N

N

Significance tests for the wavelet power and the wavelet
power spectrum
7. Ge

» To cite this version:

Z. Ge. Significance tests for the wavelet power and the wavelet power spectrum. Annales Geophysicae,
2007, 25 (11), pp.2259-2269. hal-00318404

HAL Id: hal-00318404
https://hal.science/hal-00318404
Submitted on 18 Jun 2008

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00318404
https://hal.archives-ouvertes.fr

Ann. Geophys., 25, 2259-2269, 2007 _ "*
www.ann-geophys.net/25/2259/2007/ G Ann_ales
© European Geosciences Union 2007 Geophysicae

Significance tests for the wavelet power and the wavelet power
spectrum

Z.Ge

Research associate of the National Research Council; Ecosystems Research Division, NERL, USEPA, 960 College Station
Road, Athens, Georgia 30605, USA

Received: 28 June 2007 — Revised: 18 October 2007 — Accepted: 21 November 2007 — Published: 29 November 2007

Abstract. Significance tests usually address the issue howl Introduction
to distinguish statistically significant results from those due

to pure randomness when only one sample of the populationfter two decades of fast development, the wavelet analy-
is studied. This issue is also important when the results Obsis has become a powerfu| and effective tool for ana'ysing
tained using the wavelet analysis are to be interpreted. Tomgnlinear and especially nonstationary time series in many
rence and Compo (1998) is one of the earliest works that hagisciplines (Addison, 2002). In particular, its application
systematically discussed this problem. Their results, how-n geophysics has made great contribution to the advance-
ever, were based on Monte Carlo simulations, and hencement of the theory and the practice of the wavelet analysis
failed to unveil many interesting and important properties of (e . Goupilland et al., 1984; Foufoula-Georgiou and Ku-
the wavelet analySiS. In the presentwork, the Sampling distrimar, 1994) To date, the imp'ementation of the wavelet
butions of the wavelet power and power spectrum of a Gausanalysis has become easy for many researchers, owing to
sian White Noise (GWN) were derived in a rigorous statisti- the work of Torrence and Compo (1998) (referred to TC98
cal frameWOfk, thrOUgh which the Significance tests for thes%ereafter). In this Wide]y_acknow|edged paper, which has
two fundamental quantities in the wavelet anaIySiS Were €Sheen cited over 1000 times as of June of 2007 (|S| Web
tablished. It was found that the results given by Torrenceof know|edge)7 many practical issues for the wavelet anal-
and Compo (1998) are numerically accurate when adjustegsis are discussed, accompanied by source codes in Fortran
by a factor of the sampling period, while some of their state-and Matlab posted on their website (http://atoc.colorado.edu/
ments require reassessment. More importantly, the samplingasearch/wavelets/). Moreover, TC98 is one of the earliest
distribution of the wavelet power spectrum of a GWN was works that gives a guide for conducting significance tests for
found to be highly dependent on the local covariance structhe wavelet power, auto-, and cross-spectrum, which is perti-
ture of the wavelets, a fact that makes the significance levelgent to the present work.

intimately related to the specific wavelet family. In addition The significance test for the wavelet analysis is undoubt-

to simulated signals, the significance tests developed in thi%dly important due to the simple fact that there always seem

work were demonstrated on an actual wave elevation timetO be some patterns (e.g. peaks) in the wavelet scalogram
series observed from a buoy on Lake Michigan. In this SIM-aven if the analysed signal is pure noise. In this case, a bot-

ple application in geophysics, we showed how proper Slgnnc'tom line must be drawn below which no conclusion can be

icance tests helped to sort out ph_ysically meaningful Peak%ade based on the results. This issue should receive espe-
from those created by random noise. The derivations in thEE:ial attention when the continuous wavelet transform (CWT)

prese.n't work can be readily extended to other yyavelet—baseg employed, because the CWT may introduce considerable
guantities or analyses using other wavelet families. redundancy in the results (Mallat, 1998, p. 79). However,

Keywords. Meteorology and atmospheric dynamics (Instru- the significance levels established in TC98 were based on a
ments and techniques) — Oceanography: physical (Surfac%e”es of Monte Carlo simulations instead of reasoning in a

waves and tides) — General or miscellaneous (Techniques al5Lgorous statistical framework. Although simple and straight-
plicable in three of more fields) forward, their approach failed to disclose many interesting

and essential properties that could have been shown through
an analytical approach. This paper aims to pick up what they
Correspondenceto: Z. Ge have left behind, and, furthermore, to show the necessity
(ge.zhongfu@epa.gov) and effectiveness of proper significance tests. Significance
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2260 Z. Ge: Significance tests for the wavelet power

levels for the wavelet power and the wavelet power spectrunmMore explanations are given in Appendix A. This inconsis-
are proposed in the following sections of the present papertency actually stems from the different factor TC98 used to
Besides the simulated noisy sine signals, actually observedormalize the wavelets for a constant energy over all scales.
wave elevation on Lake Michigan of the United States wasSpecifically, the normalization factor TC98 used.i$¢/a
used as a demonstration for the proposed significance testahile in the standard form, Eqg. (2), the corresponding term
Although, for brevity, only CWT using the Morlet waveletis is 1/./a. Although TC98's normalization of wavelets always
considered in the present paper, the methodologies describguteserves the dimension @f, 5(r) to be the same as that
here can be readily extended to the discrete wavelet transsf the mother wavelet and hendg, (a) andx(z) will have
form and the wavelet analysis based on other wavelet famithe same dimension for nondimensional wavelets (Eq. 4),
lies, such as the Mexican hat and the derivative of a Gaussiamost works in the literature prefer the standard form, Eqg. (2),
(DOG) wavelets. probably because of its mathematical elegance. Compared
with Eq. (2), the inclusion 08¢ in a general formula of the
wavelet analysis makes the formula dependent on the partic-
ular sampling procedure. We will adopt the standard form,
Eqg. (2), in the remainder of the paper, yet keeping in mind
thatT (a, b) andW,(a) do have different dimensions, which
however does not affect the theories or numerical results of
the wavelet analysis.

Based on Monte Carlo simulations, they found that the
wavelet power (the squared modulus of the wavelet coef-
ficient, referred to as the local wavelet power spectrum in
whereawyg is set equal to 6.0 to approximately satisfy the ad- TC98) of a noise signal normalized by the signal variance in
missibility condition, and is used as a more self-explanatory the time domaing?, has aX22 distribution:
notation for time tham in TC98. Then the family of the Mor- 2 1
let waveletsy, () can be generated by replacing the time Wal@)1” = ZPix2, (6)

a, 2

2
variable in Eq. (1) with(t—b)/a, whereb denotes the shift o ) 2 )
in time andz is the scale variable: where P, is the mean spectrum of the background noise at

1 b the Fourier frequency, and the symbok means “is dis-
Vap(t) = —W(t;)- 2) tributed as”. In the case of significance tests for wavelet-
JVa a based quantities against a Gaussian White Noise (G\EN),

The factor ¥/ is used to assure equal energy for wavelets!S identically 1 for all frequencies (or scales). Hereafter, the

at different scales (Addison, 2002, p. 65). factor P, will not be included in equations.
The wavelet coefficient,T(a, b), obtained from the The global wavelet spectrum, which is defined as the time

wavelet transform of a real function(r) is usually defined ~average over a series of wavelet powers, can be expressed as
as

2 Significance tests developed by TC98

To aid those readers who are not familiar with TC98, we give
a brief introduction of their theories that are relevant to the
present work.

The Morlet (mother) wavelet is typically defined as

2

V(r) = n Y4l 0e™ 7 (1)

s 1 N1
% W@ = 3 W@, (7)
T(a,b) = / x(OY, ,(Odt 3) n=0

- whereN is the number of the data points in the time domain
(e.g. Addison, 2002, p. 13). Here- -)* represents the com- that are involved in the wavelet spectrum. Again, based on
plex conjugate of a given quantity. Hereafter, all integralsthe Monte Carlo simulations, the 5% significance level of the
will be abbreviated ag if the integral limits are from-oo to normalized (byo2) global wavelet spectrum of a GWN can

oo. In a discrete form, TC98 gives an alternative expressionbe empirically fitted by a chi-square curve,?/v, where the

for the wavelet coefficient at time indexand scale:: degree-of-freedomy can be numerically estimated through
N-1 o — )5t the relation
Wi(a) = Z X [—} ) (4) na8t\ 2
n’=0 a v=2/1+ (u_) (8)
ya

wherex, is the sampled series #f¢), N denotes the length . _
n P 0 g (see TC98 for more details). It is important to note that al-

of the studied time series, aidd denotes the sampling pe- ih h the 5% sianifi level f ith a chi
riod. Nevertheless, this expression is inconsistent with the ougn the 5% signiticance level conforms with a chi-square

standard form such as Eq. (3). We found that TC98's wavelefrend it is difficult to state that the sampling distribution of the
coefficient,W, (a), should be multiplied with square-root of wavelet spectrum of a GWN is really)q,?/v. Italso is un-

: ; . lear whether the empirical relations for the 5% significance
the sampling periodsz, to be equal to the standardly defined © o
T(a.b) gr g period; d y level such as Eq. (8) can be extended for other significance

levels or other integration ranges. Obviously, such deficiency
|T (a, b)|2 = §t|W, (a)|2. (5) stems from the lack of rigorous statistical reasoning.
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3 Significance tests for the wavelet scalogram and and
power spectrum

var[Im[T]] = §to? / Im?[y} ,(D]dt. (14)

As TC98 points out, a significance test should have a spe-

cific background distribution presumed. In the present work,Equations (11)—(14) implies that at a certain point in the

we use a GWN process to establish the null hypothesistime-scale domaini, b), the real and imaginary parts of the

so that the significance test determines on what basis onwavelet coefficient of a GWN are both zero-mean random

should reject the null hypothesis and infer that the obtainedvariables and are independent of each other. In particular, we

wavelet-based results are not due to white noise. In thean show that, for the Morlet wavelet,

cases where the null hypothesis is established based on 1

red noise, the analysis here can be readily adapted. In7 Rez[l/fa*,b(t)]dt =/1m2[1/f;‘,,,(t)]dt =3 (15)

the following discussions, the GWN is simply expressed

as x(t) which has a zero mearE(x(z)]=0) and its auto- and hence Egs. (13) and (14) become

covariance can be expressed with a Kronecker delta function, 1

Covix (1), x(t")]=8(t—t")o? (e.g. Jenkins and Watts, 1968, Var[Re[T]] = Var[Im[T]] = Eamz. (16)

. 225).
P ) Therefore, only for the Morlet wavelet,

3.1 The sampling distribution of the wavelet power of a 2 2 2
GWN IT|  Re“[T] Im?[T] 5

= 17
8to2/2  Var[Re[T]] = Var[Im[T]] = X2 A7
2 . .
The wavelet pqwe|rT| (t_he sga_lle and time variablesandb which leads to
have been omitted for simplicity) equahzz[T] + Im?[T],
where Ref[---] and Im][- --] denote the real and imaginary |72 }5f02)(22~ (18)
parts, respectively, of a complex number. Using Eq. (3), we 2
have

Consequently, the wavelet power hasx% distribution

_ « only when the wavelet family used is the Morlet wavelet to
RelT1= /x(t)Re[wa’b(t)]dt ©) satisfy the equal-variance condition in Eq. (16). For other
and wavelet families, the relation (18) might approximately hold

but not rigorously. This property was overlooked by TC98.
Im[T] = fx([)lm[‘ﬁ:b([)]dt~ (10) _Using Eq. (5) fo_r adjustment we obtajiiv, (a)|2/02;>%_)§22,
' in agreement with TC98'’s result, Eq. (6). The significance
It is evident that bothRe[T] and Im[T] are normally dis- testcan be conducted as follows. If the normalized wavelet
tributed due to the Gaussianity oft). power,|T|?/02, is less than the value st x2(1 — &) with
Noting that the wavelets are all deterministic and hence being the prescribed significance level such as 0.01, 0.05,
can be moved out of the operators for random variablesr 0.1, we accept the null hypothesis that this wavelet power
such as the expectation and the covariance, we simply havealue is only caused by randomness (i.e. a GWN). Other-

E[Re[T]]=E[Im[T]]=0 and wise, the null hypothesis is rejected with a confidence level
of 1—«, and we infer that the wavelet power is significantly
CoV[Re[T], Im[T]] = Cov[/x(t)Re[w;"b(t)]dt, larger than those which could be created by randomness.
Therefore, it reflects real physical properties of the studied
f x(l)lm[gﬁcf b(t)]dt] t|me series. ) -
' To demonstrate the significance test for the wavelet power,

) ) ) sine signals with different levels of signal-to-noise ratios,
=//C0V[x(f)’ x()RelY, , O 1mlY, ,(t)1dtdt’=0(11) SN, were generated. Each of the signals consists of 2000
points with a sampling frequency of 50 Hz (i&=0.02 s).

for 41, Furthermore, it can be verified that The group of signals can be expressed as
CoviRe[T], Im[T]]=0 for v, (r) being the Morlet
wavelets even if=¢". Because of the zero-mean property, Y1) = Asin@2x fx1) + GWN(O, 1), (19)
Var[Re[T]] = E[REA[T]] = where the peak frequency of the sinusojisvas always set
at 8 Hz and the term GWN(0,1) means a GWN with a zero
//E[X(t)x(t/)]Re[W;k,b(t)]Re[lﬁ;,h(t/)]dldl/- (12)  mean and unit varianced is determined by the prescribed
) . . SN such that S&10 log;; A2. The wavelet coefficients were
Based on the results in Appendix B, it follows that calculated using the Fortran code downloaded from TC98's
s P website and further adjusted according to Eq. (5). To concen-
Var[Re[T]] = éto /Re [Wa ., (O]dr (13)  trate on the significance test, only the wavelet scalogram of

www.ann-geophys.net/25/2259/2007/ Ann. Geophys., 25, 2259-2269, 2007



2262 Z. Ge: Significance tests for the wavelet power

—mson meaningful and straightforward than that defined through a
onal | b=3008t ~ i time averaging. In the following discussion, we proceed with
T oot somificance level the definition given by Eq. (20). Since the two definitions are
\ only algebraically different by a factor, all results obtained in
this section are comparable with TC98's.
First of all, based on the properties of th¢ distribution
that E[x2]=v and that Vafx2]=2v (e.g. Jenkins and Watts,

1968, p. 79), itis obvious that

variance (62)

E[T?] = %Staz(Zm) — méto?. (1)

For anyi and; that are between 1 and,

CoMlIT 2, 1T 21=Covl f f O Wi (VW (Odrdr

freq (Hz)

/ / x(Ox (A a,j ()Y ;(0drdr']
Fig. 1. Normalized wavelet power of a sinusoid with a GWN
(SN=3) at three instants and the corresponding 5% significance

(4
level — [ covxx(t). x(")x ("]

the central 600 points along the time axis was used (i.e. the Vi (Vi OV ")y ;("dr®, (22)
1400 points on both sides were not considered), in order not @ @ i )
to complicate the problem with the cone of influence (TC9g). Where /[ - 1di™ denotes a quadruple integral with re-

Figure 1 shows three curves of the wavelet powers for fre-SPECtive to the corresponding variables. kdreing a GWN,
quencies up to 12.5 Hz at three different times within the 600-We have
point sub-series (i.e. thrge vertical slices of the wavelet 3_0a|°Cov[x Ox ), x()x(t")] = Elx@O)xt)xt")x ()]
gram). The SN of the sine wave was 3, a moderate signal- , o
to-noise ratio. It is evident that all the curves have a peak af” Z X (DX (OIELx()x )], (23)
approximately 8 Hz, and all the peaks are well above the 5%,nq, following Eq. (22), this leads to
significance level. Other wavelet power values are below the @
significance level. From this case we see that the significanc 2 2 e
test has successfully distinguished the frequency componen OMITI7 IT15] = f Elx)x(@)x(tDx (D]
at 8.Hz in the sinusoid from other randomly generated ﬂuc'l/fa,i(t’)lﬁ;,-(t)wa,j(t"’)t/f;’j(t”)dt(4) _ 5264 (24)
tuations in the wavelet scalogram.

(see Appendix C for more detail).
3.2 The sampling distribution of the wavelet power spec- Based on the derivations in Appendix C, the quadruple
trum of a GWN integral in Eq. (24) can be decomposed into three terms,

. _namely
Unlike TC98's global wavelet spectrum (Eq. 7), we define

the wavelet power spectrum as

4
/ E[x()x (@) x(t")x ") Wai (VY ;) V.
m
T(a) = Z T (a,i)?, 20) "y ;"dt® = 8120 (I + I + I3), (25)
i=1
which is simply the sum of the wavelet power over a given where
time interval at a certain scale In Eq. (20),; denotes dif- 2 2
ferent times in the interval of summation (or integral). For h= (f Va.b ()] dt) =1
the convenience of discussiolf; (a, /)| is abbreviated as . )
|T|? for a certain scale. We would argue that the definition (for normalized wavelets in each scale, Eq. (2)),
given by Eq. (20) has an advantage over TC98'’s definition
(Eq. 7) in that the summation in Eq. (20) has a direct contri-/2 = I/lﬁa,i(t)lﬂa,j(f)dﬂz» (27)
bution to the total energy of the studied time series when a
further summation (or integral) in scale is taken (e.g. Addi-and
son, 2002, p. 29). Therefore, the wavelet spectrum defined . 2
through a summation over a time interval seems to be mord3 = |/%J(Z)¢a,j(t)dt| : (28)

(26)

Ann. Geophys., 25, 2259-2269, 2007 www.ann-geophys.net/25/2259/2007/
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o2
Consequently, the covariance of any two wavelet powers afyheres is the sum of the serigs, = (m — k)e 22 , (k =

temporal locations and j is primarily determined by the 1,2,---,m—1)}. The value ofS can be calculated numeri-

properties of the associated wavelets. cally. More details and properties are given in Appendix C.
Substituting in the particular form of the Morlet wavelet, |t therefore follows that

the integral I and I3 can be further reduced (see Ap- . 5
pendix C) to yield the following relation Var[T ] = (m + 25)8t%c ™. (33)

) o o4 a2 0 a2 24 In summary, we have obtained the following statistical pa-
CoM|T|;, IT|j]=0t" (1+6’ a2 "0+ 2"2) —6t%0”, (29)  rameters for the wavelet power spectrum of a GWN:

with Ab denoting the temporal separation between the ton[Tz] = mbto?

time indicesi andj, i.e. Ab=|i—j|5t. Since the second ad-

ditive term on the right hand side of Eq. (29) is obviously a and

small quantity compared with the third term (givep=6), Var[Tz] = (m + 29)8t%0%.

the second term is hence neglected to yield _2

Because of the fact th&t™ is non-negative, we can follow
the procedure described in Jenkins and Watts (1968, p. 87)

to find an approximate distribution o Specifically, we

Particularly, when=j (i.e. Ab=0), the covariance becomes zssume thafzinVZ with two parameterg andv to be de-
variance, and hence termined, such that the assumed expected value and variance

of T2 areyv and 2/°v, respectively. Matching the actual

Ab2
CoM|T 2, T 2] = 8120 27 | (30)

2 2 4
Varl|T|7] = 60 (31) and deduced expected values and variances, we obtain that
for any time indexi. Comparing Egs. (30) and (31), we 1

deduce that, at a given scale, the covariance of the wavelet = 5 *sto? (34)
power at different times decays exponentially with the in-

creasing temporal separatiohb. The decay rate is dif- and

ferent for different scales. The two equations also con-, — 2™ (35)
stitute the temporadtructure of covariance of the wavelet m*’

power. This is very similar to the reproducing kernel wherem*=1+2S/m. Consequently, the sampling distribu-
K(a,t,a',1")=(Vas, Yo ») defined by Mallat (1998, p. 79),  tion of the wavelet spectrum of a GWN is approximately
where(- - -) means inner product in the?(R) space. Accord-
ing to Mallat, K is a measurement of the local redundancy T 1m*5t (36)
in the wavelet coefficient. In this sense, Egs. (30) and (31)o 2 Xan
characterize the local temporal redundancy of a higher- Orde{}vhen the Morlet wavelet is used.
quantity, the wavelet power, for a GWN. Such redundancy is
responsible for the spurious spectral energy of a GWN. De
tailed derivation is given in Appendix C.

With the expressions for the variance (Eq. 31) and the co-
varrance (Eg. 30), we are ready to estimate the variance o

— =

Based on this theo-
retical sampling distribution, a peak in the wavelet power
spectrum is considered to be significant (i.e. not caused
by pure randomness) with—x confidence if the normal-
rzed peak valueT’ /02 is larger than the significance level

tme n(1—)/2, while a peak is considered to be in-
7. Using Eq. (3.2.17) in Jenkins and Watts (1968, p. 73), srgnlflcant (i.e. caused by randomness) withwdconfidence

we have if otherwise. It also should be noted from their definitions
m m om that the parametera and m* are both dependent on the
VarT’] = dovarl|TIZ1+ > ) CoM|TIZ, ITIA, scale, so that the significance levels for the wavelet power
i=1 i=Li#j j=1 spectrum is not constant over all scales as that of the wavelet
power.
and then Figure 2 shows a comparison of the significance levels for
mom the normalized wavelet spectrum developed in the present
Var[TZ] = mét2c* + Z ZCOV['TL'Z’ |T|3]. (32)  work and those suggested by TC98 for differenvalues.
i=Litj j=1 ‘ The two sets of significance levels are in excellent agreement
for both cases ofn=40 andm=80, simply supporting the
Based on Eq. (C8), above discussions. Good agreement was also achieved for a
variety of othemn values, while, for brevity, no more figures

i ov[|T|2, |T|§] = 2581204, are shewn here. _Figure 3 shows the 5% significance_levels
for variousm ranging from 5 to 100 (see the figure caption).

i=Lli#jj

i Ms
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Fig. 2. Significance levels of the normalized wavelet power spectra
for (a) m=40 and(b) m=80; the significance levels, from the top to
the bottom, are 1%, 5%, 10%, 15%, and 20%; red solid line: base
on Eq. (36); blue circle: according to TC98.

Fig. 4. Normalized wavelet power spectra of a sinusoid with a
OIGWN (SN=3) integrated overn=50 points starting from three in-
stants: b=1505¢, b=3005¢, and b=450¢; dotted line: the corre-
sponding 5% significance level.

4

T
— b=1508t
— b=3008t
351 — b=4505t [

w

N
o
T

variance (cz)
wavelet power spectrum (02)
~

/ 0.0599 (m=1)

0 2 4

6
freq (Hz)

6
freq (Hz)

Fig. 3. 5% significance levels of the normalized wavelet power Fig. 5. Normalized wavelet power spectra of a sinusoid with a

spectra for, from the top to the bottom=120, m=90, m=70,  GwN (SN=—3) integrated ovem=50 points starting from three

m=50,m=25, andn=1 all based on Eq. (36). instants:»b=1505¢, b=3005¢, andb=4505¢; dotted line: the corre-
sponding 5% significance level.

Besides an obvious property that the significance level in-
creases as increasing(the number of the points covered by the wavelet power over=50 points at three starting loca-
the integral or the summation), it also is evident that the sig-tions in the 600-point time intervali=150¢, b=3005¢, and
nificance level approaches a level linenaslecreases. When p=4505¢, and were further normalized by their respective
m becomes 1, the significance level of the wavelet spectrunvariancesg?, in the time domain (Fig. 4). Because of the
should ideally become that of the wavelet power. As a mattehigh signal-to-noise ratio, the peaks at 8 Hz in all the three
of fact, the 5% significance level fat=1 was estimated to  spectra are well above the 5% significance level. It therefore
be 0.0599 using Eq. (36), in excellent agreement again withis inferred that these three peaks are all significant, or not
the theoretical value, 0.06, given by Eq. (18) and shown indue to randomness. In comparison, a smaller peak is visible
Fig. 1. at 2 Hz in the wavelet spectrum for the caséef3005¢. This

For the test signal given by Eqg. (19) with a SN of 3, peak is considered to be fortuitous (created by randomness)
three wavelet power spectra were obtained by integratingoecause it is still below the local 5% significance level.

Ann. Geophys., 25, 2259-2269, 2007 www.ann-geophys.net/25/2259/2007/
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Fig. 6. Normalized wavelet scalogram of an actual time series of Fig. 7. Normalized wavelet power spectrum of the same wave ele-
wave elevation: 12 contours (blue) for the wavelet scalogram andvation time series as in Fig. 6 integrated ovet140 points and the
two contours (red) for the 5% and 15% significance levels. 5% and 15% significance levels.

When the SN is reduced te3, the wavelet spectra ob- different patterns for the two stages. The spectral peak at
tained by integrating over the same three periods are showaround 0.2Hz was considerably enhanced during stage I,
in Fig. 5. Owing to the overwhelming noise content, only the while another peak at around 0.08 Hz disappeared in this
wavelet spectrum for the case b£1505¢ has a significant  Stage. Against the 5% and 15% significance levels, it is
peak at 8 Hz. The peaks at the same frequency in the otheglear that the major patterns we have observed are all signif-
two spectra were completely contaminated by the noise. icant. Particularly, it is noted that the broad peak at 0.08 Hz,

which extended across the entire stage |, should be insignifi-

cant if 95% confidence is required. Obviously, a higher sig-
4 Significance tests on actual observations nificance level, such as 15%, was adopted by Ge and Liu

(2007) in order not to overlook any physically meaningful
We go beyond the simulated signals in this section. When acpatterns (e.g. Fig. 5 of Ge and Liu, 2007). It also is noted
tual data are to be analysed, the theoretically meaningful 5%hat, without significance tests, one would misinterpret the
probability may be too stringent. This is due to the fact thatpeak at 0.25Hz and approximately 11665 s, as well as the
the signal-to-noise ratio in naturally observed data is oftenjarge bump at around 0.3 Hz from 11 600 to 11 614 s, which
low if not negative. In such cases, the threshold significanceare most likely to be fortuitous.
level can empirically be relaxed to 15% or even higher, de- The normalized wavelet power spectrum of the wave el-
pending on the particular problems. evation is shown in Fig. 7 along with the levels for 5% and

An actual data set is studied here as an example of appli1 5% of significance, respectively. For this particular case, the
cation in geophysics. The data set consists of a time seriefitegral was over the whole 140-point range, so that140.
of wave elevation recorded from the 3-m discus buoy 45011The peak at approximately 0.2 Hz is very conspicuous, while
of the NOAA National Data Buoy Center (NDBC), which another peak at about 0.08 Hz appears to be relatively small
was deployed during the autumn of 1997 in nearshore eastand almost below the both significance levels. We hence in-
ern Lake Michigan of the United States. Specifically, the fer from Fig. 7 that the peak at 0.2 Hz is statistically signif-
buoy was at 10 m water depth at.82° N, 86.27° W, about  icant with 95% confidence throughout the entire 140-point
1.5 km southwest of Grand Haven, Michigan. The samplingperiod, whereas the peak at 0.08 Hz is not even significant
frequencyF; was approximately 1.70667 Hz. The detailed with 85% confidence. On the other hand, it should be noted
structure of the buoy and the sampling processes are the sanaigat these inferences are for the casa ef140. The insignif-
as described by Ge and Liu (2007). icance of the peak at 0.08 Hz is due to the fact that the peak

Figure 6 shows the normalized wavelet scalogram of theis primarily confined in stage I. This means that, when the
wave elevation during the same period as stage | and staggavelet spectrum is only estimated for stage:<(70), the
Il in Ge and Liu (2007). There are 140 data points in this peak at 0.08 Hz should become significant (Fig. 6).
period, which covers about 80s. In Ge and Liu (2007), the
first half (40 s) of the period is referred to as stage | and the
second stage Il. From the wavelet scalogram, we observed
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the wavelet-based results are really free from such contam-
inations before proceeding to significance tests. Otherwise,
no statistical test is promised to be effective. These issues
. are, however, beyond the scope of the present paper.

f=1,2,....25 Hz 6 Conclusions
m=40 B
Significance tests cannot be omitted when statistical infer-
ences are to be drawn from a single realization (sample) of a
. population. This certainly is true when one attempts to inter-
pret the wavelet-based statistical results of the studied non-
stationary process. The significance test answers the question
as to what part of the results may have been created by pure
2 % 3% B randomness and what part represents true physics. TC98
accurately estimated the significance levels for the wavelet
power and power spectrum against a background white/red
noise. However, the significance levels were obtained em-
pirically through Monte Carlo simulations. Although nu-
merically accurate, the Monte Carlo simulations employed
in TC98 failed to disclose many statistical properties that are
5 FEurther discussion interesting to users of the wavelet analysis.

Based on a rigorous statistical analysis, the present work
In the previous sections we have developed significance tes®stimated the sampling distributions for the wavelet power
for the wavelet power and the wavelet power spectrum. Theand the wavelet power spectrum of a GWN, through which
tests are against a particular background noise, a GWN. Onthe significance tests for the two fundamental quantities of
may further be concerned with the confidence interval (Cl)the wavelet analysis were established. It was found that the
of the wavelet-based quantities, since, for ordinary statis-sampling distribution of the wavelet power of a GWN pro-
tics, the Cl can be easily obtained through similar derivationscess is identical to TC98'’s form adjusted by The sig-
as one does for significance tests. This essentially benefitsificance levels of the wavelet power spectrum of a GWN
from the stationarity of the studied time series, whose statisare numerically in excellent agreement with TC98's results,
tics can be completely determined by its lowest momentswhile we believe that the expressions given in the present
(e.g. mean and variance). This, however, is not true for nonwork are more convenient and reflect more statistical prop-
stationary time series. Over a short period, the behaviouerties. We thus recommend that TC98's expressions should
of a non-stationary time series cannot be characterized in &e replaced by their corresponding ones developed here. It
statistical sense, leaving its Cl meaningless. As Qiu and Erlso was demonstrated that the sampling distributions, and
(1995) showed, the variance (and hence other higher-ordenence the significance tests, are highly related to the partic-
moments) of the wavelet power of a noise-contaminated sigular wavelet family one chooses to use. For other wavelet
nal depends on both the noise level and the signal itself. Bufunctions than the Morlet wavelet, neither may the sampling
the signal part, which is often non-stationary, is what we dodistribution of the wavelet power of a GWN be)(af dis-
not know. The expression for the Cl should not be as simpletribution (see Eg. 16), nor will the sampling distribution of
as, for example, Eqg. (20) of TC98. the wavelet spectrum take the same form simply becatise

It also is clear that the wavelet family that is used for anal-in Eq. (36) varies with different wavelet families. Another
ysis is critical to the significance tests of, at least, the waveleimportant property concerns the structure of covariance of
power and power spectrum. The role of the wavelet family the wavelet power of a GWN at different temporal locations,
is typically realized through the series and hencen* in as described by Egs. (30) and (31). This property bears re-
Eq. (36), and shown in Fig. 8. The above evidence is obvi-semblance to the reproducing kernel, which describes the re-
ously contrary to TC98's statement that the significance testslundancy in the wavelet coefficient. These findings disagree
“should not depend upon the wavelet function or upon the acwith TC98’s statements that the significance tests should be
tual distribution of the time series, other than the assumptiorindependent of the wavelet family and the actual distribution
of a background spectrum.” of the studied time series.

Finally, it is important to point out that other factors, for ~ The significance tests developed in the present work were
example, the edge effect (TC98) and the aliasing problermdemonstrated on both simulated and naturally observed time
(Jordan, Miksad, and Powers, 1997), also need be considseries. The simulated noisy sinusoids illustrated the fact that
ered for proper significance tests. One should make sure thagture noise may create false peaks everywhere. For the actual

Fig. 8. Property of the seriegS;, k=1,2,---,m — 1} and its de-
pendence on the frequency (scale) for the case-040; the curves
from the top to the bottom are for the frequencies of 1, 2, ..., 25 Hz.
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wave elevation time series observed from a buoy deployed owf the GWNx (¢). The discrete form for Eq. (12) is
Lake Michigan, the significance tests clearly indicated dif- Var[Re[T]] =
ferent significance levels for different peaks, and helped to -
avoid misinterpretation of two fortuitous peaks in the waveletZ Z E[x(t:)x(t))Re[y} , (t) 1 Rel Wy, (1)181%,
scalogram. They are all examples for the necessity and ef-i J
fectiveness of the significance tests proposed in the preserind equivalently,
work.

The significance tests for other fundamental quantities invarRe[T]] =
the wavelet analysis, such as the wavelet cross-spectrum, cé+2 Z E[x(t:)x(t:)Re[Y) ,(t)IRe[ Y 1, (1:)].
herency, and the higher-order moments, will be discussed in i
subsequent works. Therefore

Var[Re[T1] = 8t02 Y~ Re®[yr} (1)1t (B1)
Appendix A i
This obviously is the discrete form for Eq. (13). The variance
of the imaginary part of the wavelet coefficient can be derived
imilarly.

Adjustment for the results in TC98

There are more than one approaches to prove tha%
T (a, b)|?=58t|W,(a)|®> (Eq. 5). For example, using
TC98's Eq. (8),v [%F%%[%] we have Appendix C

v [(na—")& =\/_i71/f56 [MTH)&] where yo denotes the  nore detailed derivations for the wavelet power
mother wavelet as in TC98’s notation. Hence, TC98's def-spectrum of a GWN
inition for the wavelet coefficient, Eq. (4), becomes

Since

N-1 /8 I 8
Wa(a) =) xn/Tat%“ [M} : (A1) Covx()x(t"), x(t")x(t")] = E [(x(t)x(t")—
n’'=0

a
Ex()x(HDx)x@") — Elx(t")x @)D ],
On the other hand, the discrete form of Eq. (3), the standarcﬂhiS further results in
definition for the wavelet coefficients in the literature, is

"= ”)‘”} . A2 —ELOx)ERGE)x(")]

N-1 g T
To(a) = ;)xn/ﬁwo —Q

"= (Eq. 23) after some algebra. The quadruple integral of the
A comparison of the two discrete forms, Egs. (4) and (A2),term E[x(t)x(t")E[x(t")x(t"")] is
immediately leads to

Covix()x(t'), x(t")x (")) = E[x(@)x(t")x(")x ("))

@
T (@ = J5W @, wy [ EOTOIE O O,

1IN ) % ” 4 _ ¢,2 4
and hence Eq. (5). This means that the wavelet coefficients! )Va.;j(t)d™" = dt°c (C1)

and the higher-order quantities defined in TC98 or calculatechased on the properties ofz) following a similar procedure
using their source code should be adjusted accordingly tas in Appendix B. Equation (C1) explains the last term on
reconcile with the results with standard definitions, as thosehe right hand side of Eq. (24).

in the present work. The adjustment relation, Eq. (5), was According to Jenkins and Watts (1968, p. 206),

also verified numerically by comparing the results given by o w 4 , o

TC98's Fortran code and their corresponding analytical re-EX()x(()x()x ()] = o[ 8" =8 —17)

sults for a set of test signals. +8(1" = 08" — 1)+ 81" =18 —1') ] (C2)

for x(¢) being a GWN and hence tha term is zero (Jenkins
Appendix B and Watts, 1968, p. 175). Therefore,

@
Variance of the real and imaginary parts of the wavelet / ELx(6)x(t")x(t")x (" Wa,i VW s (O j ()0 ("dt®
coefficient of a GWN

Y\
Equation (12) states that Va&e[T]] = — 8t204/( : Stiz [8( — )8 —1")

[ [ Elx(®)x()IRely ,(DIRely} ,()1dedt’.  This re-
lation can be further simplified making use of the property +8(" —)s(t"” —t') + 8@ —t)6(t" —t') ]
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Vi (W5 OV, (¢ ("de .

Now the three terms in the integrand are evaluated separatelyF 1.e

()

I 8t =08t — "W i ()W (DY j

~ a2

"y (¢"dt® = / f [Wa.i (1P|, ; (¢ Pdtdt”

2
= ( / |wa,b(r>|2dt) =1

for such normalized wavelets as in Eq. (2). Similarly,
()

h=—

52 81" = 08" — a1 (DY

" "dr D= f Yo OV ()dt f Va,i () Wa,j(1)d1

= | / Vai (Ve (01,

and
1 1@
T 52

Is 8" = 08" = I Vs (W (O
02, = [ [ a0 0y 00 ey
= / Va,i Y, j()dt / Vo i (O Va,j()dt

= / Vai (DY (D]
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_a? _@u)?
=2{(m—1e 22 +(m —2)e 2> +-..
_ Lm=1)8112
2?2 } 820t (C6)
5 4mfl _M
=26t%0" Y “(m —kye” 2? (C7)
k=1
and finally
m m
> D CoMITIZ ITI3] = 28t%675, (C8)
i=li#j j=1 '
where
m—1 m—1 (kst)2
S=>"Si=Y (m—ke 2. (C9)
k=1 k=1

It is important to note here that th% series in Eq. (C9) is

not convergent but dependent on the parameteand the
particular wavelet function. The best way to find the value
of S seems to be to write a programme and do the summa-
tion in Eqg. (C9) numerically. Moreover, each term in the
S series has an exponentially decaying trend whose decay
rate is determined by the temporal separation of the two lo-
cations, Ab or két. It is also noted that the; series is
scale-dependent, and, more rigorously, the series should be
denoted as; (a) or Si(f). Figure 8 shows the distribution of
the seriedSy(f), k=1, 2, ---, m—1} for the case ofn=40.

For different frequencies (scales), the series are different.
Hence the 25 curves in Fig. 8 reveal the scale-dependence of
Sk (f). Itis now evident that at very low frequencies such as
1Hz S, does not decay fast with increasing temporal separa-
tion. In this case no convergence could be expected through-
out the 39 terms. This is a natural result of the large tem-
poral support of the wavelet at large scales. In contrast, at a
much higher frequency such as 25 gz decays to near zero

Substituting the Morlet wavelet into the above expres-atk=7, implying fast decorrelation of the wavelets at small

sions, we further simplified> and /3 to be
_A 52
Iy =¢ 22 20 (C3)
and
_an?
I3=¢ 22, (C4)

whereAb=|i—j|t for the separation between the time in-

dicesi andj. Consequently, we obtained Eq. (29).

Next step here is to simplify the summation
gz 2= COMITIZ ITI?] as in Eq. (32). By
enumerating all possible separationsifand j, we have

m

> ic:ovnn?, IT13]

i=li#jj=1

= 2{ CoMIT 2. |T|31li<jab=s: + COMIT 2, IT 31li j, ab=251
4.+ Cov|T/?, |T|§]|i<j,Ah:(m—1)8t } (CS)
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scales.
After collecting involved terms, we obtain Eqg. (33):

Var[ T2 ]=(m+25)812c%.
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