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Abstract. Estimation of precipitable water (PW) in the
atmosphere from ground-based Global Positioning System
(GPS) essentially involves modeling the zenith hydrostatic
delay (ZHD) in terms of surface Pressure (Ps) and subtract-
ing it from the corresponding values of zenith tropospheric
delay (ZTD) to estimate the zenith wet (non-hydrostatic) de-
lay (ZWD). This further involves establishing an appropri-
ate model connecting PW and ZWD, which in its simplest
case assumed to be similar to that of ZHD. But when the
temperature variations are large, for the accurate estimate of
PW the variation of the proportionality constant connecting
PW and ZWD is to be accounted. For this a water vapor
weighted mean temperature (Tm) has been defined by many
investigations, which has to be modeled on a regional basis.
For estimating PW over the Indian region from GPS data,
a region specific model forTm in terms of surface temper-
ature (Ts) is developed using the radiosonde measurements
from eight India Meteorological Department (IMD) stations
spread over the sub-continent within a latitude range of 8.5◦–
32.6◦ N. Following a similar procedureTm-based models are
also evolved for each of these stations and the features of
these site-specific models are compared with those of the
region-specific model. Applicability of the region-specific
and site-specificTm-based models in retrieving PW from
GPS data recorded at the IGS sites Bangalore and Hyder-
abad, is tested by comparing the retrieved values of PW with
those estimated from the altitude profile of water vapor mea-
sured using radiosonde. The values of ZWD estimated at
00:00 UTC and 12:00 UTC are used to test the validity of
the models by estimating the PW using the models and com-
paring it with those obtained from radiosonde data. The
region specificTm-based model is found to be in par with
if not better than a similar site-specificTm-based model for
the near equatorial station, Bangalore. A simple site-specific
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linear relation without accounting for the temperature effect
throughTm is also found to be quite adequate for Banga-
lore. But for Hyderabad, a station located at slightly higher
latitude, the deviation for the linear model is found to be
larger than that of theTm-based model. This indicates that
even though a simple linear regression model is quite ade-
quate for the near equatorial stations, where the temperature
variations are relatively small, for estimating PW from GPS
data at higher latitudes this model is inferior to theTm-based
model.

Keywords. Meteorology and atmospheric dynamics (Tropi-
cal meteorology) – Radio science (Atmospheric propagation;
Remote sensing)

1 Introduction

Water vapor plays a major role in many of the atmospheric
and geophysical phenomena, which include transfer of en-
ergy and formation of clouds and weather system. Weather
forecast models demand water vapor information with high
temporal resolution over a wide geographical region. Large
variability of atmospheric water vapor content in short spa-
tial and/or temporal scales makes its measurement rather in-
volved and expensive. While direct measurement of wa-
ter vapor content using Water Vapor Microwave Radiome-
ter (WVMR) is very expensive, measurements using Ra-
diosonde is time consuming. Satellite based microwave re-
mote sensing, at the present state of its art, proves to be an
effective tool for this purpose because it can provide the in-
formation even over inaccessible regions like oceans, etc.
However, revisit time of polar orbiting satellites limits the
temporal resolution. Satellite based water vapor measure-
ments over land is far more difficult because of the large het-
erogeneity of land surface features. The land surface also
acts as a warm background for microwave remote sensing of
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atmosphere. As a result, most of the satellite-based measure-
ments of atmospheric water vapor prove to be more useful
over the oceanic regions.

A local network of GPS receivers is an effective alterna-
tive for water vapor remote sensing over the land (Businger et
al., 1996) and this recently developed technique proves to be
very effective in measuring Precipitable Water (PW), which
is the height of the liquid water column when the entire water
vapor in a vertical column of the atmosphere is condensed, as
clouds and precipitation do not significantly affect the prop-
agating GPS signals at 19 and 24 cm wavelengths. Rocken et
al. (1993, 1995, 1997), demonstrated the capability of ground
based GPS system for measuring PW with an accuracy of
few millimeters. Emardson et al. (1998) and Tregoning et
al. (1998) also have reported similar measurements of PW
from GPS observations. However, most of these studies are
carried out over the mid-latitude regions where the average
PW is<20 mm. This points the importance of PW measure-
ments using GPS over tropical region, where the atmospheric
water vapor content is relatively large and perpetual cloud
cover and precipitation severely affect other remote sensing
techniques. The quantity of water vapor and its distribution
in the atmosphere is greatly influenced by the geographical
locations and climatic conditions. The Indian subcontinent
experiences both tropical and extra-tropical climates. While
the tropical atmosphere is relatively warm and can hold abun-
dant quantity of water vapor, in the extra-tropical regions the
atmospheric temperature as well as the water vapor content
show large seasonal variation.

As the wet component of the zenith tropospheric delay
(ZWD) derived from the GPS data by subtracting the hydro-
static component of the zenith delay (ZHD) from the zenith
tropospheric delay (ZTD) depends primarily on the atmo-
spheric water vapor content, this parameter could be used
for estimating the PW in the atmosphere. Since the quantity
of water vapor in the atmosphere is temperature dependent
and both these parameters vary with altitude, accounting the
effect of temperature profile in the estimation of PW is rather
complicated. This problem is attempted by many investiga-
tors to arrive at a parameter called the weighted mean tem-
perature (Tm), which is the water vapor weighted vertically
averaged temperature (Davis et al., 1985). While some of
these models are simple linear types, some others take care
of the periodic variations inTm also. Jade et al. (2005) made
a consolidation of different models used for estimatingTm

and presented a comparison. Most of these are linear models
(Mendes et al., 2000; Bevis et al., 1992, 1994; Solbrig, 2000;
Schueler, 2001) based on surface temperature (Ts), devel-
oped using the altitude profiles of atmospheric water vapor
and temperature obtained from different parts of the globe.
These linear models, considered as the global models, had a
variability of about±20% (Bevis et al., 1994), which could
be significant for many applications. Schueler (2001) also
proposed a pair of harmonic models forTm, accounting for
its seasonal variation through a periodic function. Ross and

Rosenfeld (1997) after an extensive study onTm based on the
meteorological data from 53 global stations (covering a wide
latitudinal region) concluded that site-specific model would
be superior to the geographically and globally invariant re-
gression relationship used forTm. But in tropics where the
correlation betweenTm and Ts decreases significantly this
superiority is not very prominent. This could be due to the
fact that the range ofTs variations over the tropics would be
rather small. In such cases it would be better to generate a
region specific model. This prompted examining the poten-
tial of a Bevis-type regional model for the Indian meteoro-
logical conditions. A statistical relationship forTm in terms
of Ts was established considering eight stations spread over
the continent from where good atmospheric data is available
through the regular radiosonde measurements conducted by
the India Meteorological Department (IMD). Of these eight
locations (listed in Table 1) we have only one IGS (Inter-
national GPS Service) station at the Indian Institute of Sci-
ences (IISc) campus, Bangalore, the data from which could
be used to retrieve the PW and validate the model. How-
ever, we have also examined the possibility of developing
Tm-based site-specific regression models for these stations
and examined its applicability at Bangalore (as the other lo-
cations do not have a ground based GPS receiver suitable
for PW retrieval). Over and above theseTm-based models,
the possibility of arriving a simple site-specific model for
PW directly in terms of the non-hydrostatic component of
zenith tropospheric delay analogous to that of ZHD in terms
of surface pressure (PS) (Saastamoinen, 1972; Saha et al.,
2007), and use it for the estimation of PW from GPS data of
Bangalore, is also examined. The accuracies of these mod-
els are examined by comparing the retrieved PW with that
obtained by integrating the water vapor density profile es-
timated from radiosonde measured altitude profiles of tem-
perature and dew point temperature. The GAMIT-10.2 soft-
ware is used for processing the GPS data (MIT and SIO,
2000) from Bangalore by incorporating the necessary sup-
plementary data from eight other IGS stations (Fig. 1) down-
loaded from the IGS website,http://garner.ucsd.edu/pub/ and
http://www.ngs.noaa.gov/CORS/Data.html.

2 Methodology

The range error (1R) caused by the propagation delay of mi-
crowave signal in the neutral atmosphere having refractiv-
ity N , which for convenience is defined asN=106×(n–1),
wheren is the radio refractive index of the atmosphere in
microwave frequencies, can be written as (Smith and Wein-
traub, 1953)

1R = 10−6
×

∫

N · ds + [S − D] (1)

whereD is the direct distance of the receiver antenna from
the satellite andS is the curved path length actually traversed
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Table 1. Mean value ofTm and5 along with their range of variability at different Indian stations.

Station Latitude Longitude Mean Range Mean Range
(◦ N) (◦ E) Tm (K) Tm (K)

∏ ∏

Trivandrum 8.5 76.9 287.8 4.1 0.164 0.002
PortBlair 11.6 92.5 287.6 3.6 0.164 0.002
Bangalore 12.9 77.7 284.1 6.0 0.162 0.003
Kolkata 22.6 88.5 287.3 12.0 0.164 0.007
Ahmedabad 23.1 72.6 287.3 12.4 0.164 0.007
Guwahati 26.1 91.6 285.3 11.8 0.163 0.007
Delhi 28.6 77.1 284.6 17.3 0.162 0.010
Srinagar 34.1 74.8 274.3 24.6 0.156 0.014

by the wave to reach the receiver antenna. Often ray trac-
ing technique is used to estimate1R which accounts for the
varying refractive index with altitude and the spherical shape
of earth’s atmosphere while calculating the contributions of
range error from the excess distance due to bending of wave
path (second part in Eq. 1) in off-nadir angles. To implement
the ray tracing the atmosphere is assumed to be divided into
a series of concentric homogeneous spherical layers each of
which is characterized by a mean refractive index. Succes-
sive application of Snell’s law to each of these spherically
stratified atmospheric layers allow the numerical integration
of refractive effect. In zenith direction as the refractive bend-
ing is absent, the delay is purely due to retardation in which
case the1R is referred to as “zenith tropospheric delay” or
ZTD. In this case Eq. (1) reduces to a simple integral ofN

along the zenith direction

ZTD = 10−6
×

∫ TOA

Zant

N · ds (2)

The integration is carried out from antenna height (Zant) to
the top of the neutral atmosphere (TOA). The refractivity,
N , has two components; the hydrostatic or dry component
(ND), which depends on Pressure (P) and Temperature (T )

asND=k1×P /T , and the non-hydrostatic or wet component
(NW ), which depends on Water vapor partial pressure
(e) and T as NW =k2×e/T +k3×e/T 2. The values of the
constantsk1, k2 andk3 are given ask1=77.60±0.05 K mb−1,
k2=70.4±2.2 K mb−1, k3=(3.739±0.0012)×105 K2 mb−1

(Bevis et al., 1994). This permits (Bevis et al., 1994; Askne
and Nordius, 1987; Neill, 1996) the estimation of Zenith
Hydrostatic Delay (ZHD) and Zenith Wet Delay (ZWD),
separately as

ZHD=10−6
·

∫

ND dz=10−6
{

k1

∫

P

T
dz

}

(3a)

ZWD=10−6
·

∫

NW dz=10−6
{

k2

∫

e

T
dz+k3

∫

e

T 2
dz

}

(3b)

In the above equationsP , e andT are respectively the al-
titude profiles of the hydrostatic pressure expressed in mb,

 

Fig. 1. The network of IGS stations around Bangalore (IISC) and
Hyderabad (HYDE) used in the present study. The other stations are
Manama (BAHR), Kitab (KIT3), Bishkek (POL2), Almaty (SELE),
Lhasa (LHAS), Wuhan city (WUHN), Sheshan (SHAO) and Singa-
pore (NTUS).

partial pressure of atmospheric water vapor in mb and atmo-
spheric temperature in Kelvin. For establishing the empiri-
cal relation connecting ZHD and ZWD with easily available
surface meteorological parameters (which is essential for the
estimation of PW from GPS data) the dependence of ZHD
and surface pressure (PS) and the dependence of ZWD on
columnar water vapor are examined.

For the retrieval of PW from GPS data the daily phase ob-
servations in the Receiver-Independent Exchange (RINEX)
format are collected at Bangalore (IISc) along with eight
other IGS stations. The eight IGS stations are chosen
based on a thorough optimization study (Tregoning et al.,
1998) starting with about 22 available IGS stations in and
around Bangalore (Suresh Raju et al., 2005). The optimum
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(a) 

(b) 

Fig. 2. Monthly mean values of dry range error in the zenith direc-
tion (ZHD) for Bangalore at 00:00 UTC and 12:00 UTC, respec-
tively in the upper panel and lower panel estimated by using mean
profiles of atmospheric pressure (P) and temperature (T ) for the
period 1995–1997, obtained from the radiosonde data (vertical bars
in both the panels are standard deviations in each month due to the
day-to-day variations ofP andT , estimated by applying the error
propagation formula (Ku, 1966))(a), and dependence of ZHD on
surface pressure (PS) is derived using the monthly mean values of
ZHD andPS (b).

combination is selected (Fig. 1) based on the normalized
r.m.s. value of the double differencing to be<0.25 cycles
and the post fit r.m.s. value to and by the satellite is<5, dur-
ing the GAMIT processing keeping the mandatory require-
ment of using GPS data from the same satellite for these
stations. The two hourly bins required for processing the
data is chosen such that one such bin will match with the

morning radiosonde sounding (00:00 UTC) and another with
the evening radiosonde sounding (12:00 UTC) of the IMD
at Bangalore. The GAMIT estimates the propagation delay
(Davis et al., 1985; MIT and SIO, 2000) mapped to zenith
direction (ZTDGPS) using the mapping function developed
by Niell (1996). To minimize the error due to multi-path
and effect of lower troposphere where spatial gradients in at-
mospheric refractive index can be significant, a lower cutoff
value of about 15◦ is fixed for the minimum elevation angle
(Ohtani et al., 2000). The hydrostatic component of zenith
range error (ZHD) is estimated through models developed
based on the atmospheric pressure at surface. This compo-
nent is subtracted from the GPS derived ZTDGPS, to estimate
ZWD and hence to derive PW.

It would be worth in this context to note that the IGS sta-
tion and the IMD station (from where radiosondes are being
launched regularly) at Bangalore are not collocated. While
they are separated horizontally by∼6 km, the IMD site is sit-
uated at an elevated location which is∼100 m above that of
the IGS site. The surface met parameters are also measured
at the IMD site. The surface pressure, which will be used
along with the GPS-derived Zenith delay to estimate the PW
is obtained from thePS measurements at the IMD site after
correcting for the station elevation using a mean scale height
of 8 km, arrived from the measured pressure profiles. The
effect of horizontal separation however, is neglected.

3 Linear model of ZHD for Bangalore from radiosonde
data

Estimation of ZWD from ZTDGPS essentially requires em-
pirical model for ZHD in terms of surface meteorological
parameters. For this, mean profiles ofP , T and e in dif-
ferent months are generated using the daily radiosonde data
collected at 00:00 and 12:00 UTC by the IMD at Bangalore
for the period 1995 to 1997. These mean profiles in differ-
ent months usually extend up to∼26 km (∼7 mb level) forP
andT and up to∼12 km fore. Using these profiles the mean
value of ZHD (the true zenith hydrostatic delay) in differ-
ent months for Bangalore are estimated employing Eq. (3).
The month-to-month variation of mean ZHD thus estimated
is presented in Fig. 2a separately for 00:00 and 12:00 UTC.
The vertical bars indicate the standard deviations depicting
the extent of day-to-day variability in ZHD for each month,
which amounts to be around±5 cm. The annual mean value
of ZHD is∼2.1 m and the deviation of mean ZHD in a month
from this annual mean is<1.5 cm. A close examination of
this annual variation of ZHD reveals that the pattern is very
similar to that of surface pressure (PS) at Bangalore. This
prompted establishing a linear relation between ZHD and
PS . A scatter plot of meanPS with mean ZHD in different
months generated for this is presented in Fig. 2b. Values cor-
responding to both 00:00 and 12:00 UTC are incorporated
in this scatter plot (resulting 24 points in total). Obviously
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this figure shows a linear increase in ZHD with increase in
PS with very little scatter. Taking note of this fact, a simple
linear relationship connectingPS with ZHD is established
(Saha et al., 2007) in the form

ZHD = qd × Ps (4)

Through regression analysis the value of the proportionality
coefficient,qd , turns out to be 2.3±0.00032 mm mb−1 with
a correlation coefficient of 0.97, which is significant (Fisher,
1970) atp<0.001 level of significance, with a standard devi-
ation for the fitted line (σ) of 0.0014 m.

The applicability of this empirical model for predicting the
daily values of zenith hydrostatic delay is examined using the
upper air data obtained through daily radiosonde ascents for
the year 2001–2002. Those good radiosonde data for which
the altitude profiles ofP andT extend above 25 km and those
of e extending up to the upper troposphere only are consid-
ered for this purpose. However, even with this stringent con-
dition sufficient profiles (around 1065) ofP , T ande were
available to generate a good statistics. The normalized mean
of absolute difference between the true estimates (Eq. 3a) and
model estimate (Eq. 4) of ZHD was less than±8 mm which
comes out to∼0.4% of the mean value. This would lead to
an uncertainty of around±1.2 mm in the estimated PW.

4 Linear model of PW in terms of ZWD for Bangalore
from radiosonde data

The monthly mean values of the wet component of zenith
tropospheric delay (ZWD) are estimated using Eq. (3b) em-
ploying the mean altitude profiles ofe andT obtained from
daily radiosonde profiles of Bangalore for the period 1995–
1997. The month-to-month variation of ZWD for 00:00 and
12:00 UTC are depicted in Fig. 3a. The mean ZWD varies
from 15 cm to 28 cm with a day-to-day variability of±12 cm
(nearly 45% of the mean value). This large variability in
ZWD is mainly due to corresponding variations in atmo-
spheric relative humidity. The altitude profile of water vapor
density (ρV , in kg m−3) is estimated from the altitude profiles
of e andT employing the equation of state (e=ρν Rυ T )

for water vapor. Integrating the altitude profile ofρv up to its
highest altitude the columnar (integrated) water vapor (IWV)
and Precipitable water vapor (PW) are estimated as

IWV =

∫ TOA

Zant

ρv dz (kg m−2) (5a)

PW =
IWV

ρl

(m) (5b)

whereρl (kg m−3), is the density of liquid water, which is
approximated as 103 kg m−3 for the present study. Often PW
is expressed in mm to avoid small decimal values. In order
to establish an empirical relation connecting PW with ZWD,
the mean value of ZWD (from Eq. 3b) is plotted against the

 

(a) 

(b) 

Fig. 3. Monthly mean values of wet range error in the zenith direc-
tion (ZWD) for Bangalore at 00:00 UTC and 12:00 UTC, respec-
tively in the upper panel and lower panel estimated by using the
mean profiles of partial water vapor pressure (e) and temperature
(T ) for the period 1995–1997, obtained from radiosonde data (ver-
tical bars in both the panels are standard deviations in each month
due to the day-to-day variations ofe andT , estimated by apply-
ing the error propagation formula (Ku, 1966))(a), and dependence
of Integrated columnar (precipitable) water vapor (PW) on ZWD is
derived using monthly mean values of ZWD and PW(b).

corresponding value of PW; both estimated using the mean
altitude profile of water vapor. A scatter plot thus obtained
is presented in Fig. 3b. As can be seen from this figure
the points are mostly aligned along the straight line. The
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Fig. 4. Variation of Tm with Ts based on upper air data for the
period 1995–1997 for eight selected met-stations spread over Indian
subcontinent (8.5◦ N–32.6◦ N).

empirical relation connecting the two obtained through re-
gression analysis, yielding a correlation coefficient of 0.999,
is of the form,

PW = (0.153± 0.00016) × ZWD (6)

The accuracy of the model is further examined by studying
the absolute difference of model prediction from the true es-
timate employing daily radiosonde measurements for the pe-
riod 2001–2002. The mean absolute difference in PW was
found to be∼1.6 mm. Equation (6) is used in later part of
this manuscript for estimating precipitable water vapor from
GPS derived zenith wet delay (ZWDGPS).

5 Adaptation of Bevis model for Indian region

As seen from Eq. (3b), the wet component of zenith delay
depends on the altitude profiles ofe andT . But the amount
of water vapor present in air itself is related to temperature,
which complicates the modeling. This prompted many inves-
tigators to account for the altitude variation of temperature
through a term called weighted mean temperature (Tm) and
use it along with PW to relate the later with ZWD. Askne and
Nordius (1987) attempted to relate the PW and ZWD through
a linear relation given as:

PW = 5 × ZWD (7)

Where, 5 is the proportionality coefficient, which is re-
lated toTm (Askne and Nordius, 1987; Bevis et al., 1992).
Note that this relationship is similar to that presented through

Eq. (6) except for the fact that in Eq. (7) the variation of the
proportionality coefficient (5) with temperature is taken into
account through the weighted mean temperatureTm defined

as (Bevis et al., 1994)Tm=

∫

(e(z)/T (z)) dz
∫ (

e(z)
/

T 2(z)
)

dz
, wheree is the

water vapor partial pressure expressed in mb and tempera-
turesT andTm in K. 5 is non-linearly related toTm, though
the typical value of5 is ∼0.15, it varies from place to place
and also depends on seasons. Being a function ofTm, 5

varies as much as 20% with latitude, altitude and time of the
year (Bevis et al., 1994). Using the altitude profiles ofe and
T from various mid-latitude stations (27◦ to 65◦ N) Bevis et
al. (1992) arrived an empirical relation connectingTm andTs

of the formTm=70.2+0.72×Ts . This relation, hereafter will
be referred to as “Bevis model”, for convenience. A similar
empirical model forTm based on radiosonde measurements
from eight locations (Table 1) over the Indian subcontinent
employing about 4104 good radiosonde profiles with humid-
ity measurements extending up to or above 10 km during the
period 1995 to 1997 is attempted. The value ofTm estimated
for different surface temperatures are presented in a scatter
plot shown in Fig. 4. A linear relationship, established be-
tween the two following regression analysis and the best-fit
straight line, is also shown in this figure. This yields an em-
pirical relation betweenTm andTs in the following form

Tm = (62.6 ± 1.67) + (0.75± 0.006) × Ts (8)

This figure shows that the values ofTm vary in the range
265 to 295 K for a corresponding variation of 265 to 315 K
in Ts . There is a high density of points forTs>290 K and
low density of points forTs<273 K (mostly belong to Srina-
gar (32.67◦ N) located at 1600 m above m.s.l.). In Bevis et
al. (1992), there were quite a few cases with estimatedTm

values being larger thanTs , which was attributed to strong
temperature inversions near the surface, a phenomenon usu-
ally encountered at high-latitudes. However, such cases sel-
dom encountered in our analysis. It would be worth in this
context to note that similar attempts to relateTm with Ts was
pursued by various investigators at different contexts, a con-
solidation of which is provided by Jade et al. (2005). They ar-
rived at different values for the coefficients in Eq. (8). While
the intercept varied in the range 50.4 K to 86.9 K, the slope
varies in the range 0.65 to 0.79. In this scenario it would
be more meaningful to compare the end product,Tm, for the
range ofTs values usually encountered than examining the
agreement in coefficients of “Bevis” and “Bevis Adapted for
Indian region (BAI) regional model” (Eq. 8). For the range
of Ts 282 to 312 K, which is usually encountered over the
study region (Fig. 4) the values ofTm obtained from Bevis
model ranges from 273 to 295 K, while that from Eq. (8)
ranges from 274 to 297 K, resulting a net difference of 1–2 K,
which is not very significant. However, for a more quanti-
tative comparison, the PW was estimated for different days
(about 605 days) during 2001–2002 employing both these
equations and the r.m.s. deviation between the two was found
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Fig. 5. Variation ofTm with Ts for the individual stations located at 8.5◦ N–32.6◦ N over Indian sub-continent based on upper air data for
the period 1995–1997. the geographical locations of these stations are furnished in Table 1. The dynamical range ofTm andTs and the
correlation ofTm with Ts increase with increase in latitude.

to be<0.18 mm, which is rather small considering the re-
gional differences (Jade et al., 2005) which is∼20%.

Based on the Eq. (8) the mean values of5 andTm as well
as their month-to-month variability are examined for differ-
ent Indian stations, which are summarized in Table 1. The
features are quite obvious. The range of variability is small
for the low latitude stations, and increases with increasing
latitude. For Bangalore the mean value of5 is about 0.0162,
which is marginally larger than the typical value reported for
American stations (Bevis et al., 1994; Ross and Rosenfeld,
1997) based on Bevis model.

In the above we have considered eight stations spread
over the Indian subcontinent extending from tropical to mid-
latitudes for establishing the relationship betweenTm and
Ts . But as noted earlier, Ross and Rosenfeld (1997) recom-
mended for a site-specific model as superior to geographi-
cally invariant regression. This aspect also is examined in
the Indian scenario. Figure 5 shows a scatter plot ofTm with
Tsseparately for the eight stations considered for the analysis
along with the best-fit regression line in each case. The re-
gression coefficients thus arrived is also shown in the respec-
tive frames. This model hereafter will be referred to as “BAI
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(a) 

(b) 

Fig. 6. Daily precipitable water estimated from GPS data for Banga-
lore using BAI regional model and site-specific linear model along
with those derived from radiosonde data at 00:00 UTC(a) and
12:00 UTC(b) for the period January 2001 to October 2002.

site-specific model”. As can be seen from this figure, for
the tropical stations the points are mostly clustered around
a small region because the range ofTs variations is small.
The spread of the points increases with increase in latitude.
For the tropical stations the derived coefficients deviate sig-
nificantly from that of Eq. (8), while those for the midlati-
tude stations tend to become closer. On comparing the val-
ues ofTm obtained from the “BAI regional” model and “BAI
site-specific” model for the range ofTs values encountered
at Bangalore (287–307 K), it can be seen that while the for-
mer yieldsTm in the range 277.9 to 292.9 K, the latter yields
Tm in the range 279.9 to 286.1 K, resulting a deviation of
around 2 to 6 K depending onTs . Note that the difference
between “Bevis” and “BAI regional” models in this case is
only around 1 K.

Fig. 7. Altitude profiles of water vapor partial pressure (e) from ra-
diosonde, PW up to different altitudes and its percentage to column
integrated value on two typical days for Bangalore. The column in-
tegrated PW frome profile and PWGPSare marked. Left side axis
shows the height above the surface and right side axis shows the
altitude above the m.s.l.

6 Estimation of PW from GPS data

The GAMIT uses the GPS data at 30 s interval from eight
stations along with that of Bangalore (Fig. 1) for a period
of two hours and outputs one mean value of ZTDGPS. Us-
ing this algorithm ZTDGPS for Bangalore is estimated at 2-
h interval for different days during the period 2001–2002.
The accuracy of GPS data processing is confirmed by com-
paring these values with those reported by the IGS on their
sites at SOPAC/CSRC archive available at http://garner.ucsd.
edu/pub/troposphere/ (the absolute difference is found to be
<8 mm). Once confidence is established in our GPS data
analysis, the hydrostatic component of zenith tropospheric
delay is estimated, employing Eq. (4) using the appropriate
value ofPS , and subtracted it from the ZTDGPSto obtain the
ZWDGPS for different days during the study period. ThePS

values measured at the IMD site are corrected for the eleva-
tion difference as detailed earlier and used for this purpose.
These values of ZWDGPSat 00:00 UTC and 12:00 UTC are
used for estimating PW, employing the site-specific linear
model (Eq. 6) described in the first part of this paper as well
as the regional model (“BAI regional”) established based on
Tm (Eqs. 7, 8) and site-specificTm-based model (“BAI site-
specific” refer Fig. 5) for Bangalore are used. The basic

Ann. Geophys., 25, 1935–1948, 2007 www.ann-geophys.net/25/1935/2007/

http://garner.ucsd.edu/pub/troposphere/
http://garner.ucsd.edu/pub/troposphere/


C. Suresh Raju et al.: Empirical model for mean temperature for Indian zone 1943

(a) 

(b) 

Fig. 8. Difference between Radiosonde derived PW and GPS derived PW for 00:00 UTC and 12:00 UTC for Bangalore. The left-hand side
panels show the deviation of PWGPSestimated employing the linear model from radiosonde derived values, while the middle and right-hand
side panels show the same for BAI regional model and BAI site-specific model(a). Percentage distribution and cumulative percentage
(number of occurrences above a particular value in the case of positive deviations and number of occurrences below a particular value in the
case of negative deviations) distribution of the deviations shown on different panels of Fig. 9a(b).

difference between the linear and BAI models is that while
the latter models accounts for the effect of temperature vari-
ations the former does not.

In order to establish the general applicability of the model,
PW is estimated from the GPS data (PWGPS) for 22 months
during the period January 2001 to October 2002, a time se-
ries plot of which is presented in Fig. 6 (blue curve). The

top panel in this figure shows the PW values retrieved for
00:00 UTC and the base panel those for 12:00 UTC. For a
direct comparison, the value of PW derived from radiosonde
profiles for the respective timings is also plotted along the
same estimated from the GPS data. The agreement between
the two (GPS and radiosonde) is fairly good. Though in most
of the cases the profiles of water vapor density derived from
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Fig. 9. A scatter plot of PWGPSestimated using linear model and BAI models verses the PW derived from the altitude profiles of water vapor
estimated from radiosonde data for Bangalore. Scatter plot generated from the time-series data of PWGPSand PW derived from radiosonde
for the period January 2001 to October 2002.

radiosonde exceeds 6 km, in a few cases they could be con-
fined to a lower altitude, which could be one of the reasons
for over estimate of PWGPS. But even for those cases in
which the water vapour profiles extend up to the upper tro-
posphere, PWGPScould be an overestimate. Figure 7 shows
a typical example of two cases in which thee profile is ex-
tending up to∼13 km, in one case the GPS underestimates
the PW while in the other it overestimates. Note that in all
cases the PW is estimated from the station altitude up to the
relevant top-altitude. It may also be noted that>95% of the
columnar water vapour (or PW) is contributed by the alti-
tudes below 6 km.

7 Results and discussions

Figure 6 shows that the values of PW is relatively low during
the period December–February (<25 mm) with a day-to-day
variation of∼4 mm. It shows a gradual increase during the
March–April period and reaches its peak during June, when
the southwest monsoon sets over the southern part of Indian

peninsula. It remains fairly high, with mean value>32 mm,
up to September and starts decreasing thereafter. It may also
be noted that the atmospheric water vapor content is rela-
tively large during the evening hours (∼12:00 UTC).

The GPS derived PW is compared with that estimated by
integrating the humidity profile derived from radiosonde data
on a day-to-day basis. The difference between the two on
each day is presented in Fig. 8a. Only those radiosonde
data for which the water vapor density profiles extending
up to upper troposphere, are used for this purpose. The
top panel shows a plot of this difference at 00:00 UTC and
the base panel the same for 12:00 UTC. In most of the
cases the deviation is less than±10 mm. Deviations ex-
ceeding±10 mm are mostly observed during April–May and
September–November period which could partly be due to
large spatial heterogeneity in water vapor distribution asso-
ciated with short range convective systems. It is also inter-
esting to note that compared to 12:00 UTC, the number of
cases in which the deviations exceed±10 mm is very small
at 00:00 UTC.
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(a) 

(b) 

(c) 

Fig. 10. Cumulative percentage (number of occurrences above a particular value in the case of positive deviations and number of occurrences
below a particular value in the case of negative deviations) distribution of the deviations shown on different panels of Fig. 8a after accounting
for the height correction in water vapor profile at 00:00 UTC(a), 12:00 UTC(b) and combining both 00:00 and 12:00 UTC(c).

Moreover, on examining the relative merits of the three
models based on deviations it is seen that large deviations
exceeding±10 mm is very small for the case of linear model
compared to the other two. A plot of the frequency distri-
bution of these deviations along with its cumulative percent-
age distribution (taking sign also into account) for the three
cases is presented in Fig. 8b. The cumulative distribution is
relatively sharp in the case of linear model indicating that
the large deviations are less probable. While the probability
of positive deviations are more for linear model, in around
30% cases the deviation exceeds±6 mm. For linear model in
<5% cases the deviations exceed±10 mm while for the other

models it is between 5 to 10%. For 00:00 UTC while the
mean absolute difference for the linear model is∼3.76 mm,
the BAI regional and BAI site-specific models shows devia-
tions of∼3.82 mm. For 12:00 UTC, while the mean devia-
tion for linear model is 3.93 mm that for the BAI regional and
site-specific models are, respectively, 4.22 mm and 4.14 mm.

Figure 9 shows the scatter plot of the day-to-day values
of PW derived from GPS data at Bangalore using the site-
specific linear model, BAI regional model and BAI site-
specific model verses the corresponding values estimated
from radiosonde. The mean absolute difference, correlation
coefficient, slope and bias of the best-fit line are also listed
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Fig. 11. Bar-chart showing a comparison of monthly mean values
of PWGPSat Bangalore using site-specific linear model (Eq. 6) and
BAI regional model (Eqs. 7, 8) for the year 2001 along with cor-
responding values of PW derived from radiosonde data and those
reported by Jade et al. (2005).

in respective frames. While the mean difference is small for
00:00 UTC, the bias is very small and the slope is more close
to unity for 12:00 UTC. Examining the mean differences, it
is seen that the linear model gives equally good values of
PWGPS, if not better, as those from BAI model which re-
veals that incorporation of temperature influence through

∏

could not significantly improve the accuracy of PW estima-
tion from GPS data.

To study whether these biases have been generated be-
cause of the altitude difference in the PW measurements from
the GPS and the Radiosonde site, the water vapor profile
from radiosonde is extrapolated using proper scaling tech-
nique to the GPS site altitude. The cumulative frequency of
the deviation of GPS estimated and radiosonde estimated (af-
ter extrapolating the water vapor) PW is presented in Fig. 10.
The top and the middle panel are respectively for 00:00 and
12:00 UTC and the base panel represent the composite dis-
tribution combining the data for 00:00 and 12:00 UTC. It is
found that after accounting for the height difference (∼100 m
in this case) between the GPS and radiosonde sites, the
mean deviation in PW is∼4.0 mm for all the three models.
While the probability of positive deviations is more for linear
model, in around 35% cases the deviation exceeds±6 mm.
For linear model in∼80% cases the deviations are between
±2 mm while for the other models it is between 60 to 70%.

It would be worth in this context to compare the PW esti-
mates from different models with radiosonde derived values
on a monthly mean scale. The Fig. 11 shows a bar-chart pre-
senting the monthly mean values of PW for the year 2001,
obtained from radiosonde data along with those estimated

 

(a) 

(b) 

Fig. 12. Daily PW estimated from GPS data for the year 2003 using
BAI regional model and site-specific linear model along with those
derived from radiosonde data at 00:00 UTC, for Bangalore(a) and
same for Hyderabad(b).

from GPS data employing the two models described above
and those reported by Jade et al. (2005) who used the Bevis
model. The seasonal variation in PW is well depicted in all
the estimations. Standard deviations amounting to∼10 mm
in each month indicate large day-to-day variability. While
the GPS underestimate the PW in the first half of the year
(January–May), it overestimates in the later part. The devia-
tions are≤4 mm during the winter period and≤2 mm during
the summer/monsoon period. However, it would be worth
in this context to note that typical accuracies associated with
radiosonde measurements as quoted by Bisagni et al. (1989)
are respectively for the barometric pressure about±2.0 mb,
temperature about±0.4 K and for relative humidity±4%.
This can lead to an error of approximately 2.0 mm in PW
estimation (Elgered, 1993).

The applicability of these models at another location over
the subcontinent is examined using the GPS data from Hy-
derabad (17.45◦ N and 78.46◦ E), a station located 5◦ North
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of Bangalore. Though GPS data from Hyderabad is avail-
able since November 2002, good quality continuous one
year data from January 2003 is used for this study. In or-
der to accomplish a direct comparison the GPS data from
Bangalore for the same period is also analysed and the
results are inter-compared. Site-specific hydrostatic and
non-hydrostatic delay linear regression models (similar to
Eqs. 4 and 6) established for Hyderabad, yielded a value of
2.23±0.000299 mm mb−1 and 0.156±0.00014, respectively,
for the proportionality constants. These models along with
the Tm-based BAI model are used to retrieve the values of
PW on individual days using the GPS data recorded at Hy-
derabad during the year 2003. The retrieved values of daily
PW at the two sites are compared with those estimated from
radiosonde measurements during the corresponding period.
A time series plot of the retrieved PW at 00:00 UTC for the
two stations in the year 2003 is presented in Fig. 12. The
mean absolute difference in PW between the site-specific lin-
ear model and the radiosonde derived PW for Bangalore is
∼4.4 mm whereas that for the BAI regional and BAI site-
specific models are∼5.1 mm. This is comparable to the cor-
responding deviations estimated for the period 2001–2002
from Fig. 6. For Hyderabad the corresponding mean abso-
lute difference in PW for the site-specific linear model is
∼5.9 mm, and that for the BAI model is∼5.2 mm. This
shows that for Hyderabad the BAI model shows a better per-
formance compared to linear model. A quantitative compar-
ison of GPS derived PW using these two models with that
obtained from the radiosonde data on a monthly mean basis
is presented in Fig. 13. The top panel in Fig. 13 shows the
month-to-month PW variation estimated from GPS data em-
ploying linear model and BAI model for Bangalore for the
year 2003 and base panel the same for Hyderabad. Except
for a small inter annual variation the pattern in Fig. 13a com-
pares favorably with that in Fig. 11. The annual variation of
mean PW at Bangalore and Hyderabad is almost similar ex-
cept for the fact that the absolute value of PW at Hyderabad
is larger than that at Bangalore for the corresponding period.
The mean value of PW at Bangalore varies from∼10 mm
(December) to∼40 mm (July) and that at Hyderabad varies
in the range of∼20 mm (December) to∼60 mm (July). This
figure also shows that, unlike Bangalore, the performance of
the BAI model for Hyderabad is better than that of the site-
specific linear model.

8 Conclusion

The seasonal variation of water vapor weighted mean tem-
perature (Tm) used in PW retrieval from GPS data is stud-
ied for eight stations over the Indian subcontinent located
in the latitude range of 8◦ N to 32◦ N following the Bevis
model. An empirical model forTm based on surface tem-
perature adapting the Bevis model is developed for the In-
dian zone. Using the upper air data obtained from daily

 

 

 

(b) 

(a) 

Fig. 13. The figure shows the performance of the site-specific
linear and BAI regional models over two locations in Indian sub-
continent. The bar-chart showing a comparison of monthly mean
values of PWGPS using the temperature independent site-specific
linear model (Eq. 6b) and BAI regional model (Eqs. 7, 8) for the
year 2003 along with corresponding values of PW derived from ra-
diosonde data at Bangalore(a); and same for Hyderabad(b).

radiosonde ascends for three years the dry and wet compo-
nents of “true” ZTD for Bangalore are estimated theoreti-
cally using Eqs. (3a) and (3b). These are used further to es-
tablish simple site-specific linear models relating the ZHD
and ZWD with ground measured atmospheric pressure and
integrated water vapor parameters, respectively. The utility
of these models for a tropical station is examined using the
GPS data from Bangalore. A comparison of PW estimated
based on theTm-based models and the site-specific linear
model shows that; (1) The simple linear model though does
not make use of the effect of the variation in atmospheric
temperature is well suited for PW estimation (with locally
derived coefficients) for the tropical region, (2) A station
specificTm-based model is not superior to a region specific
model over the tropics and (3) the seasonal variability of

∏

is significant for mid-latitude station. This study also shows
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that the temperature independent site-specific linear model,
which behaves quite satisfactorily for the equatorial stations,
is inadequate for higher latitudes and in such cases the per-
formance ofTm-based model is better than that of the linear
model.
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