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Abstract. Significance tests usually address the issue how
to distinguish statistically significant results from those due
to pure randomness when only one sample of the population
is studied. This issue is also important when the results ob-
tained using the wavelet analysis are to be interpreted. Tor-
rence and Compo (1998) is one of the earliest works that has
systematically discussed this problem. Their results, how-
ever, were based on Monte Carlo simulations, and hence,
failed to unveil many interesting and important properties of
the wavelet analysis. In the present work, the sampling distri-
butions of the wavelet power and power spectrum of a Gaus-
sian White Noise (GWN) were derived in a rigorous statisti-
cal framework, through which the significance tests for these
two fundamental quantities in the wavelet analysis were es-
tablished. It was found that the results given by Torrence
and Compo (1998) are numerically accurate when adjusted
by a factor of the sampling period, while some of their state-
ments require reassessment. More importantly, the sampling
distribution of the wavelet power spectrum of a GWN was
found to be highly dependent on the local covariance struc-
ture of the wavelets, a fact that makes the significance levels
intimately related to the specific wavelet family. In addition
to simulated signals, the significance tests developed in this
work were demonstrated on an actual wave elevation time
series observed from a buoy on Lake Michigan. In this sim-
ple application in geophysics, we showed how proper signif-
icance tests helped to sort out physically meaningful peaks
from those created by random noise. The derivations in the
present work can be readily extended to other wavelet-based
quantities or analyses using other wavelet families.

Keywords. Meteorology and atmospheric dynamics (Instru-
ments and techniques) – Oceanography: physical (Surface
waves and tides) – General or miscellaneous (Techniques ap-
plicable in three of more fields)
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1 Introduction

After two decades of fast development, the wavelet analy-
sis has become a powerful and effective tool for analysing
nonlinear and especially nonstationary time series in many
disciplines (Addison, 2002). In particular, its application
in geophysics has made great contribution to the advance-
ment of the theory and the practice of the wavelet analysis
(e.g. Goupilland et al., 1984; Foufoula-Georgiou and Ku-
mar, 1994). To date, the implementation of the wavelet
analysis has become easy for many researchers, owing to
the work of Torrence and Compo (1998) (referred to TC98
hereafter). In this widely-acknowledged paper, which has
been cited over 1000 times as of June of 2007 (ISI Web
of knowledge), many practical issues for the wavelet anal-
ysis are discussed, accompanied by source codes in Fortran
and Matlab posted on their website (http://atoc.colorado.edu/
research/wavelets/). Moreover, TC98 is one of the earliest
works that gives a guide for conducting significance tests for
the wavelet power, auto-, and cross-spectrum, which is perti-
nent to the present work.

The significance test for the wavelet analysis is undoubt-
edly important due to the simple fact that there always seem
to be some patterns (e.g. peaks) in the wavelet scalogram
even if the analysed signal is pure noise. In this case, a bot-
tom line must be drawn below which no conclusion can be
made based on the results. This issue should receive espe-
cial attention when the continuous wavelet transform (CWT)
is employed, because the CWT may introduce considerable
redundancy in the results (Mallat, 1998, p. 79). However,
the significance levels established in TC98 were based on a
series of Monte Carlo simulations instead of reasoning in a
rigorous statistical framework. Although simple and straight-
forward, their approach failed to disclose many interesting
and essential properties that could have been shown through
an analytical approach. This paper aims to pick up what they
have left behind, and, furthermore, to show the necessity
and effectiveness of proper significance tests. Significance
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levels for the wavelet power and the wavelet power spectrum
are proposed in the following sections of the present paper.
Besides the simulated noisy sine signals, actually observed
wave elevation on Lake Michigan of the United States was
used as a demonstration for the proposed significance tests.
Although, for brevity, only CWT using the Morlet wavelet is
considered in the present paper, the methodologies described
here can be readily extended to the discrete wavelet trans-
form and the wavelet analysis based on other wavelet fami-
lies, such as the Mexican hat and the derivative of a Gaussian
(DOG) wavelets.

2 Significance tests developed by TC98

To aid those readers who are not familiar with TC98, we give
a brief introduction of their theories that are relevant to the
present work.

The Morlet (mother) wavelet is typically defined as

ψ(t) = π−1/4eiω0te−
t2
2 , (1)

whereω0 is set equal to 6.0 to approximately satisfy the ad-
missibility condition, andt is used as a more self-explanatory
notation for time thanη in TC98. Then the family of the Mor-
let waveletsψa,b(t) can be generated by replacing the time
variable in Eq. (1) with(t−b)/a, whereb denotes the shift
in time anda is the scale variable:

ψa,b(t) =
1

√
a
ψ(
t − b

a
). (2)

The factor 1/
√
a is used to assure equal energy for wavelets

at different scales (Addison, 2002, p. 65).
The wavelet coefficient,T (a, b), obtained from the

wavelet transform of a real functionx(t) is usually defined
as

T (a, b) =
∫ ∞

−∞
x(t)ψ∗

a,b(t)dt (3)

(e.g. Addison, 2002, p. 13). Here(· · ·)∗ represents the com-
plex conjugate of a given quantity. Hereafter, all integrals
will be abbreviated as

∫

if the integral limits are from−∞ to
∞. In a discrete form, TC98 gives an alternative expression
for the wavelet coefficient at time indexn and scalea:

Wn(a) =
N−1
∑

n′=0

xn′ψ∗
[

(n′ − n)δt

a

]

, (4)

wherexn is the sampled series ofx(t), N denotes the length
of the studied time series, andδt denotes the sampling pe-
riod. Nevertheless, this expression is inconsistent with the
standard form such as Eq. (3). We found that TC98’s wavelet
coefficient,Wn(a), should be multiplied with square-root of
the sampling period,δt , to be equal to the standardly defined
T (a, b), or

|T (a, b)|2 = δt |Wn(a)|2. (5)

More explanations are given in Appendix A. This inconsis-
tency actually stems from the different factor TC98 used to
normalize the wavelets for a constant energy over all scales.
Specifically, the normalization factor TC98 used is

√
δt/a

while in the standard form, Eq. (2), the corresponding term
is 1/

√
a. Although TC98’s normalization of wavelets always

preserves the dimension ofψa,b(t) to be the same as that
of the mother wavelet and henceWn(a) andx(t) will have
the same dimension for nondimensional wavelets (Eq. 4),
most works in the literature prefer the standard form, Eq. (2),
probably because of its mathematical elegance. Compared
with Eq. (2), the inclusion ofδt in a general formula of the
wavelet analysis makes the formula dependent on the partic-
ular sampling procedure. We will adopt the standard form,
Eq. (2), in the remainder of the paper, yet keeping in mind
thatT (a, b) andWn(a) do have different dimensions, which
however does not affect the theories or numerical results of
the wavelet analysis.

Based on Monte Carlo simulations, they found that the
wavelet power (the squared modulus of the wavelet coef-
ficient, referred to as the local wavelet power spectrum in
TC98) of a noise signal normalized by the signal variance in
the time domain,σ 2, has aχ2

2 distribution:

|Wn(a)|2

σ 2
⇒

1

2
Pkχ

2
2 , (6)

wherePk is the mean spectrum of the background noise at
the Fourier frequencyk, and the symbol⇒ means “is dis-
tributed as”. In the case of significance tests for wavelet-
based quantities against a Gaussian White Noise (GWN),Pk
is identically 1 for all frequencies (or scales). Hereafter, the
factorPk will not be included in equations.

The global wavelet spectrum, which is defined as the time
average over a series of wavelet powers, can be expressed as

W
2
(a) =

1

N

N−1
∑

n=0

|Wn(a)|2, (7)

whereN is the number of the data points in the time domain
that are involved in the wavelet spectrum. Again, based on
the Monte Carlo simulations, the 5% significance level of the
normalized (byσ 2) global wavelet spectrum of a GWN can
beempirically fitted by a chi-square curve,χ2

ν /ν, where the
degree-of-freedomν can be numerically estimated through
the relation

ν = 2

√

1 +
(

naδt

γ a

)2

(8)

(see TC98 for more details). It is important to note that al-
though the 5% significance level conforms with a chi-square
trend it is difficult to state that the sampling distribution of the
wavelet spectrum of a GWN is really aχ2

ν /ν. It also is un-
clear whether the empirical relations for the 5% significance
level such as Eq. (8) can be extended for other significance
levels or other integration ranges. Obviously, such deficiency
stems from the lack of rigorous statistical reasoning.
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3 Significance tests for the wavelet scalogram and
power spectrum

As TC98 points out, a significance test should have a spe-
cific background distribution presumed. In the present work,
we use a GWN process to establish the null hypothesis,
so that the significance test determines on what basis one
should reject the null hypothesis and infer that the obtained
wavelet-based results are not due to white noise. In the
cases where the null hypothesis is established based on a
red noise, the analysis here can be readily adapted. In
the following discussions, the GWN is simply expressed
as x(t) which has a zero mean (E[x(t)]=0) and its auto-
covariance can be expressed with a Kronecker delta function,
Cov[x(t), x(t ′)]=δ(t−t ′)σ 2 (e.g. Jenkins and Watts, 1968,
p. 225).

3.1 The sampling distribution of the wavelet power of a
GWN

The wavelet power|T |2 (the scale and time variablesa andb
have been omitted for simplicity) equalsRe2[T ] + Im2[T ],
whereRe[· · ·] and Im[· · ·] denote the real and imaginary
parts, respectively, of a complex number. Using Eq. (3), we
have

Re[T ] =
∫

x(t)Re[ψ∗
a,b(t)]dt (9)

and

Im[T ] =
∫

x(t)Im[ψ∗
a,b(t)]dt. (10)

It is evident that bothRe[T ] and Im[T ] are normally dis-
tributed due to the Gaussianity ofx(t).

Noting that the wavelets are all deterministic and hence
can be moved out of the operators for random variables
such as the expectation and the covariance, we simply have
E[Re[T ]]=E[Im[T ]]=0 and

Cov[Re[T ], Im[T ]] = Cov[
∫

x(t)Re[ψ∗
a,b(t)]dt,

∫

x(t)Im[ψ∗
a,b(t)]dt]

=
∫ ∫

Cov[x(t), x(t ′)]Re[ψ∗
a,b(t)]Im[ψ∗

a,b(t
′)]dtdt ′=0(11)

for t 6=t ′. Furthermore, it can be verified that
Cov[Re[T ], Im[T ]]≡0 for ψa,b(t) being the Morlet
wavelets even ift=t ′. Because of the zero-mean property,

Var[Re[T ]] = E[Re2[T ]] =
∫ ∫

E[x(t)x(t ′)]Re[ψ∗
a,b(t)]Re[ψ

∗
a,b(t

′)]dtdt ′. (12)

Based on the results in Appendix B, it follows that

Var[Re[T ]] = δtσ 2
∫

Re2[ψ∗
a,b(t)]dt (13)

and

Var[Im[T ]] = δtσ 2
∫

Im2[ψ∗
a,b(t)]dt. (14)

Equations (11)–(14) implies that at a certain point in the
time-scale domain,(a, b), the real and imaginary parts of the
wavelet coefficient of a GWN are both zero-mean random
variables and are independent of each other. In particular, we
can show that, for the Morlet wavelet,
∫

Re2[ψ∗
a,b(t)]dt =

∫

Im2[ψ∗
a,b(t)]dt =

1

2
, (15)

and hence Eqs. (13) and (14) become

Var[Re[T ]] = Var[Im[T ]] =
1

2
δtσ 2. (16)

Therefore, only for the Morlet wavelet,

|T |2

δtσ 2/2
=

Re2[T ]
Var[Re[T ]]

+
Im2[T ]

Var[Im[T ]]
⇒ χ2

2 , (17)

which leads to

|T |2 ⇒
1

2
δtσ 2χ2

2 . (18)

Consequently, the wavelet power has aχ2
2 distribution

only when the wavelet family used is the Morlet wavelet to
satisfy the equal-variance condition in Eq. (16). For other
wavelet families, the relation (18) might approximately hold
but not rigorously. This property was overlooked by TC98.
Using Eq. (5) for adjustment we obtain|Wn(a)|2/σ 2⇒1

2χ
2
2 ,

in agreement with TC98’s result, Eq. (6). The significance
test can be conducted as follows. If the normalized wavelet
power,|T |2/σ 2, is less than the value of12δtχ

2
2(1 − α) with

α being the prescribed significance level such as 0.01, 0.05,
or 0.1, we accept the null hypothesis that this wavelet power
value is only caused by randomness (i.e. a GWN). Other-
wise, the null hypothesis is rejected with a confidence level
of 1−α, and we infer that the wavelet power is significantly
larger than those which could be created by randomness.
Therefore, it reflects real physical properties of the studied
time series.

To demonstrate the significance test for the wavelet power,
sine signals with different levels of signal-to-noise ratios,
SN, were generated. Each of the signals consists of 2000
points with a sampling frequency of 50 Hz (i.e.δt=0.02 s).
The group of signals can be expressed as

y(t) = A sin(2πfx t)+ GWN(0,1), (19)

where the peak frequency of the sinusoidsfx was always set
at 8 Hz and the term GWN(0,1) means a GWN with a zero
mean and unit variance.A is determined by the prescribed
SN such that SN=10 log10A

2. The wavelet coefficients were
calculated using the Fortran code downloaded from TC98’s
website and further adjusted according to Eq. (5). To concen-
trate on the significance test, only the wavelet scalogram of
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Fig. 1. Normalized wavelet power of a sinusoid with a GWN
(SN=3) at three instants and the corresponding 5% significance
level.

the central 600 points along the time axis was used (i.e. the
1400 points on both sides were not considered), in order not
to complicate the problem with the cone of influence (TC98).

Figure 1 shows three curves of the wavelet powers for fre-
quencies up to 12.5 Hz at three different times within the 600-
point sub-series (i.e. three vertical slices of the wavelet scalo-
gram). The SN of the sine wave was 3, a moderate signal-
to-noise ratio. It is evident that all the curves have a peak at
approximately 8 Hz, and all the peaks are well above the 5%
significance level. Other wavelet power values are below the
significance level. From this case we see that the significance
test has successfully distinguished the frequency component
at 8 Hz in the sinusoid from other randomly generated fluc-
tuations in the wavelet scalogram.

3.2 The sampling distribution of the wavelet power spec-
trum of a GWN

Unlike TC98’s global wavelet spectrum (Eq. 7), we define
the wavelet power spectrum as

T
2
(a) =

m
∑

i=1

|T (a, i)|2, (20)

which is simply the sum of the wavelet power over a given
time interval at a certain scalea. In Eq. (20),i denotes dif-
ferent times in the interval of summation (or integral). For
the convenience of discussion,|T (a, i)|2 is abbreviated as
|T |2i for a certain scalea. We would argue that the definition
given by Eq. (20) has an advantage over TC98’s definition
(Eq. 7) in that the summation in Eq. (20) has a direct contri-
bution to the total energy of the studied time series when a
further summation (or integral) in scale is taken (e.g. Addi-
son, 2002, p. 29). Therefore, the wavelet spectrum defined
through a summation over a time interval seems to be more

meaningful and straightforward than that defined through a
time averaging. In the following discussion, we proceed with
the definition given by Eq. (20). Since the two definitions are
only algebraically different by a factor, all results obtained in
this section are comparable with TC98’s.

First of all, based on the properties of theχ2
ν distribution

thatE[χ2
ν ]=ν and that Var[χ2

ν ]=2ν (e.g. Jenkins and Watts,
1968, p. 79), it is obvious that

E[T 2] =
1

2
δtσ 2(2m) = mδtσ 2. (21)

For anyi andj that are between 1 andm,

Cov[|T |2i , |T |2j ]=Cov[
∫ ∫

x(t)x(t ′)ψa,i(t
′)ψ∗

a,i(t)dtdt
′,

∫ ∫

x(t)x(t ′)ψa,j (t
′)ψ∗

a,j (t)dtdt
′]

=
∫ (4)

Cov[x(t)x(t ′), x(t ′′)x(t ′′′)]

ψa,i(t
′)ψ∗

a,i(t)ψa,j (t
′′′)ψ∗

a,j (t
′′)dt (4), (22)

where
∫ (4)[· · ·]dt (4) denotes a quadruple integral with re-

spective to the corresponding variables. Forx being a GWN,
we have

Cov[x(t)x(t ′), x(t ′′)x(t ′′′)] = E[x(t)x(t ′)x(t ′′)x(t ′′′)]
−E[x(t)x(t ′)]E[x(t ′′)x(t ′′′)], (23)

and, following Eq. (22), this leads to

Cov[|T |2i , |T |2j ] =
∫ (4)

E[x(t)x(t ′)x(t ′′)x(t ′′′)]

ψa,i(t
′)ψ∗

a,i(t)ψa,j (t
′′′)ψ∗

a,j (t
′′)dt (4) − δt2σ 4 (24)

(see Appendix C for more detail).
Based on the derivations in Appendix C, the quadruple

integral in Eq. (24) can be decomposed into three terms,
namely
∫ (4)

E[x(t)x(t ′)x(t ′′)x(t ′′′)]ψa,i(t ′)ψ∗
a,i(t)ψa,j

(t ′′′)ψ∗
a,j (t

′′)dt (4) = δt2σ 4(I1 + I2 + I3), (25)

where

I1 =
(∫

|ψa,b(t)|2dt
)2

= 1 (26)

(for normalized wavelets in each scale, Eq. (2)),

I2 = |
∫

ψa,i(t)ψa,j (t)dt |2, (27)

and

I3 = |
∫

ψa,i(t)ψ
∗
a,j (t)dt |

2. (28)

Ann. Geophys., 25, 2259–2269, 2007 www.ann-geophys.net/25/2259/2007/



Z. Ge: Significance tests for the wavelet power 2263

Consequently, the covariance of any two wavelet powers at
temporal locationsi and j is primarily determined by the
properties of the associated wavelets.

Substituting in the particular form of the Morlet wavelet,
the integral I2 and I3 can be further reduced (see Ap-
pendix C) to yield the following relation

Cov[|T |2i , |T |2j ]=δt
2σ 4

(

1+e−
1b2

2a2 −2ω2
0+e−

1b2

2a2

)

−δt2σ 4, (29)

with 1b denoting the temporal separation between the two
time indicesi andj , i.e.1b=|i−j |δt . Since the second ad-
ditive term on the right hand side of Eq. (29) is obviously a
small quantity compared with the third term (givenω0=6),
the second term is hence neglected to yield

Cov[|T |2i , |T |2j ] = δt2σ 4e
−1b2

2a2 . (30)

Particularly, wheni=j (i.e.1b=0), the covariance becomes
variance, and hence

Var[|T |2] = δt2σ 4. (31)

for any time indexi. Comparing Eqs. (30) and (31), we
deduce that, at a given scale, the covariance of the wavelet
power at different times decays exponentially with the in-
creasing temporal separation1b. The decay rate is dif-
ferent for different scales. The two equations also con-
stitute the temporalstructure of covariance of the wavelet
power. This is very similar to the reproducing kernel
K(a, t, a′, t ′)=

〈

ψa,t , ψa′,t ′
〉

defined by Mallat (1998, p. 79),
where〈· · ·〉 means inner product in theL2(R) space. Accord-
ing to Mallat,K is a measurement of the local redundancy
in the wavelet coefficient. In this sense, Eqs. (30) and (31)
characterize the local temporal redundancy of a higher-order
quantity, the wavelet power, for a GWN. Such redundancy is
responsible for the spurious spectral energy of a GWN. De-
tailed derivation is given in Appendix C.

With the expressions for the variance (Eq. 31) and the co-
variance (Eq. 30), we are ready to estimate the variance of

T
2
. Using Eq. (3.2.17) in Jenkins and Watts (1968, p. 73),

we have

Var[T 2] =
m

∑

i=1

Var[|T |2i ] +
m

∑

i=1,i 6=j

m
∑

j=1

Cov[|T |2i , |T |2j ],

and then

Var[T 2] = mδt2σ 4 +
m

∑

i=1,i 6=j

m
∑

j=1

Cov[|T |2i , |T |2j ]. (32)

Based on Eq. (C8),

m
∑

i=1,i 6=j

m
∑

j=1

Cov[|T |2i , |T |2j ] = 2Sδt2σ 4,

whereS is the sum of the series{Sk = (m− k)e
− (kδt)2

2a2 , (k =
1,2, · · · , m−1)}. The value ofS can be calculated numeri-
cally. More details and properties are given in Appendix C.
It therefore follows that

Var[T 2] = (m+ 2S)δt2σ 4. (33)

In summary, we have obtained the following statistical pa-
rameters for the wavelet power spectrum of a GWN:

E[T 2] = mδtσ 2

and

Var[T 2] = (m+ 2S)δt2σ 4.

Because of the fact thatT
2

is non-negative, we can follow
the procedure described in Jenkins and Watts (1968, p. 87)

to find an approximate distribution forT
2
. Specifically, we

assume thatT
2⇒γχ2

ν with two parametersγ andν to be de-
termined, such that the assumed expected value and variance

of T
2

areγ ν and 2γ 2ν, respectively. Matching the actual
and deduced expected values and variances, we obtain that

γ =
1

2
m∗δtσ 2 (34)

and

ν = 2
m

m∗ , (35)

wherem∗=1+2S/m. Consequently, the sampling distribu-
tion of the wavelet spectrum of a GWN is approximately

T
2

σ 2
⇒

1

2
m∗δtχ2

2m/m∗ (36)

when the Morlet wavelet is used. Based on this theo-
retical sampling distribution, a peak in the wavelet power
spectrum is considered to be significant (i.e. not caused
by pure randomness) with 1−α confidence if the normal-

ized peak value,T
2
/σ 2, is larger than the significance level

m∗δtχ2
2m/m∗(1−α)/2, while a peak is considered to be in-

significant (i.e. caused by randomness) with 1−α confidence
if otherwise. It also should be noted from their definitions
that the parametersm andm∗ are both dependent on the
scale, so that the significance levels for the wavelet power
spectrum is not constant over all scales as that of the wavelet
power.

Figure 2 shows a comparison of the significance levels for
the normalized wavelet spectrum developed in the present
work and those suggested by TC98 for differentα values.
The two sets of significance levels are in excellent agreement
for both cases ofm=40 andm=80, simply supporting the
above discussions. Good agreement was also achieved for a
variety of otherm values, while, for brevity, no more figures
are shown here. Figure 3 shows the 5% significance levels
for variousm ranging from 5 to 100 (see the figure caption).

www.ann-geophys.net/25/2259/2007/ Ann. Geophys., 25, 2259–2269, 2007
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Fig. 2. Significance levels of the normalized wavelet power spectra
for (a)m=40 and(b)m=80; the significance levels, from the top to
the bottom, are 1%, 5%, 10%, 15%, and 20%; red solid line: based
on Eq. (36); blue circle: according to TC98.
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Fig. 3. 5% significance levels of the normalized wavelet power
spectra for, from the top to the bottom,m=120, m=90, m=70,
m=50,m=25, andm=1 all based on Eq. (36).

Besides an obvious property that the significance level in-
creases as increasingm (the number of the points covered by
the integral or the summation), it also is evident that the sig-
nificance level approaches a level line asm decreases. When
m becomes 1, the significance level of the wavelet spectrum
should ideally become that of the wavelet power. As a matter
of fact, the 5% significance level form=1 was estimated to
be 0.0599 using Eq. (36), in excellent agreement again with
the theoretical value, 0.06, given by Eq. (18) and shown in
Fig. 1.

For the test signal given by Eq. (19) with a SN of 3,
three wavelet power spectra were obtained by integrating
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Fig. 4. Normalized wavelet power spectra of a sinusoid with a
GWN (SN=3) integrated overm=50 points starting from three in-
stants:b=150δt , b=300δt , andb=450δt ; dotted line: the corre-
sponding 5% significance level.
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Fig. 5. Normalized wavelet power spectra of a sinusoid with a
GWN (SN=−3) integrated overm=50 points starting from three
instants:b=150δt , b=300δt , andb=450δt ; dotted line: the corre-
sponding 5% significance level.

the wavelet power overm=50 points at three starting loca-
tions in the 600-point time interval:b=150δt , b=300δt , and
b=450δt , and were further normalized by their respective
variances,σ 2, in the time domain (Fig. 4). Because of the
high signal-to-noise ratio, the peaks at 8 Hz in all the three
spectra are well above the 5% significance level. It therefore
is inferred that these three peaks are all significant, or not
due to randomness. In comparison, a smaller peak is visible
at 2 Hz in the wavelet spectrum for the case ofb=300δt . This
peak is considered to be fortuitous (created by randomness)
because it is still below the local 5% significance level.
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Fig. 6. Normalized wavelet scalogram of an actual time series of
wave elevation: 12 contours (blue) for the wavelet scalogram and
two contours (red) for the 5% and 15% significance levels.

When the SN is reduced to−3, the wavelet spectra ob-
tained by integrating over the same three periods are shown
in Fig. 5. Owing to the overwhelming noise content, only the
wavelet spectrum for the case ofb=150δt has a significant
peak at 8 Hz. The peaks at the same frequency in the other
two spectra were completely contaminated by the noise.

4 Significance tests on actual observations

We go beyond the simulated signals in this section. When ac-
tual data are to be analysed, the theoretically meaningful 5%
probability may be too stringent. This is due to the fact that
the signal-to-noise ratio in naturally observed data is often
low if not negative. In such cases, the threshold significance
level can empirically be relaxed to 15% or even higher, de-
pending on the particular problems.

An actual data set is studied here as an example of appli-
cation in geophysics. The data set consists of a time series
of wave elevation recorded from the 3-m discus buoy 45011
of the NOAA National Data Buoy Center (NDBC), which
was deployed during the autumn of 1997 in nearshore east-
ern Lake Michigan of the United States. Specifically, the
buoy was at 10 m water depth at 43.02◦ N, 86.27◦ W, about
1.5 km southwest of Grand Haven, Michigan. The sampling
frequencyFs was approximately 1.70667 Hz. The detailed
structure of the buoy and the sampling processes are the same
as described by Ge and Liu (2007).

Figure 6 shows the normalized wavelet scalogram of the
wave elevation during the same period as stage I and stage
II in Ge and Liu (2007). There are 140 data points in this
period, which covers about 80 s. In Ge and Liu (2007), the
first half (40 s) of the period is referred to as stage I and the
second stage II. From the wavelet scalogram, we observed
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Fig. 7. Normalized wavelet power spectrum of the same wave ele-
vation time series as in Fig. 6 integrated overm=140 points and the
5% and 15% significance levels.

different patterns for the two stages. The spectral peak at
around 0.2 Hz was considerably enhanced during stage II,
while another peak at around 0.08 Hz disappeared in this
stage. Against the 5% and 15% significance levels, it is
clear that the major patterns we have observed are all signif-
icant. Particularly, it is noted that the broad peak at 0.08 Hz,
which extended across the entire stage I, should be insignifi-
cant if 95% confidence is required. Obviously, a higher sig-
nificance level, such as 15%, was adopted by Ge and Liu
(2007) in order not to overlook any physically meaningful
patterns (e.g. Fig. 5 of Ge and Liu, 2007). It also is noted
that, without significance tests, one would misinterpret the
peak at 0.25 Hz and approximately 11665 s, as well as the
large bump at around 0.3 Hz from 11 600 to 11 614 s, which
are most likely to be fortuitous.

The normalized wavelet power spectrum of the wave el-
evation is shown in Fig. 7 along with the levels for 5% and
15% of significance, respectively. For this particular case, the
integral was over the whole 140-point range, so thatm=140.
The peak at approximately 0.2 Hz is very conspicuous, while
another peak at about 0.08 Hz appears to be relatively small
and almost below the both significance levels. We hence in-
fer from Fig. 7 that the peak at 0.2 Hz is statistically signif-
icant with 95% confidence throughout the entire 140-point
period, whereas the peak at 0.08 Hz is not even significant
with 85% confidence. On the other hand, it should be noted
that these inferences are for the case ofm=140. The insignif-
icance of the peak at 0.08 Hz is due to the fact that the peak
is primarily confined in stage I. This means that, when the
wavelet spectrum is only estimated for stage I (m=70), the
peak at 0.08 Hz should become significant (Fig. 6).
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5 Further discussion

In the previous sections we have developed significance tests
for the wavelet power and the wavelet power spectrum. The
tests are against a particular background noise, a GWN. One
may further be concerned with the confidence interval (CI)
of the wavelet-based quantities, since, for ordinary statis-
tics, the CI can be easily obtained through similar derivations
as one does for significance tests. This essentially benefits
from the stationarity of the studied time series, whose statis-
tics can be completely determined by its lowest moments
(e.g. mean and variance). This, however, is not true for non-
stationary time series. Over a short period, the behaviour
of a non-stationary time series cannot be characterized in a
statistical sense, leaving its CI meaningless. As Qiu and Er
(1995) showed, the variance (and hence other higher-order
moments) of the wavelet power of a noise-contaminated sig-
nal depends on both the noise level and the signal itself. But
the signal part, which is often non-stationary, is what we do
not know. The expression for the CI should not be as simple
as, for example, Eq. (20) of TC98.

It also is clear that the wavelet family that is used for anal-
ysis is critical to the significance tests of, at least, the wavelet
power and power spectrum. The role of the wavelet family
is typically realized through the seriesSk and hencem∗ in
Eq. (36), and shown in Fig. 8. The above evidence is obvi-
ously contrary to TC98’s statement that the significance tests
“should not depend upon the wavelet function or upon the ac-
tual distribution of the time series, other than the assumption
of a background spectrum.”

Finally, it is important to point out that other factors, for
example, the edge effect (TC98) and the aliasing problem
(Jordan, Miksad, and Powers, 1997), also need be consid-
ered for proper significance tests. One should make sure that

the wavelet-based results are really free from such contam-
inations before proceeding to significance tests. Otherwise,
no statistical test is promised to be effective. These issues
are, however, beyond the scope of the present paper.

6 Conclusions

Significance tests cannot be omitted when statistical infer-
ences are to be drawn from a single realization (sample) of a
population. This certainly is true when one attempts to inter-
pret the wavelet-based statistical results of the studied non-
stationary process. The significance test answers the question
as to what part of the results may have been created by pure
randomness and what part represents true physics. TC98
accurately estimated the significance levels for the wavelet
power and power spectrum against a background white/red
noise. However, the significance levels were obtained em-
pirically through Monte Carlo simulations. Although nu-
merically accurate, the Monte Carlo simulations employed
in TC98 failed to disclose many statistical properties that are
interesting to users of the wavelet analysis.

Based on a rigorous statistical analysis, the present work
estimated the sampling distributions for the wavelet power
and the wavelet power spectrum of a GWN, through which
the significance tests for the two fundamental quantities of
the wavelet analysis were established. It was found that the
sampling distribution of the wavelet power of a GWN pro-
cess is identical to TC98’s form adjusted byδt . The sig-
nificance levels of the wavelet power spectrum of a GWN
are numerically in excellent agreement with TC98’s results,
while we believe that the expressions given in the present
work are more convenient and reflect more statistical prop-
erties. We thus recommend that TC98’s expressions should
be replaced by their corresponding ones developed here. It
also was demonstrated that the sampling distributions, and
hence the significance tests, are highly related to the partic-
ular wavelet family one chooses to use. For other wavelet
functions than the Morlet wavelet, neither may the sampling
distribution of the wavelet power of a GWN be aχ2

2 dis-
tribution (see Eq. 16), nor will the sampling distribution of
the wavelet spectrum take the same form simply becausem∗

in Eq. (36) varies with different wavelet families. Another
important property concerns the structure of covariance of
the wavelet power of a GWN at different temporal locations,
as described by Eqs. (30) and (31). This property bears re-
semblance to the reproducing kernel, which describes the re-
dundancy in the wavelet coefficient. These findings disagree
with TC98’s statements that the significance tests should be
independent of the wavelet family and the actual distribution
of the studied time series.

The significance tests developed in the present work were
demonstrated on both simulated and naturally observed time
series. The simulated noisy sinusoids illustrated the fact that
pure noise may create false peaks everywhere. For the actual
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wave elevation time series observed from a buoy deployed on
Lake Michigan, the significance tests clearly indicated dif-
ferent significance levels for different peaks, and helped to
avoid misinterpretation of two fortuitous peaks in the wavelet
scalogram. They are all examples for the necessity and ef-
fectiveness of the significance tests proposed in the present
work.

The significance tests for other fundamental quantities in
the wavelet analysis, such as the wavelet cross-spectrum, co-
herency, and the higher-order moments, will be discussed in
subsequent works.

Appendix A

Adjustment for the results in TC98

There are more than one approaches to prove that
|T (a, b)|2=δt |Wn(a)|2 (Eq. 5). For example, using

TC98’s Eq. (8),ψ
[

(n′−n)δt
a

]

=
√
δt√
a
ψ0

[

(n′−n)δt
a

]

, we have

ψ∗
[

(n′−n)δt
a

]

=
√
δt√
a
ψ∗

0

[

(n′−n)δt
a

]

, where ψ0 denotes the

mother wavelet as in TC98’s notation. Hence, TC98’s def-
inition for the wavelet coefficient, Eq. (4), becomes

Wn(a) =
N−1
∑

n′=0

xn′

√
δt

√
a
ψ∗

0

[

(n′ − n)δt

a

]

. (A1)

On the other hand, the discrete form of Eq. (3), the standard
definition for the wavelet coefficients in the literature, is

Tn(a) =
N−1
∑

n′=0

xn′
δt
√
a
ψ∗

0

[

(n′ − n)δt

a

]

. (A2)

A comparison of the two discrete forms, Eqs. (4) and (A2),
immediately leads to

Tn(a) =
√
δtWn(a), (A3)

and hence Eq. (5). This means that the wavelet coefficients
and the higher-order quantities defined in TC98 or calculated
using their source code should be adjusted accordingly to
reconcile with the results with standard definitions, as those
in the present work. The adjustment relation, Eq. (5), was
also verified numerically by comparing the results given by
TC98’s Fortran code and their corresponding analytical re-
sults for a set of test signals.

Appendix B

Variance of the real and imaginary parts of the wavelet
coefficient of a GWN

Equation (12) states that Var[Re[T ]] =
∫ ∫

E[x(t)x(t ′)]Re[ψ∗
a,b(t)]Re[ψ

∗
a,b(t

′)]dtdt ′. This re-
lation can be further simplified making use of the property

of the GWNx(t). The discrete form for Eq. (12) is

Var[Re[T ]] =
∑

i

∑

j

E[x(ti)x(tj )]Re[ψ∗
a,b(ti)]Re[ψ

∗
a,b(tj )]δt

2,

and equivalently,

Var[Re[T ]] =
δt2

∑

i

E[x(ti)x(ti)]Re[ψ∗
a,b(ti)]Re[ψ

∗
a,b(ti)].

Therefore

Var[Re[T ]] = δtσ 2
∑

i

Re2[ψ∗
a,b(ti)]δt. (B1)

This obviously is the discrete form for Eq. (13). The variance
of the imaginary part of the wavelet coefficient can be derived
similarly.

Appendix C

More detailed derivations for the wavelet power
spectrum of a GWN

Since

Cov[x(t)x(t ′), x(t ′′)x(t ′′′)] = E
[

(x(t)x(t ′)−
E[x(t)x(t ′)])(x(t ′′)x(t ′′′)− E[x(t ′′)x(t ′′′)]) ] ,

this further results in

Cov[x(t)x(t ′), x(t ′′)x(t ′′′)] = E[x(t)x(t ′)x(t ′′)x(t ′′′)]
−E[x(t)x(t ′)]E[x(t ′′)x(t ′′′)]

(Eq. 23) after some algebra. The quadruple integral of the
termE[x(t)x(t ′)]E[x(t ′′)x(t ′′′)] is
∫ (4)

E[x(t)x(t ′)]E[x(t ′′)x(t ′′′)]ψa,i(t ′)ψ∗
a,i(t)ψa,j

(t ′′′)ψ∗
a,j (t

′′)dt (4) = δt2σ 4 (C1)

based on the properties ofx(t) following a similar procedure
as in Appendix B. Equation (C1) explains the last term on
the right hand side of Eq. (24).

According to Jenkins and Watts (1968, p. 206),

E[x(t)x(t ′)x(t ′′)x(t ′′′)] = σ 4 [ δ(t ′ − t)δ(t ′′′ − t ′′)

+δ(t ′′ − t)δ(t ′′′ − t ′)+ δ(t ′′′ − t)δ(t ′′ − t ′) ] (C2)

for x(t) being a GWN and hence theκ4 term is zero (Jenkins
and Watts, 1968, p. 175). Therefore,
∫ (4)

E[x(t)x(t ′)x(t ′′)x(t ′′′)]ψa,i(t ′)ψ∗
a,i(t)ψa,j (t

′′′)ψ∗
a,j (t

′′)dt (4)

= δt2σ 4
∫ (4) 1

δt2
[ δ(t ′ − t)δ(t ′′′ − t ′′)

+δ(t ′′ − t)δ(t ′′′ − t ′)+ δ(t ′′′ − t)δ(t ′′ − t ′) ]
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ψa,i(t
′)ψ∗

a,i(t)ψa,j (t
′′′)ψ∗

a,j (t
′′)dt (4).

Now the three terms in the integrand are evaluated separately.

I1 =
1

δt2

∫ (4)

δ(t ′ − t)δ(t ′′′ − t ′′)ψa,i(t
′)ψ∗

a,i(t)ψa,j

(t ′′′)ψ∗
a,j (t

′′)dt (4) =
∫ ∫

|ψa,i(t)|2|ψa,j (t ′′)|2dtdt ′′

=
(∫

|ψa,b(t)|2dt
)2

= 1

for such normalized wavelets as in Eq. (2). Similarly,

I2=
1

δt2

∫ (4)

δ(t ′′ − t)δ(t ′′′ − t ′)ψa,i(t
′)ψ∗

a,i(t)ψa,j

(t ′′′)ψ∗
a,j (t

′′)dt (4)=
∫

ψ∗
a,i(t)ψ

∗
a,j (t)dt

∫

ψa,i(t)ψa,j (t)dt

= |
∫

ψa,i(t)ψa,j (t)dt |2,

and

I3=
1

δt2

∫ (4)

δ(t ′′′ − t)δ(t ′′ − t ′)ψa,i(t
′)ψ∗

a,i(t)ψa,j

(t ′′′)ψ∗
a,j (t

′′)dt (4)=
∫ ∫

ψa,i(t
′)ψ∗

a,i(t)ψa,j (t)ψ
∗
a,j (t

′)dtdt ′

=
∫

ψa,i(t)ψ
∗
a,j (t)dt

∫

ψ∗
a,i(t)ψa,j (t)dt

= |
∫

ψa,i(t)ψ
∗
a,j (t)dt |

2.

Substituting the Morlet wavelet into the above expres-
sions, we further simplifiedI2 andI3 to be

I2 = e
−1b2

2a2 −2ω2
0 (C3)

and

I3 = e
−1b2

2a2 , (C4)

where1b=|i−j |δt for the separation between the time in-
dicesi andj . Consequently, we obtained Eq. (29).

Next step here is to simplify the summation
∑m
i=1,i 6=j

∑m
j=1 Cov[|T |2i , |T |2j ] as in Eq. (32). By

enumerating all possible separations fori andj , we have

m
∑

i=1,i 6=j

m
∑

j=1

Cov[|T |2i , |T |2j ]

= 2{ Cov[|T |2i , |T |2j ]|i<j,1b=δt + Cov[|T |2i , |T |2j ]|i<j,1b=2δt

+ · · · + Cov[|T |2i , |T |2j ]|i<j,1b=(m−1)δt } (C5)

= 2{ (m− 1)e
− δt2

2a2 + (m− 2)e
− (2δt)2

2a2 + · · ·

+1 · e−
[(m−1)δt]2

2a2 } δt2σ 4 (C6)

= 2δt2σ 4
m−1
∑

k=1

(m− k)e
− (kδt)2

2a2 , (C7)

and finally
m

∑

i=1,i 6=j

m
∑

j=1

Cov[|T |2i , |T |2j ] = 2δt2σ 4S, (C8)

where

S =
m−1
∑

k=1

Sk =
m−1
∑

k=1

(m− k)e
− (kδt)2

2a2 . (C9)

It is important to note here that theSk series in Eq. (C9) is
not convergent but dependent on the parameterm and the
particular wavelet function. The best way to find the value
of S seems to be to write a programme and do the summa-
tion in Eq. (C9) numerically. Moreover, each term in the
Sk series has an exponentially decaying trend whose decay
rate is determined by the temporal separation of the two lo-
cations,1b or kδt . It is also noted that theSk series is
scale-dependent, and, more rigorously, the series should be
denoted asSk(a) orSk(f ). Figure 8 shows the distribution of
the series{Sk(f ), k=1,2, · · · , m−1} for the case ofm=40.
For different frequencies (scales), the series are different.
Hence the 25 curves in Fig. 8 reveal the scale-dependence of
Sk(f ). It is now evident that at very low frequencies such as
1 HzSk does not decay fast with increasing temporal separa-
tion. In this case no convergence could be expected through-
out the 39 terms. This is a natural result of the large tem-
poral support of the wavelet at large scales. In contrast, at a
much higher frequency such as 25 Hz,Sk decays to near zero
at k=7, implying fast decorrelation of the wavelets at small
scales.

After collecting involved terms, we obtain Eq. (33):

Var[T 2]=(m+2S)δt2σ 4.
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