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Abstract. The prompt penetration of interplanetary elec-
tric fields (IEFs) to the dayside low-latitude ionosphere dur-
ing the first∼2 h of a superstorm is estimated and applied
to a modified NRL SAMI2 code for the 30 October 2003
event. In our simulations, the dayside ionospheric O+ is
convected to higher altitudes (∼600 km) and higher lati-
tudes (∼±25◦ to 30◦), forming highly displaced equatorial
ionospheric anomaly (EIA) peaks. This feature plus oth-
ers are consistent with previously published CHAMP elec-
tron (TEC) measurements and with the dayside superfoun-
tain model. The rapid upward motion of the O+ ions causes
neutral oxygen (O) uplift due to ion-neutral drag. It is es-
timated that above∼400 km altitude the O densities within
the displaced EIAs can be increased substantially over quiet
time values. The latter feature will cause increased drag for
low-altitude satellites. This newly predicted phenomenon is
expected to be typical for superstorm/IEF events.

Keywords. Ionosphere (Electric fields and currents;
Ionosphere-magnetosphere interactions) – Magnetospheric
physics (Electric fields)

1 Introduction

The existence of interplanetary electric fields (IEFs) which
promptly penetrate to the dayside equatorial region has been
recognized for decades (Obayashi, 1967; Nishida, 1968; Kel-
ley et al., 1979). Recently, promptly penetrating electric
fields (PPEFs) associated with major IEF events have been
discovered to last more than several hours at ionospheric
heights (Tsurutani et al., 2004; Maruyama et al., 2004; Man-
nucci et al., 2005; Sahai et al., 2005; Huang et al., 2005).
When these electric fields are intense and are in the dawn-
to-dusk (eastward if viewed from the Northern Hemisphere)
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direction, the fields lead to theE×B convection of the day-
side plasma to higher altitudes and greater (absolute) mag-
netic latitudes (Tsurutani et al., 2004; Mannucci et al., 2005;
Verkhoglyadova et al., 2007). At higher altitudes, the re-
combination time scales are considerably longer (Tsurutani
et al., 2005). Solar photoionization replaces the displaced
plasma at lower altitudes, increasing the total electron con-
tent (TEC). Similar photochemical and dynamical effects,
though much weaker ones, result in developing an additional
layer in the equatorial ionosphere during summer (Balan et
al., 1998). Later, after the PPEFs subside, the plasma flows
down the magnetic lines of force to even greater (absolute)
magnetic latitudes. This overall process is called the “day-
side superfountain effect” (Tsurutani et al., 2004; Mannucci
et al., 2005; Verkhoglyadova et al., 2007). The latter stud-
ies were performed using GPS receiver data which measured
only ionospheric electrons.

We define a superstorm as an event where the Dst/SYMH
index becomes less than−250 nT (Tsurutani et al., 1992,
2003; Gonzalez et al., 1994). During the magnetic storm
of 30 October 2003 the southward excursion of the IMF
lasted for more than several hours, resulting in a peak Dst
of ∼−350 nT, thus this event was a superstorm. It should be
noted that the dayside superfountain effect studied here oc-
curs during the first few hours of a superstorm. Disturbance
dynamo effects from auroral zone nightside heating (Blanc
and Richmond, 1980; Prölss, 1995; Field et al., 1998; Fuller-
Rowell et al., 1998) is also an important storm-time phe-
nomenon. However, the propagation of these auroral zone
disturbances to reach the local noon equator takes several
hours. Here we are only concerned with the first few hours
of the PPEF/magnetic storm event. The combined effect of a
PPEF and a disturbance dynamo is an interesting topic which
deserves a separate study.

The 30 October 2003 (Halloween) positive ionospheric
storm was investigated by Mannucci et al. (2005) using
both CHAMP and ground GPS receiver data. The CHAMP
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TEC data showed a poleward motion of the EIAs (Namba
and Maeda, 1939) to latitudes as high as±30◦ magnetic
latitude during the IEF event. The TEC intensification at
these latitudes became greater than∼300 TECU (or∼600%
of the normal quiet time values), where a TECU is 1016

electrons/m2 column density. Ground-based TEC values in-
creased by more than∼100 TECU (or∼200%) averaged
over a broad±40◦ MLAT region of the ionosphere from
14:00 to 16:00 LT (Mannucci et al., 2005). Tsurutani et
al. (2006) have noted high levels of O+ ions at DMSP al-
titudes (∼840 km) during this PPEF event. The in situ den-
sities reached 9×105 cm−3 compared to a quiet-time peak
value of 1.5×105 cm−3.

This present effort will focus on modeling the dayside
ionospheric O+ ion behavior during this magnetic super-
storm/IEF event. An estimate of the PPEF will be made from
satellite magnetometer data and this will serve as the input
to a modified version of the NRL SAMI2 ionospheric code
(Huba et al., 2000). The O+ ions will be traced during the ap-
plication of the PPEF and then after the PPEF is terminated.
Using the model results, ion-neutral drag will be estimated.
It is found that substantial neutral density enhancements at
high altitudes potentially occur as part of this superfountain
process.

2 Results

2.1 Estimation of Ionospheric Electric Field

The Kyoto University ionospheric model (http://swdcwww.
kugi.kyoto-u.ac.jp/ionocond/index.html) for the particular
event is used to obtain ionospheric conductivity values. For
30 October 2003 at an altitude of 105 km at the equa-
tor at noon, the Pederson conductivityσP of 5×10−5 S/m
and a Hall conductivityσH of 9.8×10−4 S/m are estimated.
Thus the Cowling conductivity,σ 2

H /σP, is 1.9×10−2 S/m.
The CHAMP magnetic field perturbation (at an altitude of
∼420 km) due to the EEJ intensification during the 30 Oc-
tober 2003 PPEF event was∼90 nT. The technique used is
discussed in the paper by McCreadie and Iyemori (2006).
Assuming a ground reflectance of∼11% (Richmond, 1995;
A. Richmond, personal communication, 2006) and an infinite
line current I (I=1B2πr/µO) centered at∼105 km altitude,
an electric field value of approximately 4 mV/m is obtained.
In the above expression,1B is the magnetic perturbation de-
tected at CHAMP, r is the distance of the line current to the
observation point, andµO is 4π×10−7 in mks units.

2.2 Modified SAMI2 model

To understand quantitatively the effects of a storm-time east-
ward PPEF in the ionosphere and specifically the dynamics
of O+ ions, we perform numerical simulations based on a
modified SAMI2 model. The SAMI2 model is a low-latitude

ionospheric code which uses empirical models of the neu-
tral atmosphere (NRLM-SISE00 and HWM) and describes
the dynamics and chemical evolution of seven ion species
(Huba et al., 2000). SAMI2 traces electrons and ions along
the Earth’s dipole magnetic field lines, taking into account
photoionization of neutrals, ionization, recombination and
chemical reactions. Drift of magnetic flux tubes defines the
ionospheric plasma transport in a direction perpendicular to
the magnetic field. TheE×B vertical drift is caused by the
eastward polarization electric field (Kelley, 1989) superim-
posed on the Earth’s background magnetic field. The storm-
time drift can be introduced into SAMI2 by using two super-
posed electric fields. We will use the SAMI2 “sine” model
for calculating the background or undisturbed ion density al-
titude profiles (Huba et al., 2000). The vertical drift veloc-
ity is specified to be proportional to sin([t−7]/24), where t
is the local time in hours. It was demonstrated by Huba et
al. (2002) that the O+ density distribution with the sine elec-
tric field is in good agreement with observed O+ altitude pro-
files for geomagnetic quiet times. Polarization electric field
amplitude of 0.53 mV/m (corresponding to an upward veloc-
ity of 15 m/s) will be assumed in the present work.

We impose a second electric field to represent the storm-
time PPEF. A square wave PPEF of 4 mV/m magnitude is
added to the “sine” model for 2 h. This electric field inten-
sity is assumed to be the same in both the E-region and the
F-region of the ionosphere (Mozer, 1970; Anderson et al.,
2002; D. Anderson, personal communication, 2006). This
electric field is equivalent to an upward velocity of∼114 m/s.
Since the magnetic field is nearly constant in magnitude close
to the Earth, we neglect the corresponding small differential
changes of the drift velocity. Although in actuality it is the
plasma velocity that is inputted into the model, we will here-
after describe this as an electric field input to focus on the
physics of the real situation. The simulations are performed
for the region from−35◦ to +35◦ geographic latitude and
from 85 km to 3000 km in altitude.

Figure 1a shows the results of the first step in the simula-
tion. The sine (background) model electric field is an input
to SAMI2. The resultant profile of O+ ions at 02:00 p.m.
local time is shown in the figure. The normal EIA peaks
are detected at∼+10◦ latitude at 340 km and−22◦ latitude
at ∼400 km altitude, respectively. The asymmetry of the
peaks may be caused by neutral winds which are included
in the modeling, and also by offsets between geographic and
geomagnetic coordinates (only geographic coordinates are
shown here). Next a step-like electric field is superimposed
on the “sine” variations from noon to 02:00 p.m. local time
(LT) at all altitudes. The result in Fig. 1b shows a clear uplift
of the density maxima. The ion density peaks are now lo-
cated at∼23◦ latitude and∼620 km altitude in the north and
−33◦ latitude and∼600 km altitude in the Southern Hemi-
sphere. The magnitude of the peak density has also increased
from ∼4×106 cm−3 to ∼5.6×106 cm−3 in the north. Note
that the uplift causes a relative density increase at all altitudes
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Fig. 1. Modeling of O+ ion uplift during strong IEF events/magnetic storms. The color insets on the right of each panel show the local ion
density in cm−3. The following models ofE×B drift were used: a “sine” wave background model(a), a PPEF step model(b), and the step
model without solar photoionization(c). All density profiles are shown for∼02:00 p.m. local time. Differences in the ion density between
the step model with and without ionization is also shown(d). Notice the maximum difference occurs at∼500 km and for∼25◦ latitude.

above 350 km to almost 900 km in the latitude range of 20◦

to 35◦ geographical latitude. This result is generally consis-
tent with the observed uplift of O+ at DMSP satellite alti-
tudes (∼840 km) (Tsurutani et al., 2006). However detailed
modeling will be necessary to match the DMSP ion temporal
variations and local time (∼09:30 a.m.) dependence of the
observations.

What is the role of solar photoionization in this process?
To study this, the step model for a case without photoioniza-
tion is run. The sun is “turned off” by artificially stopping
the photoionization process from noon until 02:00 p.m. The
ionospheric density profile is shown in Fig. 1c. The O+ pro-
file is very similar to the previous case but with a slightly
higher maximum located at∼670 km altitude. The maxi-
mum has a value of∼3.6×106 cm−3, which is only∼60%
of the value when ionization was present. To better visual-

ize this effect, the quantitative differences between the two
cases was plotted, i.e., a step electric field with and without
the ionization. The results are shown in Fig. 1d. This panel
indicates that at least three factors contribute to the uplifted
maximum of O+ ions. First, the uplift itself is due toE×B

convection caused by the storm-time electric field penetrat-
ing into the ionosphere. The second factor is the creation of
a “new” ionosphere at lower altitudes in place of the uplifted
ions. This is caused by solar photoionization. The third fac-
tor is gravity. These factors combined explain why the max-
imum O+ density in the presence of photoionization occurs
at a lower altitude than the corresponding maximum without
ionization. The largest difference in the density lies between
400 and 600 km (see Fig. 1d), i.e., lower than the maximum
in Fig. 1b.
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 Fig. 2. Modeling of O+ ion gravitational downdraft at 3 h after the
PPEF has been turned off. The color insets on the right of each
panel show the local ion density in cm−3. Notice the maximum
density has shifted from∼620 km to∼430 km in altitude and to
higher latitudes.

Figure 2 shows the O+ ion density distribution for a PPEF
step model (corresponding to Fig. 1b), 3 h after the electric
field has been turned off. It can be noted that the O+ ions
have descended in altitude. The two peaks are located at
∼430 km and∼480 km and +25◦ and−33◦ in latitude, re-
spectively. The magnitude of the peak density has increased
from ∼5.6×106 cm−3 to ∼7.0×106 cm−3. An explanation
is that the plasma has gravitationally fallen down along the
Earth’s magnetic field lines and, consequently, moved to
higher latitudes. The higher density can be explained by a
concentration of O+ ions at the bottom of the converging
magnetic flux tubes, or a magnetic “focusing” effect.

2.3 Estimation of ion-neutral drag

With O+ ions being rapidly uplifted, one can expect cor-
responding uplift of neutrals by drag forces. A simplified
ion-neutral momentum exchange (Baron and Wand, 1983;
Kosch et al., 2001) is given by:∂ U

∂ t
=

1
τin

(Vd−U) and the
ion-neutral coupling time constantτin (Killeen et al., 1984)
given by:

τin =
n0

ni

1

νin

(1)

In the above,U is the vertical velocity of the oxygen atoms
due to the ion-neutral drag,Vd is the verticalE×B drift of
O+ ions due to the storm-time PPEF, n0 and ni are the neutral
oxygen and ion densities, andνin is the ion-neutral collision
frequency.

We calculate ion-neutral drag for a representative al-
titude of ∼340 km at ∼10◦ latitude starting at noon.
This location has been chosen because it is near the

EIA peak location where this effect is approximately a
maximum. We estimate the oxygen ion-neutral colli-
sion frequency using formula by Bailey and Balan (1996):
νin≈4.45×10−11·n0·T

1/2·
(

1.04−0.067 log10T
)2. T is the

average of the neutral and ion oxygen temperatures. Us-
ing O+ and O temperatures of∼103 K, oxygen ion and neu-
tral densities of∼3.5×106 cm−3and 1.1×109 cm−3 at noon,
one getsνin≈10−9·n0≈1.1 s−1 or τin∼5 min according to
Eq. (1).

The first-order expectation of neutral density increases can
be roughly estimated in a simple way. Assuming that the
upward momentum of ions is transferred to upward neu-
tral oxygen momentum by ion-neutral collisions, the neu-
trals at∼340 km altitude and 10◦ latitude will be displaced to
∼370 km after 2 h of∼4 mV/m PPEFs. This will result in up
to a 60% neutral density increase at the latter altitude. This
physical process will have greater resultant effects at higher
altitudes due to the lower neutral background densities. At
∼600 km altitude, the density increase can be as high as a
factor of 5 to 10.

For a more accurate estimation, an ion-neutral model tak-
ing into account gravity effects and heating and expansion
during the uplift process is needed. Additionally the uplifted
neutrals will eventually fall down, possibly leading to atmo-
spheric/ionospheric heating. Determination of the magnitude
of these effects is beyond the scope of the present paper. The
dayside superfountain process is a nonlinear one and an ion-
neutral convective code is needed to be developed and imple-
mented to obtain better estimates. This effort is currently in
progress.

3 Conclusions

A 4 mV/m eastward PPEF during the 30 October 2003 su-
perstorm was calculated based on CHAMP magnetometer
data, the Kyoto University ionospheric model and a simpli-
fied model of the EEJ. The dayside superfountain event was
modeled using a modified SAMI2 ionospheric model with
the estimated PPEF as an input. The simulation results show
uplift of the EIA oxygen ions to higher latitudes and alti-
tudes, creation of a “new” ionosphere at lower altitudes in
the place of the uplifted ions, and a subsequent gravitational
“downdraft” process after the electric field has been termi-
nated. An accompanying effect of the rapid oxygen ion up-
lift is the increase of neutral oxygen densities at ionospheric
altitudes caused by ion-neutral drag. It is argued that the neu-
tral atmosphere where the EIA ion density peaks exist will be
moved upward and poleward by ion-neutral drag. Other ar-
eas of the near-equatorial ionosphere should also have neutral
O increases caused by the same mechanism, but to a lesser
degree. For a 4 mV/m electric field lasting for 2 h, the neu-
tral density increase at 600 km altitude should be a factor of
up to an order of magnitude greater than the quiet time val-
ues. A more accurate ion-neutral coupling model is currently
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being developed. This superfountain effect should be easily
measurable. Enhanced satellite deceleration should occur as
satellites cross the displaced and uplifted EIAs at middle lat-
itudes (at∼25◦ to 30◦ latitudes). Deceleration should occur
at other latitudes as well, but to a lesser extent.
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