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Abstract

In this work we propose a unified analysis framework encompassing a wide range of non-
conforming discretizations of anisotropic heterogeneous diffusion operators on general meshes.
The analysis relies on two discrete function analysis tools for piecewise polynomial spaces,
namely a discrete Sobolev-Poincaré inequality and a discrete Rellich theorem. The conver-
gence requirements are grouped into seven hypotheses, each of them characterizing one salient
ingredient of the analysis. Finite volume schemes as well as the most common discontinuous
Galerkin methods are shown to fit in the analysis. A new finite volume cell-centered method
is also introduced.

1 Introduction

Several methods have been developed through the years to solve the single phase Darcy equation,
often of non-conforming type. A crucial ingredient is a robust discretization of heterogeneous
anisotropic diffusion operators. Indeed, strong anisotropy and heterogeneity are usually present in
problems of practical interest, thus demanding an approach robust with respect to both. Moreover,
even for simple domains, the low regularity of the diffusion coefficient may affect the regularity
of the solution itself. It is thus important for a discretization method to ensure convergence
to minimal regularity solutions, i.e. solutions belonging to the natural function spaces in which
the weak formulation of the PDE is set. Furthermore, it is often desirable to handle general
nonconforming meshes, both because end-users may have little or no control over the mesh and
because local grid refinement could be required.

In this work we propose a unified analysis framework encompassing a wide range of non-
conforming methods which respond to the above requirements. In particular, both Finite Volume
(FV) and discontinuous Galerkin (dG) methods will be shown to fit in the framework. Although
the analogies between these two families of discretization methods have often been highlighted,
the present unified analysis is, to the best of our knowledge, new.

Finite Volume methods have been widely employed in industrial applications because of sim-
plicity of implementation, closeness to physical intuition and reduced computational cost. In
recent years, these methods have known an impetuous development thanks to both empirical and
theoretical works. In particular, the convergence analysis of FV methods has been dealt with
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by Eymard, Gallouét, Herbin and co-authors (see e.g. [23,25]), who have derived new discrete
functional analysis tools allowing to prove the convergence to minimum regularity solutions. The
discrete analysis framework above has been used for a variety of FV methods applied to linear or
non-linear problems (see e.g. [26,4]). Within the framework of Mimetic Finite Difference approx-
imations, reduced-cost methods on general meshes have also been developed. These methods rely
on different discrete analysis tools than the ones used here, and we refer to [12,10,11] for a unified
analysis.

Discontinuous Galerkin methods were introduced over thirty years ago to approximate hy-
perbolic and elliptic PDEs (see e.g. [6,19] for a historical perspective), and they have received
extensive attention over the last decade. Up to now, convergence analysis has relied on classical
Finite Element tools, yielding asimptotical order estimates but requiring regularity assumptions
on the exact solution (see e.g. [6,19,20,21,17]). In a recent work [16], Di Pietro and Ern have
extended the discrete analysis tools presented in [25] to piecewise polynomial function spaces on
general meshes. By means of such tools, the convergence analysis of dG discretization of both
linear and non-linear problems can be performed in the spirit of [25].

In this work we further extend the above results by proposing an abstract set of properties
ensuring the convergence of a discretization method to minimal regularity solutions. The anal-
ysis framework proposed relies on the discrete functional analysis results of [25,16], where the
authors introduce discrete WP norms which satisfy discrete Sobolev inequalities and deduce a
compactness result for bounded sequences in such norms using the Kolmogorov criterion (see,
e.g., |9, Theorem IV.25]). In order to use the compactness results for sequences in piecewise poly-
nomial spaces, we shall assume that, whatever the vector space V}, in which the solution is sought,
a reconstruction operator on a suitable piecewise polynomial space is available. The key ideas of
the analysis can be summarized as follows:

(i) Vi, is equipped with a norm || - ||y, which, for all v, € V}, controls the discrete H' norm of
the piecewise polynomial reconstruction of v. As a consequence, bounded sequences in the || - ||y,
norm yield bounded sequences in the discrete H! norm;

(ii) an a priori estimate on the discrete solution is derived allowing to infer the strong conver-
gence of a subsequence of (reconstruction of) discrete solutions to a function u € L?(Q2);

(iii) the construction of a discrete gradient weakly converging to Vu in [L%(Q2)]¢ allows to prove
that the limit u actually belongs to Hg (2);

(iv) the convergence of the scheme is finally proved testing against a discrete projection of a
smooth function belonging to some convenient dense subspace, say C2°(€2).

Since the exact solution is unique, the convergence of the whole sequence of discrete approximations
is deduced. Moreover, stronger convergence results on the discrete gradient can be derived using
the dissipative structure of the problem for both symmetric and non-symmetric schemes.

Besides providing a means to analyze existing methods and to develop new ones, the above
framework ensures the convergence of arbitrary compositions of compliant methods. This can be
particularly useful when one wishes to use a more accurate but expensive methods on a selected
region of the domain along with a less accurate but faster method elsewhere.

The paper is organized as follows. §2 introduces the abstract framework, including the as-
sumptions on the mesh family as well as the properties required to prove convergence of a method.
The latter are grouped into seven Hypotheses, each of them characterizing one salient ingredient
of the analysis. The main result is Theorem 2.2. §3 show some examples of methods which fit
in the abstract analysis framework. In particular §3.1 presents a selection of dG methods robust
with respect to the heterogeneity and anisotropy of the diffusion tensor; §3.2 deals with a new
cell-centered finite volume method; §3.3 investigates a hybrid FV method using both cell- and
face-unknowns. For all the methods, a precise definition possibly including further assumptions
on the mesh family is followed by the verification of Hypotheses 2.1-2.7.



2 Abstract analysis framework

2.1 Model problem and setting
Let Q C R, N 3 d > 1, be a bounded polygonal domain and consider the following model problem:

(1)

—V-wVu) = f, in Q,
u=0, on 0f),

where v € [L®°(Q)]?%4 is s.t. (such that), for a.e. (almost every) z € Q, v(z) is symmetric and
its spectrum {\;(z)}L, is s.t. 0 < A < Xi(z) < X < 0o. In weak formulation, problem (1) reads:
Find u € H}(Q) s.t.

a(u,v) = (f,v)r2(0), Vv € Hy(9), (2)

where L(H}(Q) x H}(Q);R) 3 a(u,v) o (vVu, Vo)[2(q)je. The well-posedness of problem (2) is
classical.

Remark 2.1. The analysis can be easily extended to f € L"(Q) with r > % if d > 3 and
r > 1if d = 2; see [16] for the details in the case of dG methods. This requires more general
Sobolev inequalities than the one of Hypothesis 2.1, which are proved in [25,16]. Also, different
boundary conditions can be handled with minor modifications, but we have decided to stick to

the homogeneous Dirichlet problem for clarity of presentation.

The following definition characterizes an admissible mesh family:

Definition 1 (Admissible mesh family). Let H be a countable set. The mesh family {Tp}newu,
is said to be admissible if the following assumptions are satisfied for all h € H:

(i) Tr is a finite family of non-empty connex (possibly non-convex) open disjoint sets T form-
ing a partition of Q and whose boundaries are a finite union of parts of hyperplanes. The d-
dimensional Lebesque measure and the diameter of the generic element T € Ty, will be denoted by
|T'| and hr respectively. The representative linear dimension of the discretization will be defined

as h def maxreT;, hr;
(ii) each T € Ty is affine-equivalent to an element of a finite collection of reference elements;
(#ii) there is a parameter Ny independent of h s.t., for all h € H, each T € Ty has at most Ny
faces. For all elements T € Ty, let FiI' denote the set of faces of T. A set F € FL' of non-zero
(d —1)-dimensional Lebesgue measure |F| is said to be a face of T if F is part of a hyperplane and
if either F is located on the boundary of Q (boundary face) or there is one and only one T' € T,
s.t. F = ]—',T N }"hT' (interface). The diameter of the generic face F' € Fp, will be denoted by hp;
() there is a parameter g1 independent of h s.t., for all T € Ty,

> hrlF| < aT);
FeFl

The set of boundary faces will be denoted by .7-',’:, whereas the interfaces will be collected into
the set F}.. For every F = .7-"th N }',Tz we let up denote the outward normal to T7; for all T € T,
and for all F € FI', pL will denote the outward normal to T. For every F € F N F}, both pp
and pL will denote the outward normal to Q. Further assumptions on the mesh family may be
required depending on the method considered, and will be specified in the corresponding section.

Remark 2.2. According to Definition 1, (i) the mesh elements are not supposed to be convex, and
the mesh may possibly be nonconforming; (ii) in three space dimensions, general hexahedra can
be treated by decomposing non-plane faces in a fixed number of plane sub-faces.

Let 75 denote an element of an admissible mesh family and let S;, denote a sub-mesh of 7,
depending on the method at hand. We introduce the space of piecewise polynomial functions of
total degree less than or equal to N3 k£ > 0,

P (Xn) ' {vn € L2(Q); vnyr € PH(T), VT € X4}, Xy € {Th, Sh}-



The symbols Vj, and ¥; denote two vector spaces associated with 7, and Sp respectively. We
assume that X, = [P,fz (Sp)]¢ for a fixed N 3 kg > 0 depending on the method considered. Also,
in what follows, r,‘{ o P,’f" (Tr) will denote a reconstruction operator onto the piecewise poly-
nomial space of degree ky depending on the method at hand (see Hypothesis 2.1). In particular,
for FV methods, ky = ks = 0 whereas ky > ks > 0, ky > 1 for dG methods.

The symbols < and > will be used in the present section for inequalities that hold up to
a positive parameter independent of the mesh size h but possibly depending on the regularity
parameters of the mesh family, on v, ky and ky. More detailed expressions for these multiplicative
constant will be given for each method in §3.

Hypothesis 2.1 (Piecewise polynomial reconstruction r}'). For a fized N 3 ky > 0 de-
pending on the actual discretization method, there is a reconstruction operator T’X Vh— P,f" (Tn)
which maps every element vy, € Vi, onto a piecewise polynomial function r,‘l/vh € P,’f" (Tw)-

We define the following bilinear form

L(Vi % Vis B) 3 ap(un,vh) = (VG(uh)aé(Uh))[L2(Q)]d + jn(un,vn), 3)

where G € £(Vy;S1) and G € £(Vy; Tp) are linear gradient reconstructions whose properties will
be detailed in Hypotheses 2.3, 2.4 and 2.7, whereas j, € L(V}, X V};R) is a bilinear form meant to
ensure the coercivity of a,. We focus on the following family of approximations for problem (2):
Find u, € V} s.t.

an(un,vn) = (f,ry vn)r2(@),  Von € Vi (4)

2.2 Discrete Rellich theorem

The piecewise polynomial space P,f" (T1), ky > 0, must be equipped with a discrete H' norm
| - |l1,2,n s-t. the following hypothesis is satisfied:

Hypothesis 2.2 (Compactness). Let {pr}rcy be a sequence in P,f" (Tw), kv > 0, bounded in
the corresponding || - ||1,2,n norm. Then, the family {pn}ncy is relatively compact in L*(Q) (and
also in L2(R?) taking pr, = 0 outside ).

Norms satisfying Hypothesis 2.2 will be defined in egs. (20) and (26) below.

Lemma 2.1 (Discrete Sobolev-Poincaré inequality). Let {7y }nen be a mesh family com-
pliant with Definition 1 and let us suppose that Hypothesis 2.2 holds. Then, for all p, € Pf'f",
kV Z 07

Iprllzzce) S llpalli2,p- (5)
Proof. For the sake of simplicity, let H = N and h,, = 0 as n — oo. We proceed by contradiction.
Let us admit that, for all C' > 0, there is n € N and ps,, € Tp,, s-t. [|pn,|lz2) > Cllpn,ll1,2,8,- In

particular, we can take C' = n and set pp, o Ph.. /|IPh.. 111,21, SO that

Pk, llL2) > 71 IPha 12,0, = 1. (6)

As n increases, the L? norm of py,, increases, whereas its ||-||1 2,, norm remains bounded. According
to Hypothesis 2.2, {pp, }nen is thus relatively compact in L?(Q), and we can extract a subsequence
{Ph (., }nen which converges to some p in L*(Q2). As a consequence, ||Py(m)llz2) = lIPllL2(o) as
n — 00, which is in contradiction with (6). O

A direct proof of the Sobolev-Poincaré inequality on broken Sobolev spaces has been given
in [5,8,25]; broken Sobolev embeddings have been derived by Lasis and Siili [27,28] in the Hilbertian
case; broken Sobolev embeddings in the non-Hilbertian case have been recently presented in [16]



Hypothesis 2.3 (|| - [, norm). The vector space V}, is equipped with an inner product norm
|- [lvi s.t., for all vy € V,

Iry orllizn S llokllvi, (7)
G (vn)lliz2@ye + 1GR)lliz2@)e S llvnllvi,- (8)

Inequality (7) will be used to derive an estimate for the piecewise polynomial reconstruction of
the solution in terms of the discrete H! norm || - ||1,2,5. This will, in turn, ensure the boundedness
of the sequence of the reconstructed discrete solutions of (4) on the mesh family {75 }nren, a key
ingredient to infer a compactness result. Inequality (8) states that bounded sequences in the |- ||v,
norm yield bounded sequences of gradient approximations in the L? norm.

Hypothesis 2.4 (Weak convergence of C~¥) Let {vp then, be a sequence in Vi, s.t. {r)/vn}hen

converges to v € L?(2) in L2(R?) (prolonging r} vy, to zero outside Q) and {G () }nen is bounded
in the [L2(R?)]? norm. Then, for all ® € [CS°(R?)]?,

lim [ G(up)-® = —/ vV-®.
Rd

h—0 Jpad

Disposing of a weakly converging gradient allows to prove the following result concerning the
regularity of the limit of a converging sequence in Vj,:

Theorem 2.1 (Discrete Rellich theorem). Let {vy}nen be a sequence in Vi, bounded in the
I - [lv, norm. Then, (i) {r) vh}nen is relatively compact in L2(Q); (ii) if r)/vn = v in L?() as
h — 0, then v € H} ().

Proof. Owing to the assumptions of the theorem together with (7), there is C' € Ry s.t.
7y vnll2.n < llonllv, < C, VheH.

As a consequence, the sequence {r} v, }ne is bounded in the ||-||1,2,, norm. Owing to Hypothesis 2.2,
it is possible to extract a subsequence converging to some v in L?(f2) and also in L?(R?) provided
we prolong r,‘{vh by zero outside Q2. Moreover, (8) yields, for all h € H,

G (wn)lliz2 e S lonllv, < C-

We thus conclude that there exists a 7 € [L2(€)]% to which the sequence {G(v)}ren converges
in [L2(2)]? and also in [L?(R%)]%. On the other hand, the sequence {r} v,}nrecy satisfies the
assumptions of Hypothesis 2.4, so that 7 = Vv, which concludes the proof. O

2.3 Estimate on the solution

Let m) : C°(Q) — V}, denote an interpolator onto V}, whose properties will be detailed in Hypothe-
ses 2.5 and 2.7. In what follows, 7} will be applied to functions of C2°(Q), which is used as a
pivot space.

Hypothesis 2.5 (Stabilization j). The bilinear form j is symmetric, positive semidefinite
and continuous with respect to the || - ||y, norm, i.e.,

Jn(un,vn) S lunllvillonllv,  Y(un,vn) € [Val*. (9)
Furthermore, the following consistency property holds:
lim, jy (m p, m p) =0, Vip € CZ(Q). (10)
.

The following Cauchy-Schwarz type inequality is an immediate consequence of Hypothesis 2.5:

13 (s 08)| S [ (wny un)]™? [in(ony 0n)]'2. (11)



Hypothesis 2.6 (Coercivity of ap). For all vy, € Vi, ap(vp,vp) 2, ||Uh||%,h.

The coercivity of the bilinear form ay is an essential ingredient of the analysis, since it allows
to obtain an estimate of the solution for use in the discrete Rellich Theorem 2.1.

Lemma 2.2 (Well-posedness). Problem (4) is well-posed. Furthermore, its solution satisfies
the following a priori estimates:

I unllizn S llunllv S N1Fllzz0)- (12)

Proof. (i) To prove the well-posedness we use the Lax-Milgram lemma. Using (8) together with
(9) we have, for all (up,vp) € [Vi]?,

an(un,vn) S Munllvi llonllv, + lluallvillonllve S llunllv llollv,,

i.e., the bilinear form ay, is continuous in V. Cauchy-Schwarz inequality together with (5) and
(7) yield, for all v, € Vp,,

(frron) ez < Wfllz2@liry vnllezey S If 2@ lIry valliz,n < Ifllz2@)llvallva-

We conclude using Hypothesis 2.6. (ii) If u, is the null element of V}, the estimate is trivially
verified. If this is not the case, Hypothesis 2.6 together with Cauchy-Schwarz inequality, (5) and
(7) yield

Irk wnlleznllunllv, < llunlly, < anun,un) S I Fll2@)lluallze@) S 1Flz2@)llunllv,

thus concluding the proof. O

2.4 Convergence

Hypothesis 2.7 (Consistency). The following results hold:

Iy ellvi, S0, Vo € CZ(9), (13)
lim () omy ) — @llzay =0, Vo € C(), (14)
lim IV — G )lir2@ye =0, Vo € C2(), (15)

where 0, > 0 is a parameter depending only on ¢ and on the mesh regularity parameters.

The above assumptions ensure that we can consistently approximate smooth functions and
their gradients on the discrete spaces at hand. The consistency of G stated in (15) allows to prove
the following

Lemma 2.3 (Convergence of G). Let {Th}newn be a family of admissible meshes. Let up, denote
the unique solution of the discrete problem (4) on T,. Then, (i) there exists u € H}(Q) and a
subsequence {r} up}nen converging to @ in L*(2) as h — 0; (%) {G(un)}hen converges to Vi in
[L2()])°.

Proof. (i) Thanks to (12), the sequence {r} uj}ney is bounded in the || - [|1,2,, norm. According
to Theorem 2.1, there is a subsequence of {r} us}rewn (still denoted with the same symbol) and
an element & € Hg(Q) s.t. {r} un}ren converges to @ in L2(Q) as h — 0. (ii) Let ¢ € C° and set

on & m} ¢. We have that

G (un) — v17||[2L2(Q)]d <

3 [”G(Uh) - G(<Ph)||[2L2(Q)]d + IG(¢n) — v<P||[2L2(Q)]at + Ve - v77||[2L2(Q)]d] .



Let S;, i € {1...3} denote the terms in the right hand side. Thanks to Hypothesis 2.6 and to the
linearity of ap we have that

S1 S an(un, un) — an(un, pn) — an(Pn, un) + an(@n, n)-
Owing to (4), an(un,un) = (f,7) un)r2(0) and ap(un, on) = (f,7y ¥n)r2(0)- As a consequence,
lim ap(un, un) = (f, @) r2(0)-
Furthermore, using (14), we conclude that

0 < limsup |an (un, on) = (f> ) 2| <limsup (| fllz2@)lIry on — @llrz@) =0,
h—0 h—0

that is, gathering the above results,
Vo € C°(),  lim [an(un, un) — an(un, )] = (£, 4 — @)r2(0)- (16)

To estimate the remaining terms, observe that

an(nsen) = an(@n,un) = WV, G(on — un)) 2 ()

+ W(G(pn) = Vo), G(pn — un))ir2()ja + Jn(Phs pr — un).

Owing to Hypothesis 2.4, the term in the first line tends to (vV¢, V(¢ — ©))[z2(q))+ as h — 0. The
term in the second line can be estimated as follows:

W(Glpn) — V), Glon —un))w2@ye| < MG(@n) — VollnzallGlen — un)llipa @y
S G(en) = Velliza @y« (lenllvi + llunllv,)
S IG(en) — VolliLaye (0o + llunllvy,)

where we have used Cauchy-Schwarz inequality followed by (8), (13) and (12). Since ||upl|v;, is
bounded, the right hand side of the above inequality tends to zero as h — 0. On the other hand,
(11), (13) and (12) yield

1in(2ns on — un)| < Lin(onr 0n)]"? Lin(on — wns on — un)]'>

< Un(en, o) (lenllvi, + lunllv:)

< U (ons on)]"? (0 + llunllva)

which, owing to (10) and to the boundedness of ||un||v; , tends to zero as A — 0. In conclusion,
Vo € C(Q),  lim [an(pn, on) = anlpn, un)l = ¥V, V(e = ))1120)e- (17)
Equations (16) and (17) yield
Vo € C°(Q), lim S = Ve, V(e =)o) + (F,8 = @)r2(@)-

Using (15) we immediately conclude that, for all ¢ € C°(), limp_,0 S2 = 0. Gathering the above
results, for all p € C°(Q),

111;1 sup 1G(un) = Vallfz gy S @V, V(e —@)w2aye + (F 8 — @) 2) + Ve = V|2 -
5

Let now {p.,}men be a sequence converging to 4 in Ha () (the existence of such a sequence
follows from the density of C2°(Q) in H}(Q)). Using the above bound, we conclude that

.. ~112 . ~112
0 S 11211_:(1)1f ||G(Uh) — vu”[LZ(Q)]d S llijlp ”G(Uh) — vu”[LZ(Q)]d S 0,

which proves the assert. O



Remark 2.3. Observe that the passages to the limit for A — 0 and for m — oo cannot be exchanged
in the proof. Indeed, the estimates from which (14) and (15) are obtained may depend on some
norm of ¢ which does not remain bounded as m — oo, e.g. the H? norm.

Theorem 2.2 (Convergence of the method). Let {7, }rew be a family of admissible meshes.
Let up denote the unique solution of the discrete problem (4) on Tp. Then, (i) the sequence
{rY up}hen converges to the solution of (2), say u, in L?(QY) as h — 0; (ii) the sequence
{G(up)}hen converges to Vu in [L2(€2)]%.

Proof. Thanks to (12), the sequence {up}rew is bounded in the || - ||y, norm. Theorem 2.1
states that we can extract a subsequence still denoted by {r,‘:uh}hey which converges to an
element u € H} () in L?(£2). Let us focus on the above sub-sequence. According to Lemma 2.3,

{G(un)}nhen converges to Va in [L2(Q)]¢. In order to prove the convergence of the method, we
have to prove that u solves (2). Let, now, ¢ € C°(2) and set @, def m} ¢. We have that

an(un, n) = (VG(uh)aG(‘Ph))[LZ(Q)]d + Jn(un, on)-

Using Hypothesis 2.4 together with Lemma 2.3 we conclude that

Vo e O, %%(VG(%):G(%))[H(Q)V = WVu, V)2 ) = a(d, ¢).
On the other hand, (11) together with (12) yield

lin (s on)| < G (ns on) i (wn, un)? < ju(ns on) Pllunllve < dnlen, o0) 21 f |2

which tends to 0 as h — 0 by virtue of (10). Moreover,

(fr¥ en)r2@) = (f:0) 120y + (f,0 — T on) 120,

and, using (14),

0 <limsup |(f, ¢ — ) n)r2)| S limsup || fllz2o) lle — 7 enllz@) =0,
h—0 h—0

so that, for all p € C°(Q), (f,7} vn)r2(0) = (f,9)12(0) as h — 0. Thanks to the above results,
and since the uy are solutions of the discrete problem (4), we have that

a(177 (P) = (fa ‘P)L2(Q)7 V(p € CSO(Q)

Since C°(R) is dense in H}(Q), @ = u for a.e. z € Q. Furthermore, problem (2) has a unique
solution, and so the convergence property extends to the whole sequence. The convergence of
{G(up)}hen to Vu is an immediate consequence of Lemma 2.3 together with the uniqueness of
the limit. O

2.5 Symmetric methods

In this section we show how the analysis can be simplified for symmetric methods. The following
theorem replaces Lemma 2.3 and Theorem 2.2:

Theorem 2.3 (Convergence of symmetric methods). Suppose that the bilinear form ay is
symmetric, i.e. G =G and let {Th}nen be a family of admissible meshes. Let up denote the
unique solution of the discrete problem (4) on T,. Then, (i) the sequence {r} up}nren converges
to the solution of (2), say u, in L?(Q) as h — 0; (ii) the sequence {G(up)}nen converges to Vu
in [L2(Q)]¢.



Proof. Thanks to (12), the sequence {up}rew is bounded in the || - ||y, norm. Theorem 2.1 states
that we can extract a subsequence still denoted by {T}‘:Uh}heﬂ which converges to an element
@ € Hy(Q) in L2(Q). Let us focus on the above sub-sequence. Owing to Hypothesis 2.4, G(up)

weakly converges to Vi in L2. Let ¢ € C°(Q) and set ¢y, def 7} . Observe that

an(un,pn) = (WG (un), Vo) (a)e + WG (un), G(un) — Vo) ir2 ) + Jn(un, on) €8+ 55+ S5
Owing to the weak convergence of G(up), S1 — a(u, ¢) as h — 0. Using Cauchy-Schwarz inequality
together with (11) we obtain

S| < NG wn)llip2(ayelG (o) — Veollizzye + Lin(wn,un)]>[n(@n, on)]' >

Thanks to (8), (9) and (12), both [|G(us)lliz2(a) and [ju(un,us)]'/? are bounded by ||f||z2(q)
up to a positive multiplicative constant. Equation (15) together with (10) then yield |S2| — 0 as
h — 0. Finally, S3 — 0 as h — 0 by virtue of (10). In conclusion,

(f,0)r2 ) < (f,on)12Q) = an(un, on) — a(, @),

i.e., U = u for a.e. x € Q) since C>°(Q) is dense in H}(Q). The strong convergence of {G(up) }hen
follows immediately. O

2.6 Adjoint methods

Let
ap(un, vn) « (vG(un), G(vn))[z2())e + Jn(un, vn)-

In this section we investigate the convergence of the adjoint problem: Find up € V}, s.t.
ay(un,vn) = (f,r) vn)r2), Vo € Va. (18)

Theorem 2.4 (Convergence of adjoint methods). Let {Tp}nen be a family of admissible
meshes. Let uj denote the unique solution of the discrete problem (18) on Tp,. Then, the sequence
{rY u}}newn converges to the solution of (2), say u, in L?(Q) as h — 0.

Proof. Since also a}, is coercive, the sequence {up}nrey is bounded in the || - ||y;, norm. Theorem
2.1 states that we can extract a subsequence still denoted by {r) us}ren which converges to
an element & € H}(Q2) in L2(Q2). We shall focus our attention on the above sub-sequence. Let

¢ € C(Q) and set ¢ 7y ¢. We have

aj,(u, on) = (VG(uh), Vo) rzye + (WG (uh), G(on) — V) zzaye + jn(uh, on) T 51+ S+ Ss.

Using Hypothesis 2.4 it is clear that S1 — a(@, ) as h — 0. For the second term, using (12) we
have

S| < NGWi)llip2@y2IG (o) — Vol @yes
which, owing to (15), tends to zero as h — 0. Similarly, using (10) together with (12), we can
prove that |S3| — 0 as h — 0. We thus have
(f,0)r2@) + (fron)r2 ) = an(uy, on) = a(@, p),

i.e., 4 = u for a.e. z € Q since C°(Q) is dense in Hi (). This concludes the proof. O

3 Some examples

In this section we present some examples of conservative dG and FV methods which fit in the
abstract framework above. Further examples which are not detailed here include the popular O-
method (see, e.g., [1,4]). Observe that the convergence results holds also for arbitrary compositions
of the methods below.



3.1 Discontinuous Galerkin methods

In this section we shall present a number of dG methods which fit in the abstract analysis frame-
work above. The weighted averaging techniques introduced in [13] and extended to dG methods
in [17,22] will be used to ensure robust a priori estimates with respect to anisotropy and hetero-
geneity of the diffusion tensor in a suitable energy norm. The asimptotical convergence analysis
can be performed following the guidelines of [17] and it is out of the scope of the present work.
For all F' € Fj, and for all ¢ s.t. a (possibly two-valued) trace is defined on F', we introduce the
following jump operator:

def | PIT — P|Te> ifFZf,Tlﬂ]:,TZ,
o, it F=F, NF.
The space P,f" (Tw), ky > 1, will be equipped with the following norm:
def 1
Ial13 2.0 = IV aDRIF L2 s + D E”[[Ph]]”i%ma Vpr € Py (Th), (20)

FeFn

where V}, denotes the broken gradient. The proof of Hypothesis 2.2 can be found in [16, §6]. The
following assumption need be added to those listed in Definition 1:

Hypothesis 3.1. Let H be a countable set and let {Tp}hew denote a family of meshes matching
Definition 1. We require that the ratio of the diameter hr, T € Ty, to the diameter of the largest
ball inscribed in T be bounded from above by a parameter g3 independent of h.

Remark 3.1. Hypothesis 3.1 is not needed to prove Lemmata 2.2-2.1 for ky > 1, so it is not listed
in Definition 1.

For a given ky > 1 we let S = 7T, and set

Vi € P (T), S €P (TR

We shall focus the piecewise constant case v € [P2(75)]¢*¢. Let vjx = VpDrVy " be the diagonal-
izaton of v on T' € Ty, i.e., Dr is a diagonal matrix containing the eigenvalues of v. Denote with &
the element of [P (7,)]%*? s.t. kjp = VTDlT/ Vi for all T € T;. The tensor field & is symmetric,
uniformly positive definite and s.t. v = sk for a.e. z € Q. Let, moreover, s~ € [P?(T5)]?*¢
denote the inverse of k, i.e. kk™! = I for a.e. z € Q.

Remark 3.2. The piecewise regular case v € [C°(T5)]%*? requires only minor technical modifica-
tions in Lemma 3.1 below, which we omit for simplicity of exposition.

Since V}, is a piecewise polynomial space, the reconstruction operator r) can be taken equal
to the identity on V. For all F' € Fj, and for all ¢ s.t. a (possibly two-valued) trace is defined on
F', we define the following weighted average operator: For a.e. x € F,

w21y +w1S0\T2> 1fF:f’Tlﬂf'Tz’

def
feko = {som if F=FFnFe,

where et et
— 1el A A lef .
w = (w1,ws) = (M;M,—foz), \i = \Vinprr, i€ {1,2}.
Since Vj, = P,f", we can take

def
lvrllve = llvalli,2,n,

with || - [|1,2,, defined as in (20). The following lifting operators will play a crucial role in what
follows: For all F € F and for all ¢ € L2(F), let N3 > 0 and set

(rho (@) ) & (our, Kkt Yo)z2mya, Y € [PL(TR)]Y (21)
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Table 1: Consistent gradient choices for dG methods. Symmetric methods are marked with a star.

Method | Ref. G(un)
SIPG* [5] Vyup — Iﬁ:flR,Q (uh)
NIPG [29] Viun + Iﬁ:_lR,i (uh)

IPG [15] thh
BR* [7] Vyup — ﬁ_an(uh)
LDG* [14] Viup — ﬁ_an(uh)

and define RL(p) &' 3 rer, Trx(9). For I = ky the subscript will be omitted. For all v, € V4,
the weakly converging gradient is defined as

G(vn) & Vo, — 57 Ry (vp),

where V), denotes the broken gradient.

Remark 3.3. To prove the convergence of the method, it is sufficient to work with the lifting oper-
ators r%. However, if the exact solution u turns out to be more regular, optimal-order convergence
rates can be established in the || - ||y, -norm when working with the lifting operators r&" = or rkv.
The latter choice may be preferable for implementation purposes, especially if non-hierarchical,
e.g. nodal-based, basis functions are used. For instance, if u belongs to the broken Sobolev space
H*+1(Tg,), the usual a priori error analysis techniques can be used to infer a bound of the form
lu—un|lv, < Cuh*, with C, a positive parameter depending on the norm of the exact solution u,
on g;,% € {1...3}, on ky and on v.

Several choices are possible for the consistent gradient G as well as for the bilinear form jp.
Some of the most common methods are presented in Tables 1-2, where we have set

def
Amin,F = ) sp(un,vp) = (Re([ur]), Be([v 2 (N d-
F JTEEEE, i Fe FInF, h(un,vn) = (Re([un]), Be([vn]))iz2co)
Remark 3.4. The original formulation of the methods proposed in [5,29,15,7,14] has been modified

using the averaging techniques introduced in [17]. Optimal asymptotic order estimates which are
also robust with respect to anisotropy and heterogeneity can be obtained in the following norm:

dof {min()\l,/\2), if F=FlnFk,

def . o def 1 11/2 ;
lonllbe,, = 16V vnlta@ye + a3, a3 S D —llAm/in,F[[Uh]]llzw(F)-
FeFy

The above norm is equivalent to ||- ||y, since, for all vy, € Vi, AY?|Jop]lv;, < [lvnllpg,y < X1/2||Uh||vh-
The following result was proved in [16]:

Lemma 3.1. Assume that Hypothesis 3.1 holds. Then, for all F' € Fy, for all vy, € V},, there is
Crp > 0 depending on g;, i € {1...3}, on ky but not on h s.t.

||TF,n(Uh)||[2L2(Q)]d < Ciplval3-
Furthermore, assume that there is o parameter g4 independent of h s.t.
he|F| > 04|T|, VT € Tn, VF € Fi. (22)

Then, for all F' € Fy, for all vy, € Vy, there is cip > 0 depending on g;, i € {1...4}, on ky but
not on h s.t.

crplonl7 < llres (0n)[IE2 (- (23)
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Remark 3.5. Inequality (23) is only needed to prove the coercivity of the BR method (see Lemma
3.5 below), whereas it is not needed for the other methods listed in Tables 1-2. In what follows
we shall therefore tacitly require (22) only when dealing with the BR method.

Lemma 3.2 (Proof of Hypothesis 2.3). Let the assumptions of Lemma 8.1 hold true. Then,
Hypothesis 2.8 holds for all the consistent gradients listed in Table 1.

Proof. Property (7) is in fact verified with the equal sign. Let us prove (8) for G (the proof for
the gradients listed in Table 1 is similar and will be omitted). For all v, € V},,
~ 2 def
G n)lIF2gye < 2Vavn 2oy + h\ ZT 1R ([orD Ifp2(rya = S1 + Se.
—T€Th

According to (21), for all F' € Fp, rg, is solely supported by the elements which share F. We
thus have that Ry ([vs])jr = ZFef,T rr,x([vn])|r and, owing to Lemma 3.1,

2N 2C1p Np 2Cp Ny
Sz < Y Z ||7'F,n(vh)||[2L2(Q)]d < f|vh|21 < f”“h”%/h:
— FeF, - -
which yields [|G(vn) [Pz qye < 2 (1 ¥ %) lonllZ, - O

Remark 3.6. The L? projector w} onto the space P;(7;) enjoys the following property:
h h
Jim [lo = mhollv, =0, Vo € CZ(Q). (24)

Lemma 3.3 (Proof of Hypothesis 2.4). Hypothesis 2.4 holds.

Proof. Let {vp}ren be a sequence in Vj, satisfying the assumptions of Hypothesis 2.4. The se-
quence {G(vp)}nhen is bounded, and it converges (up to a subsequence) to some 7 € [L2(Q)]4. Tt
only remains to prove that 7 = Vo for a.e. z € R?. Let ® € [C°(R?)]¢, v, € V3, and prolong vy,
by zero outside 2. Observe that

(é(vh)aﬁflﬂ’)[m(m)]d = —(Uh,Vh'W}z‘I’)B(Rd) + Z ({{Uh}}w;MF'[[W}z‘I’]])LZ(F),
FeF]

where V- denotes the broken divergence operator. Owing to the regularity of ®, [®] = 0 for a.e.
xz € F, F € F;,. The above identity then yields

|0, V-@) p2(0) + (G(vn), 74 ®) z2(ay)e |

= |(vh, Vi (@ = mh®))p2() — D, (HvnBur - [® — mh@]) L2(y)| < llvallva[|® — 74 @|lvs,-
FeF}i

Passing to the limit and using (24) and the boundedness of {vp }pep in the || - ||y, norm concludes
the proof. 0

Lemma 3.4 (Proof of Hypothesis 2.5). Let the stabilization parameters satisfy
nsiea > NaCre, nnea >0, mipg > NoCip/2, nBr > Na, nupa > 0.

Then, Hypothesis 2.5 holds for all the stabilizations of Table 2.

Proof. The continuity of the stabilizations of Table 2 stems from a simple application of Cauchy-
Schwarz inequality. The IFP as well as the LDG stabilizations are clearly positive. Proceeding as
in the proof of Lemma 3.2, we have that

sn(on,vn) < No D lIrms([oaD[Ifa (e < CreNalonl3,
FeFy
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Table 2: Consistent stabilization choices for dG methods. Symmetric methods are marked with a
star.

Method Jn(un,vp)
Amin
SIPG* Z (nstpa A 2 Tunl, [onl) z2(Fy — sn(un,vn)
F
FeFy, A\
NIPG Z (mNtPG n;lm’F [unl, [va]) L2 (#) + s (un,vn)
F
FeFy, A\
min,F
IPG Z (mpa hy [un], [[vh]])LZ(F)
FeFy
BR* > (erres([unl), res ([on])) ey — sn(un, vn)
FeFy, A\
LDG* Z (ULPGLH’F[[%]]; [['Uh]])L2(F)
FeF, hF

which yields the positivity of the SIPG, NIPG and BR stabilization. The term s, is introduced to
reduce the stencil of the above methods to neighbouring elements. 2 immediately follows from the
above remark provided the above assumptions on the stabilization parameters are matched. In
order to prove consistency, let ¢ € C°(Q2). Since [¢] = 0 for a.e. z € F, F € F, the continuity
of j gives

in(mhe, 1) S lonls = lon = ol7 < Mlmhe = ol
which, according to (24), tends to zero as h — 0. O

Lemma 3.5 (Proof of Hypothesis 2.6). Under the assumptions of Lemma 3.4, Hypothesis 2.6
holds true for all the methods of Tables 1-2.

Proof. For the sake of brevity, the proof will be detailed for the BR and SIPG methods only. For
all v, € V3, Young inequality together with Lemma 3.1 yield

ap " (vn,vn) = |6V honl[Pr2(aya + 206Vaon, Re(vn))1mer Y (e ([vnl)s rrw ([on])) 2oy
FeFy

€A
> ——||Vhonllfp2 () + (mBR — (1 + €)No) 17 £, (Toa D) P2 2y
1+e€ [L2(Q)] [L2(Q)]
FeFy

€A
> 1—_’_€||vhvh”[2L2(Q)]d + (mBR — (1 + €)Na)ewp |vn|3,

for all € > 0. Coercivity then holds for ngg > Np. Similarly,

)\min
ay "% (v, vn) = |V R0n [P + 206V h0n, Be () 1mstpG Y (—hF’F [vr], [vn]) L2 (r)
FeFy,

A

€A min
> 1—;||thh||[2m(9)]d + (msipc — (1+ €)NpCip) Y (F22L[un], [onl) L2z,

FeFy

yielding coercivity for nsipg > NyClp. O
Finally, Hypothesis (2.7) follows from (24)

3.2 A cell-based finite volume method

We consider hereafter a new finite volume method displaying all the ingredients introduced in §2.
Throughout the present and the following section, the following assumption on the mesh need be
added to those listed in Definition 1:

13



Hypothesis 3.2. Let H be a countable set and let {Ty}rhew denote a family of meshes matching
Definition 1. Them
(i) there is a positive parameter gs independent of h € H s.t.

|zT — 7F|

<o0s, VFeFI VT €T (25)
drF

(i) Py, is a family of points of Q indexed by the elements of Ty, and Pp, = {xr}reT;, 5 8.t., for
alT €Th, xr €T and T is star-shaped with respect to xr, i.e., [tr,2] CT for all z € T;
(iii) there is g2 > 0 s.t., for all F = F* N F>, (T1,T») € [Th]?,

d 1
02 < Sl < —

“dn,r T 02
where, for all T € Ty, and for all F € fg, we have set dr p def dist(z7, F) > 0.
For all T € T, and for all F € F}, we define

dp 4 Jdmop tdnp, GEF = Fit NFye,
dr,F, ifFng’ﬂfg.
In the present and in the following section, the space P,? (Tr) will be equipped with the the discrete
H} norm:

def 1
ten = Y - llpnlllzer),  Ven € PR(Ta), (26)
FeFy, F

[Pl

where the jump operator has been defined in (19). The proof that Hypothesis 2.2 holds for the
norm (26) can be found in [25, §5]. Let

def

Vi & PY(Th), =¥ [PATH

Since V}, is a piecewise polynomial space, the reconstruction operator r,‘f can be taken equal to
the identity on Vj. For all F € Fp, and for all v, € V,, we define the following trace operator
vF : Vi = PO(F):
e(on) % W VT, +Wion i, YF=FNFE T def dr,r <1
F = = — .
" 0, VF=7Fnre, P dp =

For all T € Ty, for all F € FL, let I} : Vi, — PO(F) denote a linear interpolation operator s.t.
|(Z o mp)¢ — ¢(zr)| < Cohpdr,r, Yo € CX(9), (27)

where 7) = 7y denotes the L? projection onto Vi, zr is the barycenter of F and C, denotes a
positive parameter depending on some (bounded) norm of .

Remark 3.7. A simple choice for the interpolator Ig is described hereafter. For the sake of
simplicity, let d = 2. For all F € FI N F? we set Zhv, = 0. Let F € F° N Fi, Ty € Th, and let
Ty # T> be two elements of Ty \ {To} s.t. their barycenters are not aligned with that of Ty (see
Figure 3.2 for an example). Denote by {a;}ic{o...qy the barycentric coordinates of z with respect
to {1, }icfo...ay- Then, for all vy, € Vi, we set

d

T def

ZFOUh = E az"Uh|Ti-
=0

While the above choice ensures the convergence of the method, it does not yield strong consistency
for piecewise linear exact solutions in the presence of heterogeneity. Other choices are possible,
but their description lies out of the scope of the present paper. In particular, we refer to [3] for
an alternative using the so called L interpolation introduced in [2].

14



Figure 1: Barycentric interpolation for d = 2.

For all vy, € V},, the gradient reconstructions are defined as follows: For all T' € Ty,
~ def 1 T def 1 T T
Glun)ir = ] > IFI(yron — onr)pg,  Glon)ir = ] > |FI(ZFon — var) s
FeFl FeFT
The space Vj will be equipped with the following norm:
2 def |F| IT _ 2
lonllt, = D D 7 Tpon = vnr)”
TeT, Ferr  F
Remark 3.8. For all h € H we have
F|d
> ':%:d, VT € Th. (28)
FeFy
Lemma 3.6 (Proof of Hypothesis 2.3). Hypothesis 2.3 holds.
Proof. Let vy, be a generic element of V},. Cauchy-Schwarz inequality gives

[vn]? < (hir, — Ixivn)? (vnjr, — Iytvn)?

, VFeFnFE
dr dr,,r dr,,F h h

Inequality (7) immediately follows. Cauchy-Schwarz inequality together with (28) yield

~ 2
G @y = 3 7| 3 IFlflondir]

TETh FeFl
1 |F|dr,F
<> [ X d—IIIIUh]]llia(F) x Y T < dljonll? 2 < dllvnll¥,-
TeT, \Ferr TF FeFy

(29)
Similarly,
‘ 2

1
||G(Uh)||2L2 Q) = Gl |F|(I%:Uh - Uh|T)N£
(L2(2)] |T|

TET, FeFT
1 \Fldrr
<> 1Y d—“IEUh —unrllgam) X Y 7] < d|jvn7,-
TeT, \Ferr FeFf
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Observing that ||vg ||y, is bounded by assumption whereas the term in brackets tends to 0 as h — 0
concludes the proof of (8). O

Lemma 3.7 (Proof of Hypothesis 2.4). Hypothesis 2.4 holds.

Proof. Let {vp}ren be a sequence in Vj, satisfying the assumptions of Hypothesis 2.4. The se-

quence {G(vp)}new is bounded, and it converges (up to a subsequence) to some 7 € [L2(Q)]4. Tt
only remains to prove that 7 = Vv for a.e. z € Q. Let ® € [C>(Q2)]? and prolong v, by zero

outside Q. Define &7 ©' [ &/|T| = x0®; for all T € T; and &F ' [, &/|F| for all F € F.
Integration by parts yields

(G (vn), ®)jr2(oye + (V8,7 vn) 12| = ‘ S > IFI(vrvn — var)(@F — ®F)-pf;
TET, FEFT

M=

S ||vh||Vh Z Z |F|dT’F((I)Ill;‘ - (I>Ifl;)2 )

TeTh FeFT
which proves the assert. O
Define the stabilization term as follows:
Jun,on) €3 nhyp Z (B, (un), Rr,r(vn))L2(r),

TET FefT T.F
where, for all vy, € Vi, we have set Ry F(Uh) Ith — vpjr — G(vp)r-(xFp — o), and, for all
T € Th, 0 <1 < ngyp <7 < 0o denotes a positive stabilization parameter.
Lemma 3.8 (Proof of Hypothesis 2.5). Hypothesis 2.5 holds.

Proof. The proposed stabilization term is clearly symmetric and positive semi-definite. In order
to prove the continuity, observe that, for all vy, € Vj,

. 1 F
i) <23 e | 17— vnrla + Y A (Gon) (e~ 1)

T F
TeTh Ferf 7’ Ferl 7’

Let ST, ST the addends in brackets. Using (28) together with Hypothesis 3.2 and Lemma 3.6 we
have that

FdT,F
Y sl<oy Y |'T| IT||G (wn)* < dos||Gwn)lF2 (e < dosllonll?,,
TETh TeTh FeFT

whence jp (v, vn) < 27(1 + d?0s)||vpll3;, - Using the above result together with (11) we have

Jn(un,vn) < G (un,wn) (o, va)7* < 20(1 + d® o5)|lunllv, [[vallv;, -
It only remains to proof the consistency of j,. In the rest of the proof, shall assume that (15)
holds (a proof is given in Lemma 3.10 below). Let ¢ € C°(Q2) and set @y, et mhp. Observe that
|Rr,r(vn)| < |Tion — o(@p)| + |[(Vo(zr) — Glpn))-(xr — or)| + cplor — zp)?,

where ¢, denotes a positive parameter depending on a suitable (bounded) norm of ¢. Substituting
in the expression of j; and using Hypothesis 3.2 we obtain

Jnlen,en) <
Y Z |ZI on—o@r)>+ ) Z |V90 zr) — G(pn)” + | Floscohiy
TETh Fe]—‘T T.F TETh Fe]-'T T.F
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Let S;, i € {1,2} denote the first two addends in brackets. Using (27) together with (28) we have

FdT,F
S <C, § T 2 : | ||T| b} < C,h’d|Q,
TeTn  Ferf

i.e., S1 — 0 as h — 0. Using Hypothesis 3.2 and (28) we have

|Fldz,F |zF — 27 |*

S2< 3 ITIVeler) = Glen) 3 =t =it <ded 3 IVe(@n) s
TET FeFf T.F TET
<22 3" (IVp(ar) = Vollarye + 1990 = Glon) Fraerye)
TeTn
which, since (15) holds, shows that S» tends to zero as h — 0. This concludes the proof. O

As the FV method proposed in this section is non-symmetric, it is conditionally coercive. In
what follows, we shall provide a computable criterion to check coercivity for a given mesh 7, and
diffusion tensor v. For the sake of simplicity we shall refer to the interpolator defined in Remark
3.7. For a given T € T;, we introduce the bilinear form a] defined as

al (un,vn) = (VG (un) 7, G(un))[p2 ()@ + Ny Z . (Rr,r(un), Rr,r(vi))L2(F)-
rerr

Let 7,7 {T € 771,.7-'T NFL # 0} denote the set of elements sharing a face with T and set
m?T d: card(T;!). For brevity of notation, we shall note 7,7 = {Ti}1<i<mr with T} sharing the in-
ternal face F; with T. Moreover, we define m? %' card(F,*NF}) and set {F; }mT 41<i<mT 4mF def FInFp.
Define the linear map X7 : Vj, = RO" +m") gt for all vy, € Vi,

def
XT(Uh) = {{Uhm - Uh|T}1§z'§mT,{Z£- (Uh) - vh|T}mT+1§i§mT+mF}7
and recall that Zf, (vy) = 0 form? +1 <i <m* + m?* (since I}, (vs) vanishes on boundary faces).
It is a simple matter to verify that for all T € Ty, there exists a matrix A} € R(m* +m")x (m*+m")
s.t., for all (up,vs) € [Va]?,
af, (un,vn) = (X7 (un)) AT X (v).
Notice also that, again because I, (vy) = 0 for m™ +1 <i <m” +m*, we can write

m +mF

Ith—vh|T+ Z /J’TXth) 1<i<m® +mF,
j=1
where the family of reals {8 }1<j<mr4mr verifies Yy " m” 1, =1Let BT e R(mT +m™) x(mT+m")

be the matrix of elements 3;; and define the norm || - || as follows For all z € R +m”

mT4+m¥ |F|

]2 Z

The following result provides a computable local criterion expressed in term of the local ma-
trices {AT }reT;

)i (30)

Lemma 3.9 (Proof of Hypothesis 2.6). The bilinear form ay, is coercive if for all T € Ty, the
matriz AT is uniformly coercive for the norm || - ||, i.e. if there is C > 0 independent of h s.t.,

for allz € R™ +m" 2t ATz > C|z||2..
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Table 3: Convergence results for the FV method of §3.2 with anisotropy ratio of 1.

1/h | nunkw nnmat erl2 ocverl2 umin umax

16 255 3001 3.98e — 03 - 7.54e — 03 9.97e — 01
32 1023 12665 1.00e—03 1.99e+00 1.02¢—-03 1.00e— 00
64 | 4095 51961 2.7le—04 1.89e¢+00 2.79¢—04 1.00e+ 00
128 | 16383 210425 6.58e—05 2.04e+00 9.84e—05 1.00e—00

Proof. For all vy, € Vj,

an(vn,on) = Y af (wnyun) = Y (X (wn)) A"X (up) > C Y (IX" (wn) |7 = Cllunll3,,,
TeTh TeTh TETh
which concludes the proof. O
Lemma 3.10 (Proof of Hypothesis 2.7). Hypothesis 2.7 holds.

Proof. Estimates (13)—(14) classically hold for my = 7 (see, e.g., [18]). Let now ¢ € C(9), set
on & i and observe that, for all T € Ty,

F .
Glon) - Vo)r= 3 %aﬁoh — o(@p))iE + (Vol(ir) - Vo)
FeFr
ol — p(@r))uh — Velir) | € ST + 8T + 87
+ 7] P@r) = @i = Velar) | = {453 + 55,
FeFf

where we have used the fact that, owing to assumption (iii) in Definition 1, ) . Fr pk =0 for all

T € Ty to replace pn|r with (i7) in 5. Clearly, [|G(pn) — Voll72 gy < 3%, 15T 1Ep2 e
Estimate (27) together with (28) yields, for all T' € Ty,

Fldrr |TEon — o(zr)|
ERESY | ||T| £ i < CLdhr,
FeFt ’

so that ||ST || iz2(@)« < CL|Q|'/?dhr. On the other hand, using classical estimates for 7, we con-
clude that ||SQT||[L2(Q)]d < Chrllolliar (r))e- Finally, thanks to the regularity of ¢, there is C;; de-
pending on ¢ and on the mesh regularity s.t. ||53T||[2L2(T)]d < CUIT|R3, ie., |57 2oy < CalQM2h.
The above estimates yield the desired result. O

For the sake of completeness, the order of convergence of the new FV method presented in
this section has been numerically evaluated by solving the Dirichlet problem for d = 2 with
u = sin(mz) sin(7y) (Umin = 0, Umax = 1), f = —Aw and anisotropy ratios of 1 and 1000 on a
family of randomly perturbed quadrangular meshes of (0,1)2. The results are reported in Tables
3.2 and 3.2 and show second order convergence as well as robustness with respect to anisotropy
and mesh skewdness. The following indicators are also listed: (i) nunkw, the number of unknowns;
(ii) nnmat, the number of nonzero matrix entries; (iii) erl2, the L? error; (iv) ocverl2, the order
of convergence for the L? error; (v) umin and umax, the minimum and maximum value of the
discrete solution. A torough validation of the above method will be the subject of a future work.
An asimptotic a priori analysis can be performed following the guidelines of [23], but it lies out
of the scope of the present work.
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Table 4: Convergence results for the FV method of §3.2 with anisotropy ratio of 1000.

1/h | nunkw nnmat erl?2 ocverl2 umin umax

16 255 3001 2.82e—01 - —2.93e—-01 1.10e+00
32 1023 12665 7.98e—02 1.82e+00 —1.22¢—01 1.01e+00
64 | 4095 51961 2.00e —02 2.00e +00 —1.04e—01 1.00e+ 00
128 | 16383 210425 3.94e—03 2.34e+00 —8.36e—03 1.00e—00

Figure 2: A face based cone for d = 2.

3.3 A hybrid finite volume method

The goal of this section is to show that the hybrid finite volume method proposed in [24] fits in the
frameword of §2. Hypothesis 3.2 is assumed to hold and P?(73) is again equipped with the norm
defined in (26). To this purpose, for each T' € Ty, for all F € F' we let Kr r denote the cone
defined by F and zr (see Figure 3.3). Throughout this section, zr will denote the barycenter of
a face F' € Fp,. Thanks to Hypothesis 3.2, the cones are well-defined and they satisfy

|F|dr,r

|Kr,r| = 7

(31)
Define the spaces of hybrid unknowns:
H, déf Rcard(Th)xcard(}'h) — {{uz’ 0 def

Yrem, {un }res.}, {vn € Hp; vf =0, VF € Fp}.

For all h € H, we let S, & {K1,r}rer, rerr) and set

Vi € H), 3, ¥ [PSH)

The space V}, is equipped with the following norm:
def F
ol 2 3 Y ELep -y
TETh FE}'T
The gradient reconstructions are defined as follows: For all vy, € V},
G(0n)kr,r = G(vn) ks = Gr(vn) + Rryr(on)pfp, VK11 € S,

where we have set

o 1 o d1/2
Gr(v) < 7 2 |Flen —o)uf, Rrr(on) € —— (of — ol —Gr(on)-(ar — 7)) -
Fe}‘T o

The reconstructlon operator rh Vi = P2(Th) is defined as follows: For all vy, € Vi, r) vp, = py € PX(Th)
with pp 7 = vh, for all T € T,. The 1nterpolat10n operator onto V}, is defined as follows: For all

P €CX(Q), n)p=ypn €V, with oI =@(zr) for all T € Tp, pf = ¢(zr). Observe that
belongs to V}, since ¢ vanishes on the boundary of Q.
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Remark 3.9. For all T € Ty, and for all # € R?, the following relation holds:
Z |F|(IJF) (zr — 2); = 055(T1, (32)
FeFT

where the ith component of a vector quantity was denoted (-); and d;; is the Kronecker symbol.
Proposition 3.1. For all v, € V,, and for all oy, € [PP(Th)]%,

Z Z |K1,p|on 1 Rr,r(v) = 0.

TeTn FEFT
Proof. Using the definition of the residual, we obtain

K K
Y a o | 3 B it - 3 B G ) (0 - aru

dr,F T.F
TET FerFT Fery 7

Let S; and S, the addends in brackets. By definition, S; = |T|d='Gr(v). On the other hand,
(31) together with (32) yield

T
Sy = GT (vr)) Z |F|(zp — z1)ip —%GT(%),
FeFrTl
and the desired result follows. O

Lemma 3.11 (Proof of Hypothesis 2.3). Hypothesis 2.3 holds.

Proof. The bound (7) can be proved as in Lemma 3.6. In order to prove (8), observe that, owing
to Proposition 3.1,

IG@R)Frzye = D D [KrrellGlon)?

TeTn FEFT
= 3 MG+ Y Y [KrrllBrr)? & S+ 5.
TETh TeTh FeFT

For the first term, using (31) together with (28) we have

Fl|d F
Si= Yl 3 Pt ot < 3 FEEE x5 STl - oy <dlonl.

TeTh FeFf TeTh FEFT FeFrf dr.r
(33)
Substituting the expression of Rt r in the second term yields
|F | lzr — z7|?
$<2| > D Ok —vi)’+ Y Y [KrrllGron) =5 | <21+esd)lonlly,
TeTh Fe]—'T TET, FeFT T.F
which proves the assert. O

Lemma 3.12 (Proof of Hypothesis 2.4). Hypothesis 2.4 holds.

Proof. Let {vp}nen be a sequence in V}, satisfying the assumptions of Hypothesis 2.4. The se-
quence {G(vp)}rhen is bounded, and it converges (up to a subsequence) to some 7 € [L2( ) It
only remains to prove that 7 = Vv for a.e. z € RY. Let ® € [C°(R?)]? and let &, = n} ®. We
have

(Gwn), ®)zamays = Y (Grlon), ®)peerye + Y. > (Rrur(On)iE, ®) (kg s & Si + Sa.

TETh TeTn FEFT
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Integrating by parts the second addend on the left hand side, simple algebraic manipulations yield

(G (vh), ®)(r2(0)e + (V-®, 7} vn)r2(0)| :‘ Z Z |F|(vf, — v )(®F — ®F)-ur
TeTn FEFT

<llwallvi | D D |Fldrr(®) —&5)7 ]

TeTh FEFT

which proves that S; — —(v, V-®)2ge) as h — 0 since the sequence {vp}rey is bounded in the
[| - |lv, norm. Let us now consider the second term. Owing to the regularity of ®, there exists
Cs > 0 only depending on ® s.t. |fKTF(<I> — 7| < Cg|Kr,r|h. Using Proposition 3.1 with

op = @, and (33), Cauchy-Schwarz inequality yields

Sy = Z Z (Rr,r (vn)pg, ® — ®p) L2 (Kp )t < Z Z |Rr,r( Uh|‘/ (@ - @)

TETh FeFT TeTh FEFT Kr.r

N|=

< V2Csh|l* (Ilonll?, +de2IGr () Byaqys ) < VECahIRI (1 + dos)lonllvi,

which proves that S2 — 0 as h — 0. O

Since residual terms are incorporated in the gradient reconstruction, the above method can
be shown to be stable without further penalization. We thus take jj(up,vr) = 0, which trivially
satisfies Hypothesis 2.5.

Let vy, € [PP(Th)]**? be s.t., for all T € Ty, var = [pv/|T|.

Lemma 3.13 (Proof of Hypothesis 2.6). Hypothesis 2.6 holds.

Proof. Let vy € V4. Using Proposition 3.1 with o s.t. opjr = Gr(vg) for all T € Tp,

def
an(vn,vn) = > [TlvnrGr(vn)-Gr(wn) + Y, > |Krplvnrup-ppRrr(vn)® S Sy + Ss.
TETh TeTn FEFT

Clearly, S; > AHGT(vh)H{QLQ(Q)]d. Observe that, for € > 0 and for all (a, b) € R2, (a — b)?

Applying the above inequality with a = v} — vl and b = Gr(vp)-(zF — o) yields:

€
Z 14+¢

2

T — %

S 2 12l —edX Y Y [KrrllGr(on P22
TeTh FEFT T’F
€A — _
> 1_:6||Uh||%/,, —edgiX > |T||Gr(vn)|* = 1+ ——lvnll%;, — edggMIGr(vn)|IFL2 (04
TeTh

Coercivity thus holds for € < \/(doZ ). O

Remark 3.10. A coercivity constant independent of the anisotropy ratio A/A could be derived
proceeding as in [25]. We have preferred this shorter proof for brevity of presentation.

Lemma 3.14 (Proof of Hypothesis 2.7). Hypothesis 2.7 holds.

Proof. Let ¢ € C°(2) and set ¢, % 7V, Observe that

lenllsn = D > |KTF|d2 on —en)’

TeTh FeFF

2
rrp — T
<d|Volipoye D D |KT,F||d27| < do3 (VeI (cal Qs
TET, FeFT T.F
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ie., (13) is verified with o, = (d|Q[)*/?05||V¢||[r=(0)e- The proof of (14) is classical and will be
omitted (see e.g. [18]). It has been proved in [25, Lemma 4.3] that [|G(vs) — V|| (e < Cph,
where C, > 0 is a parameter depeding on ¢, on d and on the mesh regularity parameters g;,
i€{1...3,5}. As a consequence, ||G(vy) — Vollr2ye < [QY2[|G(vh) — V|l oy tends to
zero as h — 0, which concludes the proof. O
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