right-hand or left-hand)
of magnetic helicity, determined bys (R: s=1; L: s=−1).
Erms in the last column indicates the relative errors,1/Bmax,
where isBmax the maximum of the observed magnetic field
intensity within the MC, and1 is the rms deviation between
the observed magnetic fields,B

O(ti), and the model mag-
netic fields,BM(ti) (i=1, . . . ,N):

1 =
√

∑

i

{

BO(ti)− BM(ti)
}2
/N (12)

The expansion rateE is presented by the amount of relative
increase expected, if the expansion at a constant rate lasted
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Table 3. Magnetic cloud parameters determined by fitting to the cylinder model.

EVENT Ua
0 Bb

0 rc0 θd
a φd

a pe E×48f Hg Ermsh

NO. (km/s) (nT) (AU) (◦) (◦) (r0) (/48 h) (L/R)

1 402.1 26.9 0.1065 −17.0 308.4 −0.156 0.33 R 0.246
2 370.3 14.5 0.1536 −8.1 68.8 0.635 0.22 L 0.285
3 350.2 15.5 0.1363 31.8 84.5 −0.453 0.25 R 0.228
4 450.0 16.1 0.1380 26.1 8.6 0.860 0.05 L 0.304
5 380.2 25.7 0.1063 53.4 19.8 0.019 0.50 L 0.191
6 – – – – – – – – –
7 337.2 16.0 0.1408 29.3 76.7 0.484 0.21 L 0.218
8 534.2 24.0 0.1706 42.8 340.8−0.967 1.18 L 0.264
9 460.5 17.3 0.1316 35.5 131.3 0.090 0.50 L 0.233
10 319.2 19.1 0.1093 −3.7 287.8 0.018 0.46 R 0.333
11 468.3 24.5 0.1212 −32.8 52.2 0.020 0.72 R 0.387
12 408.7 26.8 0.0690 12.5 35.0 −0.007 1.42 R 0.387
13 375.8 23.5 0.1893 −63.1 129.4 0.131 0.52 L 0.335
14 433.5 12.9 0.0126 −3.1 357.6 −0.731 0.44 R 0.260
15 472.7 23.8 0.1269 −16.3 322.3 −0.712 0.65 R 0.163
16 501.0 20.9 0.1057 38.3 188.6−0.819 1.36 L 0.359
17 435.1 24.0 0.1886 78.7 50.1 −0.486 0.33 L 0.378

aU0 is the velocity of magnetic cloud.
b B0 is the magnetic field intensity at the cylinder axis.
c r0 is the radius of the magnetic cloud cylinder at the time of encounter.
d θa andφa are the latitude and longitude angles of the cylinder axis field.
e p is the impact parameter.
f E×48 is the increase in the torus minor radius in 48 h as a result of self-similar expansion.
g H is the handedness of magnetic helicity (R for right-handed, L for left-handed).
h Erms is the error-estimating figure, defined as the rms difference between the observed and calculated fields divided by the maximum
observed field intensity.

for 48 h. Table 3 shows the results of fitting with a cylinder
model for the same 17 MCs.

It should be noted here that not all the values in Tables 2
and 3 are necessarily acceptable. The least-squares fitting
procedure returns a set of fitted parameters regardless of
whether or not they may provide calculated variations with
satisfactory agreement with the observed variations. We need
to examine separately which one is more plausible as the real
geometries of MCs between the torus and cylinder results.
In this section, we first present the results of the fitting for
some representative examples, and then go on to examine
which gives a more appropriate interpretation for each MC,
the torus model or the cylinder model.

4.1 Examples

Figure 2 shows the result of analysis for the MC encoun-
tered on 4 February 1998 (Event 6 in Table 1). Plotted from
top to bottom are the magnetic field intensity, the X, Y, and
Z components of the field in the GSE coordinate, the ratio
of standard deviations to the average intensities, the solar
wind speed, the number density ratio of He++/H+, the pro-
ton density, the proton temperature, the plasma beta based

on protons, and the magnetic field vectors projected on the
X-Y, X-Z, and Y-Z planes. The dashed curve drawn along
with the proton temperature shows the temperature statisti-
cally expected from the solar wind speed,Tex (Lopez, 1987).
The MC boundaries are indicated by two vertical lines.

One of the conspicuous features of this MC is a very
smooth, long-lasting rotation of the magnetic field vectors. A
clockwise rotation of 329◦ is seen in the Y-Z plane to proceed
during a 43 h interval. The thick solid lines for the magnetic
field and the solar wind speed depict the results of the fitting
with the torus model, showing an excellent agreement with
the observations. Because the angle of magnetic field rota-
tion is so large, it is impossible to reproduce the observed
magnetic field variations with such a cylinder model, as de-
scribed in Sect. 3. While in a previous work, Lepping et
al. (2006) invoked a new cylinder model with dual polarity
to explain this type of MCs, we here restricted ourselves to
a cylinder model that allows the change in the pitch angle of
the magnetic field from 0◦ at the axis to 90◦ at the surface.
For this reason, the entries for Event 6 are blank in Table 3.

The geometry of the MC encounter with the spacecraft is
shown in Fig. 3, which is calculated with the fitted parame-
ters presented in Table 2. The figure shows the torus surface
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�

Fig.Fig.Fig.Fig.    2222    

Fig. 2. Results of the torus fitting to the magnetic cloud (Event No. 6), encountered on 4 February 1998 (solid curves), are superimposed on
the data plots of the observed solar wind parameters. The two vertical solid lines indicate the MC boundaries. The bottom three panels show
the projected magnetic field vectors.

Fig.Fig.Fig.Fig.    3333    

Fig. 3. Geometry of the 4 February 1998 magnetic cloud (Event
No. 6) determined by fitting with the torus model. Three directions
are indicated: A, axial field; S, toroidal field on the surface; and
S/C, spacecraft trajectory relative to the magnetic cloud.

at time t=0 near the solar ecliptic plane, with three arrows
indicating the direction of magnetic field on the MC surface
(S), the direction of the axial field of the MC (A) and the
spacecraft trajectory (S/C). In this event, the spacecraft tra-
versed the MC very close to the torus axis, almost in parallel
with the axis around 19:00 UT, thus the observed magnetic
fields there mostly consisted of the axial component with a
very small contribution of the transverse component. Thus,
we see in Fig. 2 such features asBy≈Bz≈0 and the reversal
of Bz around 19:00 UT.

In Fig. 2, we can see some of the characteristic features
that are commonly taken as the signatures of ICMEs. They
include abnormally low proton temperatures, the low plasma
betas based on protons, and small fluctuations of magnetic
fields. The observed proton temperature is generally low
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in comparison with that expected statistically from the so-
lar wind speed, though the difference becomes small toward
the trailing part of the MC. Similarly, the proton beta is
generally low, but increases toward the trailing part in cor-
respondence with the decrease in the magnetic field inten-
sity and the increase in the proton number density. Though
the magnetic field fluctuations are generally small through-
out the 4-day period, in this case, the condition is satisfied
at any rate since the fluctuations are small within the MC.
The bidirectional electron heat flow event (BDE) is also ev-
ident in almost the same interval in the summary plot of
the WIND 3-D Plasma and Particle Investigation (Lin et al.,
1995, http://sprg.ssl.berkeley.edu/wind3dp/). However, the
enhancement of He++ is not clear in this MC, though we see
the enhanced He++/H+ ratio exceeding 0.1 in a restricted
time interval of several hours in the trailing part of the MC.

Figure 4 presents the field and plasma data for a 4-day pe-
riod, including the MC of Event 13, in the same format as
Fig. 2. The vertical dashed line preceding the MC indicates
the arrival time of a shock, which is considered to have been
driven by this ICME. A striking feature with this MC is its
long duration of 57 h. Again, we can see several ICME signa-
tures, such as the enhanced He++/H+ ratio, the abnormally
low proton temperature, the low proton plasma beta, and the
small fluctuations of magnetic fields. The BDE was also ob-
served from 18:20 UT, 19 March to 04:00 UT, 22 March.

For this MC, the model fitting was performed both with a
torus model and with a cylinder model. We can see an ex-
cellent agreement between observations and results from the
torus fitting, as plotted by thick solid lines. In contrast, the re-
sults from the cylinder model, shown by dotted curves, yield
only a very unsatisfactory agreement with the observations.
The rms difference,1, between the observed and modeled
magnetic fields is 6.5 nT, twice the rms difference from the
torus fitting, 3.2 nT. Besides, it is impossible for the cylin-
der model to reproduce the feature that most of the magnetic
field rotation takes place in the earlier half of the MC.

Figure 5 depicts the geometry of this MC at the time of
encounter with the spacecraft in the same format as Fig. 3;
Fig. 5a for the torus model, and Fig. 5b for the cylinder
model. We can see two big differences between the geome-
tries obtained from the two models. The first difference is
seen in the orientations of the MC obtained from the two
models. At the location where the spacecraft passed the MC,
the direction of the torus axis is nearly parallel to the ecliptic
plane, and is in fact nearly parallel to the X-axis (the cone
angle being 162.5◦: cf. Table 4), while the cylinder axis is
highly inclined to the ecliptic plane. The angle between the
torus axis and the cylinder axis is as large as 55.9◦. The sec-
ond difference is seen in the size of MC determined by the
fitting. The torus fitting gives the radius of 0.0750 AU att=0,
whereas the cylinder fitting gives the radius of 0.1893 AU.
Because the duration of this MC is so long and the axis is so
inclined from the ecliptic plane, the radius must become large
in proportion to the duration in the cylinder model, whereas

the radius can be much smaller for the torus model, because
the curvature effect makes it possible for the spacecraft to
spend a longer time, as is evident in Fig. 5a. By a close ex-
amination of the geometry of the spacecraft passage through
the MC, it is seen that the spacecraft crosses the front side
(X<0) of the torus, close to the axis, in the earlier half of the
duration, and passes just near the surface on the rear side in
the latter half of the duration. Thus, the torus model explains
why the magnetic field rotation of about 180◦ was observed
in the earlier half and only about 40◦ in the latter half.

Summarizing the above results, we can say that the torus
model provides a much more reasonable explanation for this
MC. Though the cylinder-fitting routine returns fitted param-
eters, the agreement between the observed and calculated
field variations is not satisfactory. This event should be taken
as a case which gives us a warning when attempting interpre-
tation of the fitting results with large rms differences, even if
a qualitative agreement may be roughly attained.

Figure 6 presents the results from the torus fitting and
the cylinder fitting for Event 14 in the same format as
Fig. 4. Though the magnetic field intensities are rather weak
throughout the MC, we can see such ICME signatures as the
magnetic field rotation, the enhanced He++/H+ ratio, the ab-
normally low proton temperature, and the low proton plasma
beta. A very long BDE event was observed from 10 May
through 11 May, along with this MC. Good agreements are
obtained by both the torus fitting and the cylinder fitting,
so that the difference between the two fitted curves can be
hardly distiguished in this presentation. However, a close
examination of the geometries obtained from two models al-
lows us to discriminate between the two fitting results.

Figure 7 shows the geometry of the spacecraft’s encounter
with the MC, Fig. 7a for the torus model and Fig. 7b for the
cylinder model. In Table 4 we find the orientation of the
cylinder MC to be very close to the X-axis. The cone angle
of the axis (defined as the angle between the cylinder axis
and the X-axis) is 3.9◦, with the latitude and longitude an-
gles of the axis−3.1◦ and 357.6◦, respectively. Because of
this geometry, the spacecraft must spend a long time within
the cylinder MC once it enters the MC. As a result of this
requirement, the cylinder radius was estimated to be as small
as 0.0126 AU. Considering that this type of geometry should
take place when the spacecraft encounters the MC near its
flank, we need to take into account the curvature of the MC.
The result of the torus fitting gives the local torus orienta-
tion nearly parallel to the X-axis, and the minor radius of
0.0587 AU, if we assumeRM=0.6 AU. This size is much
more reasonable, being in the radius range typical to many
other MCs.

Figure 8 shows the variations in the solar wind parameters
observed for a 4-day period, together with the results of torus
fitting (solid curve) and cylinder fitting (dotted curve) for the
MC encountered on 18 April 2002 (Event 15). Two shocks
are indicated by vertical dashed lines. The one preceding
the MC is a shock most probably driven by this ICME and
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Fig.Fig.Fig.Fig.    4444    

Fig. 4. Results of the fitting with the torus model (solid line) and with the cylinder model (dotted lines) to the magnetic cloud (Event No. 13)
encountered on 19 March 2001 superimposed on the data plots of the observed solar wind parameters. The two vertical solid lines indicate
the MC boundaries, and the vertical dashed line indicates the shock arrival time. The bottom three panels show the projected magnetic field
vectors.

Fig.Fig.Fig.Fig.    5555    

�

(a)(a)(a)(a)    (b)(b)(b)(b)    

Fig. 5. Two geometries obtained for the magnetic cloud of 19 March 2001 (Event 13), from the fittings to the torus model(a) and to the
cylinder model(b). Note that the result from the cylinder model is not very successful (see Fig. 4 and text).
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Fig.Fig.Fig.Fig.    6666    

Fig. 6. Results of the fitting with the torus model (solid curve) and with the cylinder model (dotted curve) to the magnetic cloud (MC)
encountered on 9 May 2001 (Event No. 14) in the same format as Fig. 4. Note that the fitting results with two models are very close to each
other. The bottom three panels show the projected magnetic field vectors.

Fig.Fig.Fig.Fig.    7777    
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(a)(a)(a)(a)    (b)(b)(b)(b)    

Fig. 7. Two geometries obtained for the magnetic cloud of 9 May 2001 (Event No. 14), from the fittings to the torus model(a) and to the
cylinder model(b). Note that the scales are 5 times expanded in Fig. 7b.
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the other at 08:02 UT on 19 April is an internal shock which
probably overtook the MC from behind. The end time of
the MC was taken at 11:00 UT, 19 April, because the mag-
netic field rotation continued till this time, though the inten-
sity jumped up at the shock. Again, the ICME signatures
are clearly seen in the figure, such as the small fluctuations
of magnetic fields, the enhanced He++/H+ ratio, the abnor-
mally low proton temperature, and the low proton plasma
beta. The BDE was also observed throughout the MC inter-
val.

For this MC, the fittings were performed by using only
the magnetic field and solar wind velocity data from the start
time of the MC to the time of the internal shock, and the
remaining part was treated as if it were the interval of a data
gap. This is to avoid possible errors due to the field intensity
changes associated with the internal shock. The agreement
between the observed and modeled variations is satisfactory
for both the torus and cylinder fittings, so that the difference
between the two fitted curves can hardly be recognized in this
presentation.

The geometry of the MC at the time of the encounter with
the spacecraft is shown in Fig. 9a for the torus fitting and in
Fig. 9b for the cylinder fitting. It is seen that the geometries
are very similar, when viewed locally along the spacecraft
trajectory, for the two fitting results in this case. A closer
examination of Fig. 9a reveals that the spacecraft traverses
the torus at the portion far enough from the flank so that the
curvature effect becomes unimportant. Thus, it is concluded
that this MC observation corresponds to the case where the
spacecraft traversed rather near the apex of the MC loop than
near the flank of the loop, for which both cylinder and torus
models can provide reasonable interpretation of observation.

The final example is the MC encountered on 27 May 1996
(Event 2), for which the fitting results and the resultant MC
geometries are shown in Figs. 10 and 11, respectively. We
can see in Fig. 10 that the fitting with the cylinder model
(dotted curve) is acceptable, though the torus model gives a
better fitting result (solid curve). Figure 11 shows, however,
that the MC geometries from two models are completely dif-
ferent from each other. At the location where the spacecraft
passed the MC, the direction of the torus axis is nearly par-
allel to the X-axis (the cone angle being 165.2◦), while the
cylinder axis is nearly perpendicular to the X-axis (the cone
angle being 69.0◦). As a result, the angle between the torus
axis and the cylinder axis is as large as 97.2◦ (see Table 4).
Besides, the flux rope sizes obtained from the two models
are very different, with the radius from the torus model be-
ing 0.0565 AU, whereas the radius from the cylinder model
is 0.1536 AU at the time of the first encounter with the space-
craft.

The differences in the results from the torus and cylinder
models are similar to the case that we have seen in the anal-
ysis of Event 13. More important, however, the two models
provide similar magnetic field variations that are both close
to the observed variation, while only the torus model pro-

vides an acceptable result for the MC geometry in the case
of Event 13. This means that two different MC geometries
can explain the observations as well. One implication is that
both of these geometries can take place in reality, and that
the model fitting alone is insufficient in determining the real
geometry for each of the particular MC observations.

4.2 Selection of acceptable fitting results

We further examine which model gives a more plausible ge-
ometry for each of the 17 MC observations, the torus fit-
ting or the cylinder fitting. For the purpose of comparison
between the torus and cylinder geometries, we define the
equivalent local direction of the torus axis, as is shown in
Fig. 1b. The direction of the vector is selected so as to coin-
cide approximately with the direction of the axial field, and
presented by2eq and8eq , the latitude and longitude angles.
Table 4 lists the equivalent local direction of the torus axis
2eq and8eq , the cone angle of the torus axis, (CA)eq , the
cone angle of the cylinder axis (CA)a , and the angle between
the cylinder axis and the torus axis,δ. (The latitude and lon-
gitude angles,θa , andφa , are also listed again to make the
comparison easier.) For those cases where the cylinder fitting
results are not very good (Erms>0.3), the relevant values are
shown in brackets. Here, (CA)a , (CA)eq , andδ are given by
the following equations.

(CA)a = Cos−1(cosθa cosφa) (13)

(CA)eq = Cos−1(cos2eq cos8eq) (14)

δ = Cos−1(cosθa cosφa cos2eq cos8eq+ cosθa
sinφa cos2eq sin8eq+ sinθa sin2eq) (15)

It is a noteworthy feature that in many cases the local equiv-
alent directions of the torus axis are nearly parallel or anti-
parallel to the X-axis, indicating that the spacecraft traversed
the MCs apart from the loop top, closer to the loop’s flank,
when considered in the framework of the torus model.

By examining the fitting results in Tables 2 and 3, it is seen
that the relative errors are small (Erms<0.3) for all the results
from the torus model, whereasErms<0.3 is satisfied for the
cylinder fitting only in 9 cases. Thus, if we adoptErms<0.3
as a criterion for the good agreement between the observa-
tions and the fitting results, we can classify the 17 MCs ex-
amined into two categories: 8 MCs for whichErms<0.3 is
satisfied only by the fitting with a torus model (Category A),
and 9 MCs for whichErms<0.3 is satisfied with both torus
and cylinder models (Category B). Further, we divide each of
these two categories into two groups, respectively. It is seen,
in Category A, that the rotation angles of magnetic field vec-
tors are larger than 180◦ for 5 MCs, while the rotation angles
are smaller than 180◦ for the remaining 3 MCs. Thus, Cate-
gory A can be divided into two groups A1 (Events 6, 11, 12,
13, and 17) and A2 (Events 4, 10, 16) by the field rotation
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Fig.Fig.Fig.Fig.    8888    

Fig. 8. Results of the fitting with the torus model (solid curve) and with the cylinder model (dotted curve) to the magnetic cloud (MC)
encountered on 18 April 2002 (Event No. 15) in the same format as Fig. 4. Two shocks are indicated by two vertical dashed lines. Note that
the fitting results with two models are very close to each other. The bottom three panels show the projected magnetic field vectors.

Fig.Fig.Fig.Fig.    9999    
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(a)(a)(a)(a)    (b)(b)(b)(b)    

Fig. 9. Two geometries obtained for the magnetic cloud of 18 April 2002 (Event No. 15), from the fittings to the torus model(a) and to the
cylinder model(b).
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Fig.Fig.Fig.Fig.    10101010    

Fig. 10. Results of the fitting with the torus model (solid curve) and with the cylinder model (dotted curve) to the magnetic cloud (MC)
encountered on 27 May 1996 (Event No. 2) in the same format as Fig. 4. The bottom three panels show the projected magnetic field vectors.

Fig.Fig.Fig.Fig.    11111111    

((((aaaa))))    ((((bbbb))))    

Fig. 11. Two geometries obtained for the magnetic cloud of 27 May 1996 (Event No. 2), from the fittings to the torus model(a) and to the
cylinder model(b).
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Table 4. Comparison between magnetic cloud orientations obtained from the torus model and the cylinder model.

EVENT TORUS FIT CYLINDER FIT DIF
GROUPf

NO. 2a
eq 8a

eq (CA)beq θc
a φc

a (CA)da δe

1 −15.8 298.8 62.8 −17.0 308.4 53.6 9.3 B1
2 −7.5 167.2 165.2 −8.1 68.8 69.0 97.2 B2
3 3.9 173.5 172.4 31.8 84.5 85.3 87.1 B2
4 22.4 171.9 156.3 (26.1) (8.6) (27.4) (128.9) A2
5 11.5 1.9 11.7 53.4 19.8 55.9 44.3 B2
6 1.6 7.4 7.6 – – – – A1
7 17.4 136.9 134.2 29.3 76.7 78.4 56.0 B2
8 6.5 356.6 7.3 42.8 340.8 46.1 38.9 B2
9 12.0 167.2 162.5 35.5 131.3 122.5 40.0 B2
10 −3.4 338.5 21.8 (−3.7) (287.8) (72.2) (50.6) A2
11 −11.3 9.4 14.7 (−32.8) (52.2) (59.0) (44.7) A1
12 1.1 12.8 12.8 (12.5) (35.0) (36.9) (24.8) A1
13 −16.5 174.3 162.6 (−63.1) (129.4) (106.7) (55.9) A1
14 −14.8 350.5 17.5 −3.1 357.6 3.9 13.6 B1∗∗

15 −16.6 334.4 30.2 −16.3 322.3 40.6 11.6 B1
16 5.7 175.9 173.0 (38.3) (188.6) (140.9) (34.6) A2
17 6.2 3.7 7.2 (78.7) (50.1) (82.8) (76.1) A1

a The local direction of the torus axis is given by equivalent latitude and longitude angles,2eq and8eq , respectively; see Fig. 1b for
definition.
b (CA)eq is the cone angle of the torus direction around the X-axis; see Eq. (14).
c The direction of the cylinder axis is given byθa andφa ; same as in Table 3.
d (CA)a is the cone angle of the cylinder axis around the X-axis; see Eq. (13).
e δ is the difference between the torus direction and the cylinder direction; see Eq. (15).
f Categorization of the 17 magnetic clouds into 4 groups; A1 and A2, fitting with torus model is much better than fitting with cylinder model;
B1, MCs both torus and cylinder model give similar geometry; B2 the torus and cylinder models give different geometries.
∗∗ Though this event is categorized as B1, only the torus fitting is acceptable; see Fig. 7.

angle. Category B can be divided into two groups by the dif-
ference in the orientations obtained by the torus and cylinder
fittings. It is seen in Category B thatδ is smaller than 30◦ in
3 cases (Events 1, 14, and 15), whereasδ is larger than 30◦ in
the remaining 6 cases (Events 2, 3, 5, 7, 8, and 9). They con-
stitute two groups, B1 and B2, respectively. The last column
in Table 4 indicates the group to which each MC observation
belongs.

The MC observations in Group A1 should be considered
as cases where the spacecraft traversed the MCs deep enough
to cross near the axis, and near the flank of the MC loop,
almost in parallel to the torus axis, as is evident from the torus
cone angles close to 0◦ or 180◦. A typical example has been
seen with Event 6 in Figs. 2 and 3. It should be noted again
that the cylinder model cannot reproduce the field rotation
substantially larger than 180◦.

For the MC events in Group A2, the torus cone angles are
close to 0◦ or 180◦, indicating that the spacecraft traverses
near the flank of MC loop, as well. In these cases, however,
the spacecraft did not enter the MCs deep enough, but tra-
versed only near the surface of the MCs, in contrast to the
cases in Group A1. An additional interpretation may be de-
sirable for Event 10, because the magnetic field rotation is

large in this case compared with the other two cases. The ob-
served solar wind field variations for this MC are compared
with the result of fitting by the torus model and that by the
cylinder model in Fig. 12 in the same format as Fig. 4. The
most conspicuous difference between the torus and cylinder
models is seen in theBX variation in the trailing part of the
MC. Because of the relatively large angle of the magnetic
field rotation, the cylinder fitting requires the spacecraft pas-
sage near the MC axis. In such geometries, it is impossible
for the cylinder model to reproduceBX variations having dif-
ferent signs at the entering and exiting points. We can see in
the figure that theBX variation is much improved by the torus
model.

With regard to the MCs in Group B1, the local directions
determined by the torus fitting are close to the axis directions
determined by the cylinder fitting (δ<30◦). Further, we no-
tice that the torus cone angles are relatively large for these
MC events, except for Event 14. We have already seen that
Event 14 is a very special case where the MC axis is nearly
parallel to theX-axis, and therefore the torus model is re-
quired for interpreting the observation. When the torus fit-
ting result yields the local axis orientation of a large cone an-
gle, the curvature effect is not very significant. Therefore, the
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Fig. 12. Results of the fitting with the torus model (solid curve) and with the cylinder model (dotted curve) to the magnetic cloud (MC)
encountered on 20 August 1998 (Event 10) in the same format as Fig. 4. The bottom three panels show the projected magnetic field vectors.

geometry of the MC encounter with the spacecraft can be ap-
proximated by the geometry of the encounter with a cylinder.
This geometrical relationship takes place when the spacecraft
traversed near the apex of the MC loop. The observations of
2 events in Group B1 other than Event 14 are considered to
correspond to this situation. The torus fitting result in such a
case is characterized by the MC geometry in which the torus
is crossed by the spacecraft only on its earthward side (X<0
side, withX=0 at the center of the torus: see Appendix B
for details). It is also worthwhile to point out that one of the
impact parameters (pz) is relatively large for these 2 events.
Though the torus cone angle is relatively small for Event 15,
the geometry is interpreted as a case where the spacecraft
crossed the MC loop between the apex and the flank (see
Figs. 8 and 9).

Finally, a new finding of the present study is that there ex-
ist MC events that can be interpreted in terms of both the
torus and cylinder models, but where the fitted directions are
substantially different (events in Group B2). In 2 events in
this group (Events 3 and 9) for which the rotation angles of
magnetic field vectors are larger than 180◦, good agreements
with the observations are obtained from the cylinder fitting,
as well as from the torus fitting. This comes from the fact
that magnetic field intensities are relatively small near the
MC boundaries in the above 2 cases, so that the differences
in the field directions do not make much of a contribution to
the overall rms deviations. This raises the important problem
that two possible geometries appear to be obtained from one
observation while one definitive geometrical situation should
exist in reality. One possible conclusion is that either of the
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two cases of the different geometries can take place in re-
ality, and that the model fitting alone may not provide the
definitive real geometry for any particular MC observations.
It should also be noted that the results of fitting may not
be very reliable when they indicate that the spacecraft tra-
versed only near the surface of the MCs, such as for Events
8 and 15. Thus, we must admit that the analysis based on
the least-squares fitting technique alone cannot always give
us the right geometry of an MC.

As a possible method to determine which gives a more
plausible geometry for each of the MCs, a torus model or
a cylinder model, we compare the BDE characteristics with
the MC geometries obtained by fitting with the two mod-
els. It is very common in BDE flux events that one of the
counterstreaming fluxes is stronger than the other. The gen-
eral idea for interpreting this asymmetric feature is that the
suprathermal electron flux from the footpoint of the MC loop
closer to the spacecraft should be stronger than that from the
other footpoint of the loop. The relationship between the
MC geometry and the BDE asymmetry has been examined
based on this hypothesis by Phillips et al. (1992) and Kahler
et al. (1999), though the results are not very definitive. If the
same hypothesis is applied, it is expected that the pitch an-
gle of the dominant electron flux should be 180◦ for the MC
whose axial field is toward the Sun and 0◦ for the MC whose
axial field is away from the Sun. We examine whether this
relationship is satisfied or not for our 17 MC events.

First, by comparing the cone angles determined from the
torus fitting and the cylinder fitting for 6 MCs of Group B2,
we see that the axial field polarities from the two models
are opposite in 3 cases (Events 2, 3, and 7). It is seen
from the BDE characteristics given in Table 1 that Event 2
matches the torus model, whereas Event 3 matches the cylin-
der model. For Event 7, the torus model seems more favor-
able, though the electron heat flow is unidirectional. For the
remaining 3 MCs for which both models provide the same
axial field polarities, Events 8 and 9 match the hypothesis and
Event 5 mismatches the hypothesis. Second, of the 3 MCs in
Group B1, the matching of the hypothesis is seen in 2 cases
(Events 1 and 14). For Event 15, the hypothesis cannot be
applied, because the dominant flux direction changed within
the MC. Third, of the 8 MCs in Group A1 and Group A2, the
dominant flux direction changed within the MCs in 3 cases.
In the remaining 5 cases we see 2 matching cases (Events 4
and 10) and 3 mismatching cases (Events 6, 12, and 13). As
a whole, we see that the axial field polarity matches the di-
rection of dominant heat flow of the BDE in only 9 out of 13
cases, excluding 4 cases of mixed heat flow polarity. If the
number of cases matching the hypothesis are compared be-
tween the torus and cylinder results (with the cylinder results
of Erms>0.3 included), the matching is seen in 8 cases (in-
cluding Event 7) for the torus results, and in 7 cases for the
cylinder results. Thus, one must admit that the relationship
between the dominant heat flux direction and the magnetic
field polarity can be violated in many cases. It is thus con-

cluded that we need more careful studies on the relationship
between the asymmetries in BDE fluxes and the distances
from the loop footpoints. At least, temporal variations in
suprathermal electron supplies at both footpoints of the MC
loop must be taken into account in some cases, because there
are some cases in which the dominant flux direction changes
within a single MC.

Thus far, we have seen that the 17 MC events can be di-
vided into 4 different groups. The first group consists of the
MC events of which the rotations of magnetic field are so
large that it is impossible to reproduce the observed vari-
ations by the cylinder model (A1). For the second group,
the cylinder model cannot satisfactorily interpret the observa-
tions, due to the important curvature effect of the MC loops,
though the field rotations are less than 180◦ (A2). The third
group corresponds to the cases in which the spacecraft en-
countered the MC near the apex of its loop (B1). For MCs
in the fourth group, though the cylinder and torus fittings
both reproduce the observations satisfactorily, the resulting
geometries are substantially different from each other (B2).
We examined the BDE characteristics for the purpose of se-
lecting more plausible geometries, but the results were not
definitive. In order to determine the most plausible geometry
of an MC, it is necessary to compare the MC characteristics
obtained by the model fitting analysis with other observations
relevant to the MC geometry. Here, we point out several
possible observations for future studies which may provide
methods for the geometry determination of the MCs. They
include examining: (1) the directions of the surface normals
of any discontinuities near the MC boundaries, and shock
normals associated with the MCs (Jones et al., 2002; Kataoka
et al., 2005), (2) multi-spacecraft observations of the same
MC (Burlaga et al., 1981; Bothmer and Schwenn, 1998;
Mulligan et al., 1999; Russell et al., 2003), and (3) the rela-
tionships between the magnetic field structures of MCs and
the corresponding coronal magnetic structures (Marubashi,
1986, 1997; Ishibashi and Marubashi, 2004; Cremades and
Bothmer, 2004).

Finally, we compare four relevant parameters obtained
from the fittings with the torus and cylinder models in
Fig. 13: (a) the relative fitting errorsErms, (b) the radius
of the cross-sectional circle of the MC loop at timet=0, (c)
the speed of the translational motion of the MC att=0, and
(d) the maximum field intensity within the MC att=0. The
maximum field intensities for the torus model were calcu-
lated with Eqs. (6–8), while they are given byB0 for the
cylinder model. The parameters are plotted with different
marks for the above 4 groups: circles for Group A1, squares
for Group A2, triangles for Group B1 (Event 14 is indicated
by an asterisk), and diamonds for Group B2. Parameters for
Event 6 are not plotted here, because the cylinder fitting was
not performed. It should be noted that the diagrams include
parameters obtained from the cylinder fitting for events of
Groups A1 and A2, for which we have concluded that the
torus fitting is needed. Those points should suggest caution
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Fig. 13. Comparison of four fitted parameters obtained from the torus fitting and from the cylinder fitting:(a) the relative fitting errorErms;
(b) the radius of MC flux ropes;(c) the speed of the translational motion of the MC; and(d) the maximum field intensity within the MC.
Parameters for MCs in the different groups are indicated with different marks (see text).

concerning how different geometries of MCs result when
the fittings with large errors were accepted. It is seen from
Fig. 13a thatErms<0.3 is a good criterion for judging the
fitting accuracy for the 17 examined MC events. Figure 13b
indicates that the most significant difference between the re-
sults from the two models is seen in the sizes of the MCs,
while the MC speeds and the maximum field intensities from
the two models are in reasonable agreement (Fig. 13c and
d). As we have already seen with some examples, the ra-
dial sizes of MC flux ropes obtained with the torus model are
generally smaller than those from the cylinder model. This
imposes significant impacts on the estimation of magnetic
flux and other related quantities carried away from the Sun
by MCs (cf. Green et al., 2002; Nindos et al., 2003; Leamon
et al., 2004; Lynch et al., 2005; Lepping et al., 2006).

5 Summary

1. We identified 17 magnetic clouds (MCs) with durations
longer than 30 h using the solar wind data obtained from

the WIND and ACE spacecraft during 10 years from
1995 through 2004. The plasma and magnetic field
data for these MCs generally exhibit characteristic fea-
tures commonly observed in the ICMEs, such as en-
hancements in the He++/H+ ratio, bidirectional elec-
tron heat flows, abnormally low proton temperatures,
and reduced magnetic field fluctuations. It should be
noted, however, that all of these signatures are not nec-
essarily seen in all of these MCs.

2. The magnetic field structures of the 17 MCs were an-
alyzed by the technique of the least-squares fitting to
the force-free flux rope models. The analysis was
made with both the cylinder and torus models when
possible. The torus model was used in order to ap-
proximate the curved portion of the MCs near the
flanks of the MC loops. As a result of this analy-
sis, we have found that the 17 MC events are clas-
sified into 4 groups; Group A1: MC events exhibit-
ing magnetic field rotations through angles appreciably
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larger than 180◦, which can be interpreted only by the
torus model; Group A2: MC events for which the torus
model is needed, because the curvature effects are im-
portant though the rotation angles are smaller than 180◦;
Group B1: MC events for which both the cylinder and
torus models yield similar MC geometries with satisfac-
tory agreements with the observed field variations; and
Group B2: MC events for which results from the torus
model and the cylinder model provide different geome-
tries though good agreements with the observations are
obtained from both models.

3. The 4 groups mentioned above are physically inter-
preted as follows. The MC observations in Group A1
are considered as cases where the spacecraft traversed
near the flank of the MC loop, and deep enough to pass
the axis. When the spacecraft traversed near the flank of
the MC loop, but passed only near the surface, MCs in
Group A2 are observed. The MC observations in Group
B1 correspond to those cases where the spacecraft tra-
versed near the apex of the MC loop, in contrast to the
cases of A1 and A2. For the MC events in Group B2,
the real geometry cannot be determined from only the
model fitting technique, because two different geome-
tries are possible: one near the apex, and the other near
the flank of the MC loop.

4. It is far more evident that the torus model is needed for
interpretation of the MCs exhibiting magnetic field rota-
tions through angles substantially larger than 180◦. For
other cases of magnetic field variations, however, we
could not find a way to foresee which model, torus or
cylinder, yields a better interpretation for the observed
magnetic field. Thus, for selecting an appropriate model
for a given MC event, we must rely on the difference
in the degree of agreement between observations and
modeled results with both models. The MC for which
the axis is aligned with the X-axis is one special case
which requires the torus model for interpreting the ob-
servation.

5. We found that the flux rope radii obtained from the torus
fitting tend to be generally smaller than those obtained
from the cylinder model. This result can be easily un-
derstood by considering the fact that the durations of
a spacecraft passage through MCs tend to be relatively
long when traversed near the flank of the MC loop than
when traversed near the apex.

6. We tested the hypothesis that the stronger fluxes of the
BDEs come from the footpoints of the MC loops closer
to the spacecraft by comparing the direction of the dom-
inant fluxes of the BDEs and the polarities of the axial
field of the MCs obtained from the model fitting. As a
result, we found this hypothesis is satisfied in 9 cases
out of 13 cases, the matching rate being 70%. This

result suggests that the causes of asymmetries in BDE
fluxes should be further examined with some additional
possibilities taken into consideration, such as possible
intensity differences between two source regions around
two footpoints of the MC loops, and possible temporal
variations in suprathermal electron supplies there.

6 Conclusions and discussion

We have presented an analysis of 17 magnetic clouds whose
durations are equal to or longer than 30 h, with torus- and
cylinder-shaped flux rope models. As a result, we have ob-
tained the following new findings:

1. There exist MC events that can be interpreted only by
a torus model, corresponding to cases where the space-
craft traversed the flank of the MC loop (Group A1 and
A2 in our classification).

2. There is another class of MC events for which the fit-
tings with the torus and cylinder models yield signifi-
cantly different orientations of the flux rope axis, though
both models provide magnetic field variations in good
agreement with observations (Group B2 in our classifi-
cation).

3. The flux rope radius obtained from the torus fitting tends
to be smaller than that from the cylinder fitting.

It should be pointed out that these findings impose strong im-
pacts, in two ways at least, on our understanding of the con-
nection between CMEs and ICMEs. First, the direction of
the flux rope axis is an important factor in the understanding
of the relationship between the coronal magnetic structures
near the sources of CMEs and the associated ICMEs. It is
plausible that one may obtain a wrong direction of the flux
rope axis by using cylinder model fittings to those MCs de-
scribed in 1 and 2. We need to select the right one from two
different directions obtained from two models before com-
paring with related coronal structures. Two MCs analyzed
by Ishibashi and Marubashi (2004) and Crooker and Webb
(2006), respectively, are good examples for which the torus
fitting yields a better alignment between the MC axis and the
orientation of the associated solar filament. Secondly, the
estimation of the flux rope radius directly affects the estima-
tion of physical quantities, such as magnetic flux and mag-
netic helicity carried away from the Sun by the MC (Green
et al., 2002; Nindos et al., 2003; Leamon et al., 2004; Lynch
et al., 2005; Lepping et al., 2006). For example, Nindos et
al. (2003) showed a general tendency that for the magnetic
helicity calculated from MCs to be overestimated. Such an
estimate can be improved by using the smaller flux rope ra-
dius obtained from the torus model fitting.

It is thus highly desirable in future studies to determine
which model gives a more realistic geometry of a given MC,
the torus model or the cylinder model. Here we point out
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possible future studies which may provide methods to de-
termine the real geometries of the MCs. They include: (a)
the directions of discontinuities normals near the MC bound-
aries and shock normals associated with the MCs (Jones et
al., 2002; Kataoka et al., 2005), (b) multi-spacecraft obser-
vations of the same MC (Burlaga et al., 1981; Bothmer and
Schwenn, 1998; Mulligan et al., 1999; Russell et al., 2003).

Appendix A

Magnetic fields and solar wind velocity for the cylinder
model

We derive expressions to calculate the magnetic fields and the
expanding velocity within a cylindrical magnetic flux rope
along the spacecraft trajectory. We use the SE coordinate
system,Of−Xf YfZf , moving with a flux rope with the ori-
ginOf taken on the flux rope axis. Letθa andφa be the lati-
tude and longitude angles of the axial field in this coordinate
system. We make a new coordinate systemOf−X1Y1Z1
by rotatingOf−Xf YfZf around theXf -axis, so that the
X1−Y1 plane contains the flux rope axis. This transforma-
tion can be made by adopting the rotation angle2 satisfying
the following equations.














cos2 = cosθa sinφa

/

√

sin2 θa + cos2 θa sin2 φa

sin2 = sinθa

/

√

sin2 θa + cos2 θa sin2 φa

(A1)

As a result of this transformation, the flux rope axis is toward
the longitude angle8 in theX1−Y1 plane, where8 is given
by
{

cos8 = cosθa cosφa

sin8 =
√

sin2 θa + cos2 θa sin2 φa
(A2)

Suppose that the spacecraft enters the flux rope at timet=0
and exits att=td (i.e. td is the duration of MC passage), and
let {X1(t), Y1(t), Z1(t)} be the position of the spacecraft at
time t (0≤t≤td). Then it follows






X1 (t) = X1 (0)+ U0t

Y1 (t) = Y1 (0) = 0
Z1 (t) = Z1 (0) = r0p

(A3)

The radial distance from the cylinder axis to the spacecraft at
time t , ρ(t), is given by

ρ2 (t) = X2
1 (t) sin28+ Y 2

1 (t)+ Z2
1 (t) (A4)

If we define an angleβ, the elevation angle of the spacecraft
position from theX1−Y1 plane measured on the plane per-
pendicular to the cylinder axis, it is given by
{

cosβ = −X1 (t) sin8
/

ρ (t)

sinβ = Z1 (t)
/

ρ (t)
(A5)

Using the anglesβ and8 defined above, the expansion speed
of the MC cylinder and the magnetic field at the spacecraft
position at timet are given as follows.






vX1 = −vρ cosβ sin8
vY1 = vρ cosβ cos8
vZ1 = vρ sinβ

(A6)







BX1 = Bζ cos8+ Bϕ sinβ sin8
BY1 = Bζ sin8− Bϕ sinβ cos8
BZ1 = Bϕ cosβ

, (A7)

wherevX1, vY1, vZ1 andBX1, BY1, BZ1 are the velocity and
magnetic field components in theO−X1Y1Z1 system, and
vρ , Bφ , Bς are given by Eqs. (2), (4), and (5) in the text,
respectively.

Finally, we obtain the velocity and magnetic field compo-
nents in the GSE coordinate system,vX, vY , vZ andBX, BY ,
BZ, by rotation ofOf−X1Y1Z1 around theX1-axis through
the angle−2 as follows.






vX = −vρ cosβ sin8− U0
vY = vY1 cos2− vZ1 sin2
vZ = vY1 sin2+ vZ1 cos2

(A8)







BX = BX1
BY = BY1 cos2− BZ1 sin2
BZ = BY1 sin2+ BZ1 cos2

(A9)

In Eq. (A8), the motion of the flux rope relative to the space-
craft is taken into account. In the actual model fitting, we
used the speed of the solar wind,VSW , instead ofvX, vY , vZ.

VSW =
√

v2
X + v2

Y + v2
Z. (A10)

Equations (A10) and (A9) together with Eq. (A3) present
variations of the solar wind speed and the magnetic field that
should be observed by the spacecraft when traversing the flux
rope cylinder.

In the actual calculation, we further need to determine
X1(0) in Eq. (A3). Noting that the spacecraft is on the sur-
face of the cylinder at times,t=0 andt=td , we obtain from
Eq. (A4):

r2
0 = X2

1(0) sin28+ Y 2
1 (0)+ Z2

1(0) (A11)

r2
0 (1 + Etd)

2 = (X1 (0)+ U0td)
2 sin28

+Y 2
1 (td)+ Z2

1 (td) (A12)

Simple manipulation of these equations yieldsX1(0) and an
expression connecting the 7 fitting parameters, as given be-
low.

X1 (0) = −r0
√

1 − p2

/

sin8 (A13)

E=
(

√

(X1 (0)+U0td)
2 sin28+Y 2

1 (0)+Z
2
1 (0)

/

r0−1

)/

td (A14)
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Appendix B

Magnetic fields and solar wind velocity for the torus
model

We derive expressions to calculate the magnetic fields and the
expanding velocity within a torus-shaped magnetic flux rope
along the spacecraft trajectory. We first define the SE coor-
dinate system moving with the torus, with the origin taken
at the center of a circle drawn by the axial field of the torus,
O-XYZ. Let θn andφn be the latitude and longitude angles
of a vector normal to the plane containing the axial field in
this coordinate system. To make the calculations easier, we
transformO-XYZ to the torus-referred Cartesian coordinate,
O−XT YTZT , in which the plane of the torus axis is con-
tained in theXT−YT plane, and theZT axis is contained
in the X-Z plane. This transformation can be made by first
definingO−X1Y1Z1 by rotation ofO-XYZ around the X-
axis through angle2, and then rotatingO−X1Y1Z1 around
Y1-axis through angle8, where2 and8 are given by the
following equations.














sin2 = −cosθn sinφn

/

√

sin2 θn + cos2 θn sin2 φn

cos2 = sinθn

/

√

sin2 θn + cos2 θn sin2 φn

(B1)

{

sin8 = cosθn cosφn

cos8 =
√

sin2 θn + cos2 θn sin2 φ
(B2)

The expansion velocity of the torus flux rope can be easily
calculated by invoking two additional coordinate systems: a
cylinder coordinate system (R, 9, h) and a toroidal cylin-
der system (ρ, β, ς ), which are related to theO−XT YTZT
system as follows.

R=
√

X2
T+Y 2

T , 9=T an−1 (

YT
/

XT
)

, h=ZT (B3)

ρ cosβ = R − RM , ρ sinβ = h, ζ = −R9. (B4)

The expansion velocity given by Eq. (2) in the text can be
expressed with these coordinate systems as

Vρ = vρ, Vβ = 0, Vζ = 0 (B5)

VR = Vρ cosβ, V9 = 0, Vh = Vρ sinβ. (B6)

Then, we obtain three components of the expansion velocity
in theO−XT YTZT coordinate system as follows.






VXT = vρ cosβ cos9
VYT = vρ cosβ sin9
VZT = vρ sinβ

(B7)

Now, we calculate the magnetic field given by Eqs. (6–8)
in the text as a function ofXT , YT , andZT . The toroidal

coordinatesµ, η, andϕ are determined by the following re-
lationships withXT , YT , andZT (Romashets and Vandas,
2003).






XT = a sinhµ cosϕ
/

(coshµ− cosη)
YT = a sinhµ sinϕ

/

(coshµ− cosη)
ZT = a sinη

/

(coshµ− cosµ)
. (B8)

The backward relationships are






































coshµ =
(

X2
T + Y 2

T + Z2
T + a2

)

/

√

(

X2
T + Y 2

T + Z2
T + a2

)2 − 4a2
(

X2
T + Y 2

T

)

cosη =
(

X2
T + Y 2

T + Z2
T − a2

)

/

√

(

X2
T + Y 2

T + Z2
T − a2

)2 + 4a2Z2
T

tanϕ = YT
/

XT

(B9)

In this coordinate system, the equationµ=µ0 defines a toroid
with the major and minor radiiRM andrm, which are related
to a andµ0 as follows.

a =
√

R2
M − r2

m (B10)

RM
/

rm = coshµ0 (B11)

a
/

rm = sinhµ0. (B12)

Manipulating Eq. (B8), we obtain




dXT
dYT
dZT



 =
(

wij
)





hµdµ

hηdη

hϕdϕ



 , (B13)

wherehµ=hη=a
/

(coshµ− cosη),
hϕ=a sinhµ

/

(coshµ− cosη) are the Lam̀e coefficients, and
(wij ) is a matrix, of which each element is given as follows.

w11 =
1 − coshµ cosη

coshµ− cosη
· cosϕ,

w12 = −
sinhµ sinη

coshµ− cosη
· cosϕ,

w13 = − sinϕ (B14)

w21 =
1 − coshµ cosη

coshµ− cosη
· sinϕ,

w22 = −
sinhµ sinη

coshµ− cosη
· sinϕ,

w23 = cosϕ (B15)

w31 = −
sinhµ sinη

coshµ− cosη
,

w32 = −
1 − coshµ cosη

coshµ− cosη
,

w33 = 0. (B16)
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Fig.Fig.Fig.Fig.    C1C1C1C1    

Fig. C1. Dependence of the torus parameters obtained for the mag-
netic cloud of 4 February 1998 (Event No. 6), on the change of the
major radiusRM .

Thus, for the magnetic field vector (Bµ, Bη, Bϕ) in the
toroidal coordinate system, which is given in Sect. 3.2, the
Cartesian componentsBXT , BYT , BZT in theO−XT YTZT
coordinate system are given by





BXT
BYT
BZT



 =
(

wij
)





Bµ
Bη
Bϕ



 (B17)

Then, we present expressions to calculate the spacecraft tra-
jectory within the torus as a function of time fromt=0 to
t=td , which is needed to calculate the magnetic field and the
expansion velocity to be measured by the spacecraft. Let
{X1(t), Y1(t), Z1(t)} be the position of the spacecraft in the
O−X1Y1Z1 system at timet , then it follows






X1 (t) = X1 (0)+ UT 0t −
(

1
/

2
)

Df t
2

Y1 (t)=Y1 (0)=Y10=∓ (sgn (BX)) RM+rm0py
Z1 (t) = Z1 (0) = Z10 = rm0pz

(B18)

TheY1−Z1 plane cuts the torus on both sides ofY1>0 and
Y1<0, whereBX1<0 andBX1>0, respectively. We must se-
lect an appropriate one of the twoY10 values corresponding
to the side on which the spacecraft pass the torus. By defin-
ing Y10 in this way,py gives the distance normalized byrm0
from the torus axis to the spacecraft measured on theY1−Z1
plane.

Finally, we calculateX1(0) and the expansion rate of the
torus,E, in a similar way to the case of a cylinder model
(Appendix A). The satellite position in theO−XT YTZT co-
ordinate system is given by






XT (t) = X1 (t) cos8− Z10 sin8
YT (t) = Y10
ZT (t) = X1 (t) sin8+ Z10 cos8

(B19)

Noting that {XT (0), YT (0), ZT (0)} and {XT (td), YT (td),
ZT (td)}are both on the torus surface, we obtain

(

√

X2
T (0)+ Y 2

T (0)− R2
M

)2

+ Z2
T (0) = r2

m0 (B20)

(

√

X2
T (td)+Y 2

T (td)−R
2
M

)2

+Z2
T (td)=r2

m0 (1+Etd)2 . (B21)

Equation (B20) is ascribed to the 4th-degree equation for
XT (0), substitution of the minimum root of which into
Eq. (B19) givesX1(0). Now thatX1(0) is obtained, the left-
hand side of Eq. (B21) is known. If we express this quantity
by LHS, the expansion rate is given by

E =
(√

LHS
/

rm0 − 1
)/

td (B22)

Appendix C

Effects of changingRM on the torus fitting

Figure C1 depicts how the fitting result changes depending
on the selection of the major radius of the torus,RM , for
the MC encountered on 4 February 1998 (Event 6). We see
that the best fit is obtained forRM=0.2 and that the adjust-
ment takes place in other parameters by changingRM and
that the relative rms errors of the fitting are sufficiently small
throughout the range of the changingRM in this particular
case. It should be especially noted that the orientation of the
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Table C1. Magnetic cloud parameters forRM=0.3 AU, and forRM=1.2 AU.

EVENT Ra
M

ra
m0 θb

n φb
n pc

y pc
z pc Bd

T
Ue
T 0 De

f
E×48f

Ermsg
NO. (AU) (AU) (◦) (◦) (rm0) (rm0) (rm0) (nT) (km/s) (km/s/h) (/48 h)

1∗ 0.3 0.0919 51.4 230.0 1.895 −1.089 0.075 41.6 328.0 −6.40 1.35 0.232
1.2 0.1145 59.3 230.0 −3.206 6.469 0.036 30.8 354.7 −3.76 0.64 0.244

3
0.3 0.0289 27.5 77.2 −0.708 0.015 0.636 12.1 383.7 2.29 −0.12 0.330
1.2 0.0135 31.9 83.2 −0.702 −0.008 0.699 13.8 385.4 2.33 0.02 0.274

8
0.3 0.0526 −80.4 304.3 −0.323 −0.068 0.245 23.1 586.5 5.31 1.40 0.163
1.2 0.0178 −62.1 276.6 −0.363 −0.326 0.322 21.7 604.7 6.67 1.55 0.142

9
0.3 0.0583 −48.2 243.5 −0.547 −0.061 0.514 12.5 530.9 5.18 −0.14 0.275
1.2 0.0401 −59.3 246.8 −0.578 −0.365 0.501 14.6 531.3 5.12 −0.09 0.168

14
0.3 0.0783 56.5 35.4 −0.144 0.471 0.233 12.4 443.9 0.62 0.42 0.278
1.2 0.0427 68.0 57.4 −0.435 0.680 0.522 11.9 455.0 1.38 0.38 0.266

15∗ 0.3 0.1073 70.5 341.8 0.468 1.191 0.573 28.5 493.3 1.39 0.66 0.189
1.2 0.1152 75.2 341.8 1.203 1.998 0.669 24.3 499.1 1.83 0.50 0.148

16
0.3 0.1296 75.8 16.9 0.736 0.410 0.737 31.0 546.3 3.70 0.53 0.190
1.2 0.0529 40.3 83.7 0.291 1.101 0.904 22.0 563.5 4.99 0.65 0.182

17
0.3 0.0547 −80.9 330.3 0.587 0.238 0.122 12.7 502.3 4.03 −0.48 0.265
1.2 0.0178 −78.8 73.0 0.608 0.156 0.361 14.0 495.9 3.56 −0.50 0.192

a RM , major radius of torus;rm0, minor radius at the time of encounter.
b The latitude (θn) and longitude (φn) angles of a vector normal to the torus plane.
c (py , pz), the position of the spacecraft track on the YZ plane, andp, the closest approach distance to the axis.
d BT , a parameter determining the magnetic field intensity; see Sect. 3.2.
eUT 0, the velocity of MC at the time of encounter, andDf , the deceleration factor; see Eq. (10).
f Increase in the torus minor radius in 48 h as a result of expansion.
g The error estimating figure.
∗ For these MC events, fitting was made with bothRM andφn fixed.

fitted torus is maintained in the range within 10◦. It is also
seen that the minor radiusrm0 decreases with an increase in
RM . This change comes from the requirement that the space-
craft should traverse the MC during the same time interval
with similar speeds.

For 8 MC events, as described in Sect. 3, the fitting routine
collapsed before the convergence could be attained, when
RM was included as one of the free parameters to be deter-
mined by the least-squares method. Therefore, we calculated
other parameters with a modified fitting routine withRM val-
ues fixed in the range of 0.3–1.2 AU. Through this procedure,
we found the magnetic field variations calculated from the
torus model becomes less sensitive toRM change for large
RM values. This tendency may explain the reason why the
fitting routine collapsed in those cases whenRM is included
as a free parameter.

Table C1 presents the parameters obtained for 8 MCs from
the torus fitting with fixedRM values of 0.3 and 1.2 AU. For
these 8 MCs, the fitting routine could not attain convergence

whenRM was included as one of the free parameters (see
the last part of Sect. 3). The minor radiusrm0 decreases with
an increase inRM , as has been seen in Fig. C1, where the
rate of change inrm0 is generally smaller than the rate of
change inRM . It is also seen that the changes in the torus
plane direction (θn andφn) are generally small for changes
in RM , in the range of 0.3–1.2 AU. Though the changes in
the torus plane direction are not small for Events 16 and 17
in this range, we can see, by comparing with Table 2, that
the changes are small in theRM range of 0.6–1.2 AU. The
fittings for Events 1 and 15 need a special comment. Because
these cases involved a spacecraft passage near the apex of the
MC loop, the torus model of any direction can yield similar
field variations, in as much as the local orientations of the
torus at the spacecraft passage are similar. Therefore, we
executed the fitting routine with one parameter (φn) fixed to
be consistent with the value obtained forRM=0.6 AU.
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