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Abstract. The observedNmF2 andNmE variations were
analyzed for the periods of positive and negative quiet-time
F2-layer disturbances (Q-disturbances) observed in the mid-
latitude daytime F2-layer to specify the mechanism of their
origin. The noontimeδNmF2 andδNmE deviations demon-
strate a synchronous type of variation which can be explained
by vertical gas motion in the thermosphere. This neutral gas
motion should result in atomic abundance variations, the lat-
ter being confirmed by the Millstone Hill ISR observations
for periods of positive and negative Q-disturbance events.
The analysis of the ISR data has shown that atomic oxygen
concentration variations are the main cause of the daytime
F2-layer Q-disturbances. The auroral heating which controls
the poleward thermospheric wind is considered to be the ba-
sic mechanism for the Q-disturbances, however, the specific
mechanisms of positive and negative Q-disturbances are dif-
ferent. Some morphological features of the Q-disturbances
revealed earlier are explained in the scope of the proposed
concept.

Keywords. Ionosphere (Ionosphere-atmosphere interac-
tions; Ionospheric disturbances) – Atmospheric composition
and structure (Thermosphere – composition and chemistry)

1 Introduction

Our earlier morphological analysis (Mikhailov et al., 2004)
of theNmF2 quiet-time disturbances (Q-disturbances) has re-
vealed many interesting features in their occurrence. Positive
and negative Q-disturbances exhibit different morphologi-
cal patterns in diurnal, seasonal, and spatial variations and
this implies different mechanisms of their formation. Quiet
time F2-layer disturbances are closely related to the prob-
lem of the coupling from below: the so-called meteorolog-
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ical control of the Earth’s ionosphere (e.g. Danilov, 1986;
Danilov et al., 1987; Khachikjan, 1987; Kazimirovsky and
Kokourov, 1991; Forbes et al., 2000; Rishbeth and Mendillo,
2001; Kazimirovsky et al., 2003; Laštovǐcka et al., 2003;
Vanina and Danilov, 2005). Quasi 2-day oscillations in the
ionosphere (Chen, 1992; Apostolov et al., 1995; Forbes and
Zhang, 1997; Forbes et al., 2000; Altadill and Apostolov,
2001; Rishbeth and Mendillo, 2001), which are seen in the
Q-disturbance occurrence, may also be attributed to the me-
teorological effects in the F2 region as they are not related to
geomagnetic activity. On the other hand, neither one can ex-
clude the high-latitude impact on the global circulation and
thermospheric composition. Goncharenko et al. (2006), for
instance, revealed a pronounced negative Q-disturbance ef-
fect using the Millstone Hill ISR and TIMED observations
and attributed it to IMFBy variations.

Very fruitful WINDII/UARS optical observations (Shep-
herd et al., 1999, 2002, 2004; Ward et al., 1997; Wang et
al., 2002) of the atomic oxygen and wind velocity variations
at E-region heights may be useful for studying the mech-
anism of the F2-region Q-disturbances’ formation, because
both ionospheric regions are related via thermospheric neu-
tral composition.

We will discuss here the physical interpretation of the Q-
disturbance morphology. We start with the daytime con-
ditions when the revealed seasonal variations are well pro-
nounced and the difference in the morphological pattern of
the two types of Q-disturbances is obvious (Mikhailov et al.,
2004). The formation mechanism of the mid-latitude day-
time F2-layer is well established and this should help us find
out the pertinent aeronomic parameters and the processes re-
sponsible for the observed variations. The possibility to use
NmE variations which (along with theNmF2 data) may help
in understanding the phenomenon is an additional argument
in favor of considering the daytime conditions. So the aim
of the paper may be specified in the following way: to an-
alyze the observedNmF2 andNmE changes for the periods
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Table 1. List of stations used in the analysis, geodetic coordinates and invariant latitudes of the stations are given.

Station Lat Lon Inv. Lat Station Lat Lon Inv. Lat

Kiruna 67.8 20.4 64.4 Slough 51.5 −0.6 49.8
Loparskaya 68.2 33.1 64.0 Ekaterinburg 56.7 61.1 51.4
Sodankyla 67.4 26.6 63.6 Kaliningrad 54.7 20.6 51.2
Lycksele 64.7 18.8 61.5 Moscow 55.5 37.3 50.8
Arkhangelsk 64.6 40.5 60.1 Kiev 50.7 30.3 46.5
Uppsala 59.8 17.6 56.6 Lannion 48.4−3.3 47.0
St. Petersburg 59.9 30.7 55.9 Poitiers 46.6 0.3 45.1
Gorky 56.1 44.3 51.4 Rostov 47.2 39.7 42.3

Table 2. AverageδNmE ±SD value, along with the Student t-parameter, and the correlation coefficient betweenδNmF2 andδNmE, along
with the Fisher F-parameter for negative and positive F2-layer Q-disturbances.

Disturbance Average± SD t-parameter Corr. coeff F-parameter

Negative 0.947±0.067 5.95 0.26 3.98
Positive 1.064±0.060 10.66 0.22 2.59

of F2-layer Q-disturbances, to make quantitative estimates of
the governing aeronomic parameter variations, and to discuss
possible processes which could provide such variations.

2 Data analysis

The analysis was made using the daytime (11:00–14:00 LT)
foF2 andfoE observations available for the periods of posi-
tive and negative F2-layer Q-disturbances. The list of the Eu-
ropean ionosonde stations used is given in Table 1. One can
find the information on the process of the Q-disturbances ex-
traction from the routineNmF2 observations in Mikhailov et
al. (2004). Here we repeat briefly for the sake of convenience
the main idea. The (NmF2/NmF2med–1)×100% hourly de-
viations exceeding 40% are considered as a Q-disturbance,
if all 3-h ap indices were≤7 for the preceding 24 h. The
27-dayNmF2 running median centered to the day in ques-
tion rather than the usual monthly median is used for the
Q-disturbances’ specification. Only long lasting,≥3-h (4
successive hourlyNmF2 values), disturbances are used in
our analysis. The same procedure is applied to theNmE
hourly variations, but the priority is given to theNmF2 dis-
turbances, that is, we select positive and negative F2-layer Q-
disturbances and take the correspondingNmE deviations as
they are. The deviationsδ=Nm/Nmmed for NmF2 andNmE,
averaged over the 11:00–14:00 LT interval, are considered in
our analysis.

Mikhailov et al. (2004) showed earlier that the daytime
Q-disturbances were relatively rare in occurence, so we had
to put together the data for all levels of solar activity to in-
crease the statistics. The negative Q-disturbances are less

frequent as compared to the positive ones, but they exhibit
a pronounced seasonal variation pattern in the wide latitu-
dinal range, with the maximal occurrence around the winter
solstice (December–January). The seasonal variation pattern
for positive Q-disturbances depends on latitude, but for the
European stations considered in this paper, the occurrence
frequency has maxima around equinoxes. So, in the case
of positive Q-disturbances, we confine our consideration ac-
cording to the equinoctial periods only.

3 Synchronous δNmF2 and δNmE variations

The analysis has shown thatδNmF2 andδNmE deviations
demonstrate, to some extent, a synchronous type of variation
during the periods of the F2-layer Q-disturbances. For check-
ing this effect, 58 negative and 101 positive Q-disturbances
were analyzed. We checked first whether the type (posi-
tive/negative) ofδNmF2 andδNmE deviations is the same in
a statistical sense. This can be done comparingδNmE with
unity (i.e. with a median) for the selected F2-layer distur-
bances. One can estimate the statistical significance of this
difference using the Student t-criterion. The results are pre-
sented in Table 2 which shows that theδNmE difference from
the unity is significant at any confidence level for both neg-
ative and positive Q-disturbances. It means that under neg-
ative Q-disturbances in the F2-layer we have negative devi-
ations in the E-layer, whereas positive F2-layer disturbances
are accompanied by positive deviations inNmE. So they ex-
hibit in-phase variations in a statistical sense.

It would be interesting to check if there is a point-to-point
correlation betweenδNmF2 and δNmE deviations during
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such events. Table 2 shows that the correlation is not high
but it is significant at least at the 90% confidence level, ac-
cording to the Fisher F-criterion. On the other hand, the
correlation may be much better for individual, strong events.
For instance, for the 6–10 April 1973 positive Q-disturbance
event (Mikhailov et al., 2004, their Fig. 8), the correlation
coefficient betweenδNmF2 andδNmE is 0.585 and the F-
parameter is equal to 21.8, that is, the correlation is signifi-
cant at the 99% confidence level. This disturbance event is
shown in Fig. 1 to illustrate the coherence in theδNmF2 and
δNmE day-to-day variations. TheδNmF2 andδNmE daily
values available at each station for the 6–10 April 1973 pe-
riod are put together one by one to draw the plot.

It should be emphasized that such point-to-point correla-
tion takes place only for the positive Q-disturbance events,
but not for the negative ones. For the latter one can speak
about in-phase variations betweenδNmF2 andδNmE only
on average. This confirms the earlier conclusion that positive
and negative Q-disturbances are due to different formation
mechanisms.

4 Interpretation

We start the interpretation with theδNmE deviations. On
the one hand, the formation mechanism of the E-region is
relatively simple and allows one to specify the governing pa-
rameters unambiguously. On the other hand, this will help
us at the second step when we move to a consideration of
the δNmF2 deviations. The mid-latitude daytime E-layer
is mainly formed via the ionization of neutral O2 by two
close EUV linesλ=977Å (CIII) and λ=1025.7Å (HLyβ),
providing 80-90% of the total ionization rate. The rest of
the ionization rate is provided by the X-ray radiation with
λ<100Å (Ivanov-Kholodny et al., 1976). Therefore, the
classical Chapman theory (Chapman, 1931) may be applied
in this case with a sufficient accuracy (Ivanov-Kholodny and
Nusinov, 1979).

At E-region heights, the neutral temperature increases
upwards, so the scale height of molecular oxygen can be
written as H(h)=H0+γ h, whereγ =0.1–0.3, according to
different estimates. The daytime ion composition is pre-
sented by two molecular ions, NO+ and O+

2 , having a close
temperature dependence for their dissociative recombina-
tion coefficients. Therefore, we may accept that the ef-
fective dissociative recombination coefficient isα′=α0T−ν ,
whereα0=c0(1/300)−ν , ν≈0.8, and c0 is a constant. Then
we obtain for the maximum electron concentration squared:
(NmE)2=qm/α′

m

qm/α′
m =

I∞σ in0
α0T

−ν
0

{

cosχ [1+γ (1−ν)]
n0H0σ

ae

} 1+γ (1−ν)

, (1)

where qm is the ionization rate at the E-layer maximum, I∞

is the incident ionizing flux, H0=kT0/mg is the scale height,
n0 is the concentration of neutral O2 at h0, χ is the solar
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Figure. 1. 
Fig. 1. ObservedδNmF2 (squares) andδNmE (triangles) values at
12 ionosonde stations for the 6–10 April 1973 period. The number
of days with observations available is different for different stations.

zenith angle, andσ i andσ a are the ionization and absorption
cross-sections, respectively.

At the acceptedγ and ν values, 1+γ (1-ν)≈ 1 and so
Eq. (1) is reduced to

qm/α′
m =

I∞σ i cosχ

α0

(

k
mg

)

T 1−ν
0 σ ae

. (2)

Expression (2) explicitly is independent ofγ , therefore, one
should not expect any considerable NmE changes due to the
neutral temperature gradient variations. In this case we may
consider an isothermal atmosphere at E-region heights and
obtain the expression commonly used in the classical theory
of the ionospheric E-layer

qm/α′
m =

I∞σ i cosχ
α′Hσ ae

, (3)

whereα′ now is a constant and H is the molecular oxygen
scale height.

It follows from Eq. (3) that there are three possibilities to
explain the NmE variations: (i) day-to-day changes in the so-
lar EUV ionizing flux, (ii) variations inα′ due to changes in
the ion composition (Eq. 6), or (iii) changes in the molecule
oxygen effective scale height H(O2) due to dynamical pro-
cesses (vertical gas motion, for instance).

According to our previous morphological analysis
(Mikhailov et al., 2004, their Fig. 10), the spatial pattern of
Q-disturbances looks like a planetary wave with a steep front,
so adjacent stations may have differentδNmF2 andδNmE
and it is hard to reconcile such morphology with the overall
changes in the solar EUV and X-ray radiation.

Now we consider the second possibility: changes inα′.
The ion composition in the daytime mid-latitude E-region is
presented by two molecular ions, NO+ and O+

2 , disappearing
via the dissociative recombination reactions

NO+
+e→N+O (α1=4.5X10−7(300/Te)

0.8 cm3 s−1), (4)

O+
2 +e→O + O (α2=1.95X10−7(300/Te)

0.7 cm3 s−1) .(5)
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Fig. 2. Positive (11 April 2000) and negative (16 April 2002) Q-
disturbances observed at Millstone Hill.

With ne=NO++ O+
2 and C=NO+/O+

2 , the effective dissocia-
tive recombination coefficient may be written as

α′
= α1

NO+

ne
+ α2

O+
2

ne
=

α1C+α2
1+C

. (6)

The recombination coefficientα′ depends only on the
C=NO+/O+

2 ratio, which is known to be controlled in the
E-region by nitric oxide NO (Danilov, 1994).

According to Table 2, the averageδNmE variation during
Q-disturbance events is about 5% or 10% in theα′ value.
Using Eq. (6) this gives an estimate C≈0.13 which looks
absolutely unreal for the quiet mid-latitude daytime condi-
tions at E-region heights, according to the ion composition
model by Danilov and Smirnova (1995). More accurate nu-
merical estimates using the photochemical model of the E-
region (Mikhailov, 2000), taking into account all pertinent
processes, confirmed this conclusion. Very strong (up to a
factor of 8–10) changes in [NO] are needed to account for
the required 5% changes inNmE. Such [NO] variations are
unreal for the conditions in question and we have to choose
the third possibility (changes in H(O2)) to explain the ob-
servedNmE variations.

The effect should have a dynamical origin rather than the
temperature one mentioned earlier. Such mechanism ofNmE
variations was considered earlier by Mikhailov (1983) and
Nusinov (1988). In our case a 5% variation inNmE im-
plies a 10% change in H(O2). Such moderate changes in
H(O2) look plausible and can be caused by vertical motion of
the atmospheric gas with a velocity of 1–2 cm/s at E-region
heights (Mikhailov, 1983). This mechanism provides in-
phaseNmF2 andNmE variations taking place during positive
Q-disturbance events. The downward gas motion enriches
the thermosphere with [O] at F2-layer heights and reduces
H(O2) in the E-region resulting in a synchronousNmF2 and
NmE increase. The upwelling of the neutral gas should, in
principle, result in the opposite effect (see later).

It follows from the approximate expression for mid-
latitude daytime F2 layer (Ivanov-Kholodny and Mikhailov,
1986; Mikhailov et al., 1995) that the thermospheric concen-
tration of atomic oxygen is directly related toNmF2

1 lg NmF2=
4

3
1 lg[O]−

2

3
1 lg β+

1

2
1 lg T

n
+1 lg Jo, (7)

where [O] is the atomic oxygen concentration,
β=γ1[N2]+γ2[O2] is the linear loss coefficient, Tn is
the neutral temperature, and Jo is the ionization efficiency.
This expression is invariant relative to height changes in the
isothermal thermosphere, so any height in the F2-region may
be chosen as the basic level. The ionization efficiency Jo is
proportional to the total incident ionizing solar EUV flux
and may be considered as unchanged for adjacent days. It
will be shown later that the contribution from1β and1Tn
to the NmF2 variation is not large. Therefore, the atomic
oxygen concentration variations may serve as an indicator
of the vertical gas motion during the periods of F2-layer
Q-disturbances.

The Millstone Hill ISR observations on 11/12 April 2000
and 15/16 April 2002 were chosen for our analysis. These
dates correspond to positive and negative Q-disturbance
events (Fig. 2). Formally speaking, the two periods do not
correspond exactly to our rules of the Q-disturbances’ selec-
tion (Mikhailov et al., 2004), but actually they may be con-
sidered as such events because both periods were magneti-
cally quiet: the daily values ofAp were 9/7 and 6/7 for 11/12
April 2000 and 15/16 April 2002, respectively. The daytime
NmF2 values on 11 April are higher than the monthly me-
dian (dashes in Fig. 2) by≈60%, whereas the day of 12 April
which is closer to the median, presents a moderate negative
disturbance. For the second period, theNmF2 monthly me-
dian coincides with the 15 April 2002 daytimeNmF2 values
and we have a good case of a negative Q-disturbance on 16
April 2002.

It is worth noting thathmF2 (Fig. 2, bottom) also separates
according to the type ofNmF2 variations. The difference in
hmF2 is the largest around noontime and decreases towards
the morning and evening hours, whereas the difference in
NmF2 takes place over the entire daytime. This fact mani-
fests different dependences ofNmF2 andhmF2 on the main
aeronomic parameters and is not discussed here.

The self-consistent approach to the Ne(h) modelling at F2-
region heights, proposed by Mikhailov and Schlegel (1997)
with the latest modifications by Mikhailov and Lilensten
(2004) has been used to find the thermospheric neutral com-
position ([O], [O2], and [N2]), temperature Tn(h), vertical
plasma drift W related to the neutral thermospheric winds
and electric fields, as well as the total solar EUV flux
with λ<1050Å. The details of the method may be found
in the above-indicated references, so only the main idea is
sketched here. The standard set of ISR observations (Ne(h),
Te(h), Ti(h), and VO(h) vertical profiles) is the initial input

Ann. Geophys., 25, 483–493, 2007 www.ann-geophys.net/25/483/2007/
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Table 3. Aeronomic parameters at 300 km for the 11/12 April 2000 and 15/16 April 2002 periods. Second line shows the NRLMSISE-00
model values.

Date Tex
(K)

log [O]300
(cm−3)

log [O2]300
(cm−3)

log [N2]300
(cm−3)

logβ300
(s−1)

W
(m/s)

11 April 1457
1312

9.019
9.095

7.150
6.884

8.602
8.588

-3.309 ≈0

12 April 1427
1303

8.751
9.094

7.102
6.848

8.519
8.568

−3.381 7.6

15 April 1447
1344

8.889
9.078

6.866
6.921

8.404
8.588

−3.511 1.0

16 April 1439
1326

8.667
9.073

6.824
6.891

8.311
8.570

−3.624 −7.1

information. All these observed parameters enter the con-
tinuity equations for the main ionospheric ions in the F2-
region. By fitting the calculated Ne(h) profile to the experi-
mental one, a self-consistent set of the main aeronomic pa-
rameters responsible for the observed Ne(h) distribution can
be found. The experimental profiles observed over some pe-
riod are specially processed before being used in the calcu-
lations. Usually this time interval is 1–2 h (17:30–18:30 UT
for 15/16 April 2002), but it was increased up to 5 h (15:45–
20:30 UT) because of sparse observations (Fig. 2, left) during
the 11/12 April 2000 experiment. The results of the calcula-
tions are presented in Table 3.

Table 3 along with (Eq. 7) show that almost the entire
NmF2 difference between adjacent dates is due to atomic
oxygen variations for both periods, as the contributions of
the linear loss coefficientβ and Tn are small. In principle,
the vertical plasma drift W may be converted into the merid-
ional thermospheric windV nx as

W = V nxSinICosICosD + V⊥NCosI, (8)

providing thatV⊥N is available and resulted from the zonal
electric field. SuchV⊥N observations are available for the
15/16 April 2002 experiment (Goncharenko et al., 2005, their
Fig. 13), but zonal electric fields were small around 18:00 UT
for both dates. Therefore, we may conclude thatV nx was
around zero on 15 April and it was northward (about 30 m/s)
on 16 April, additionally reducing the daytimeNmF2. Our
V nx estimates are close to the Millstone Hill meridional
winds determination for 18:00 UT (Goncharenko et al., 2006,
their Fig. 17).

The exospheric temperatures Tex estimated at Millstone
Hill and the observations of the column O/N2 ratio by the
GUVI instrument aboard the TIMED satellite may serve as
an additional check for the derived thermospheric parame-
ters. The calculated Tex are close to the Millstone Hill es-
timates for both periods, being larger than the NRLMSISE-
00 (Picone et al., 2002) model predictions by about 100 K.
A similar underestimation of the NRLMSISE-00 model Tex

was noted by Lei et al. (2004). The O/N2 column ra-
tio observed with the GUVI instrument for the 15/16 April
2002 period shows a 30–50% reduction from 15 April to
16 April in the Atlantic longitudinal sector (Goncharenko et
al., 2006). A direct comparison of our [O] and [N2] with
the GUVI column observations is problematic due to many
technical reasons (Goncharenko et al., 2006), however, our
O/N2 ratio at 300 km reduced to 07:30 LT (the local time of
the GUVI observations) also exhibits a 40% reduction on 16
April with respect to 15 April. Of course, the NRLMSISE-00
model does not reproduce the strong O/N2 day-to-day varia-
tions, obtained in our both calculations and observed by the
GUVI instrument. Therefore, the obtained results on the de-
rived thermospheric parameters’ variation may be considered
as reliable and used for the interpretation.

Days with largerNmF2 are distinguished by higher atomic
oxygen concentration, the difference being 67% for the 15/16
April case and 85% for 11/12 April. However there is a dif-
ference between the two cases. TheNmF2 value for 15 April
coincides exactly with theNmF2 monthly median (Fig. 2,
right-hand panel) and we have a pure case of a negative Q-
disturbance counted from this median. In the case of 11/12
April, the median is located between the twoNmF2 curves
(Fig. 2, left-hand panel), therefore, the absolute difference
in [O] is larger. Being counted with respect to the median
(as in the case of 15/16 April), the difference in [O] would
also be about 60%. This confirms our earlier estimates of the
day-to-day variations of [O] obtained for similar equinoctial
transition conditions (Mikhailov and Schlegel, 2001).

An important conclusion of our analysis is that both posi-
tive and negative Q-disturbances in the F2-region are mainly
due to the atomic oxygen concentration variations presum-
ably resulted from the vertical gas motion in the thermo-
sphere, including the heights of the ionospheric E-region.
The relationship between the vertical gas motion and atomic
oxygen abundance in the thermosphere is well established
(e.g. Rishbeth and M̈uller-Wodarg, 1999; Ward et al., 1997;
Liu and Roble, 2004). In the E-region, as was emphasized

www.ann-geophys.net/25/483/2007/ Ann. Geophys., 25, 483–493, 2007
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earlier, the vertical gas motion is the only mechanism capa-
ble of explaining the observedNmE variations. The compar-
ison ofNmE available for 11 April 2000 and 16 April 2002
with the monthly median values ofNmE obtained from the
Millstone Hill digisonde observations is not very impressive,
but it is in line with our statistical results. TheNmE value
averaged over 3 noon LT hours exceeds the monthly median
by 3.7% for 11 April, but this difference is less than 1% for
16 April.

Therefore, there is an obvious problem mentioned earlier.
If both positive and negative F2-layer Q-disturbances are
due to the vertical gas motion resulting in [O] (F2-region)
and H(O2) (E-region) changes, why is there no point-to-
point correlation betweenδNmF2 andδNmE for negative Q-
disturbance events and can we detect synchronousδNmF2
andδNmE changes only on average?

According to the results of our calculations, the nega-
tive daytime Q-disturbances are accompanied by low atomic
oxygen concentration and enhanced poleward thermospheric
wind (see also Goncharenko et al., 2006). Our analysis of 35
negative and 105 positive daytime Q-disturbances observed
at European ionosondes shows the difference between the
two types of events with regard to their formation. TheAp

indices averaged over 27 days preceding each event were cal-
culated for all positive and negative disturbances in ques-
tion. In the case of the negative Q-disturbances, the aver-
agedAp=9.87±3.88, whereas this value equals 16.96±6.78
for the positive Q-disturbance events. The difference be-
tween the two classes of events is significant at any confi-
dence level, according to the Student t-criterion. This result
indicates that the positive Q-disturbances were counted from
a relatively low median level, because the preceding 27-day
periods included many disturbed days (averageAp=16.96).
In the case of the negative Q-disturbances, the reference (me-
dian) level was higher, corresponding to an averageAp=9.87.

Therefore, one may propose the following mechanism.
Under very low geomagnetic activity when the auroral heat-
ing is minimal, we have an unconstrained solar-driven ther-
mospheric circulation with a relatively strong daytime pole-
ward wind, in accordance with our calculations for 16 April
2002. This poleward wind is seasonally dependent, being
the strongest in winter (Buonsanto and Witasse, 1999, their
Fig. 5). This is partly due to the fact that Joule heating is the
minimal in winter when the ionization and conductivity lev-
els are low, reinforcing the prevailing solar-driven circulation
(Forbes et al., 1996; Fuller-Rowell et al., 1996). The pole-
ward thermospheric wind produces in the F2-region a down-
ward plasma drift decreasingNmF2. This is one of the causes
for the daytime negative Q-disturbances to cluster around
the winter solstice, according to our morphological analysis
(Mikhailov et al., 2004). Very quiet geomagnetic conditions
correspond to a ground state of the thermosphere with rela-
tively low atomic oxygen concentration at middle and sub-
auroral latitudes. According to the model calculations by
Rishbeth and M̈uller-Wodarg (1999, their Fig. 3), there is a

moderate upwelling (about 0.5 m/s) in a wide range of lati-
tudes around noontime under quiet (Kp=2+) conditions, with
the upwelling being able to support the low background level
of the atomic oxygen concentration. This relatively low [O]
abundance (Table 3) is the second and the main cause of low
NmF2.

The high-latitude heating increases with geomagnetic ac-
tivity and this damps the solar-driven poleward thermo-
spheric wind. This damping produces a downwelling of the
neutral gas and a corresponding enrichment of the thermo-
sphere with atomic oxygen. This results inNmF2 andNmE
increases, as has been discussed earlier.

According to Kutiev and Muhtarov (2001), the most prob-
able (i.e. median) state of the ionosphere corresponds to
Kp≈3o (Ap=15) and, on average, the usual negative distur-
bances correspond to a geomagnetic activity level higher than
Ap=15. Therefore, both theNmF2 andNmE median values
bear the effect of gas downwelling, that is, the medians are
slightly higher as compared to the basic (background) state
of the ionosphere, corresponding to a very low level of ge-
omagnetic activity when negative Q-disturbances occur. So,
their appearance, both in the F2 and E regions, just mani-
fests the monthly median level from where they are counted.
Therefore, in the case of negative Q-disturbances, we have
synchronousδNmF2 andδNmE changes only on average,
as no physical mechanism relatingδNmF2 andδNmE is in-
volved in this case. On the contrary, in the case of positive Q-
disturbances, the downward gas motion in the thermosphere
produces in-phaseδNmF2 andδNmE changes not only on
average, but at the point-to-point level, as well (Fig. 1). The
proposed explanation can help understand different morphol-
ogy of the positive and negative F2-layer Q-disturbances (see
Discussion).

In the framework of this explanation, the sketch in Fig. 3
may help specify the location of Q-disturbances and the
usual F2-layer disturbances on the scale of theAp indices.
The negative Q-disturbances appear under very low geomag-
netic activity and their occurrence depends on theNmF2 me-
dian level. If a month was geomagnetically disturbed with
usual negative F2-layer storm events, theNmF2 median level
would be lower and this would prevent an occurrence of neg-
ative Q-disturbances. On the contrary, one may expect the
negative Q-disturbances to appear if a month was quiet and
the NmF2 median level was relatively high. In addition to
our earlier analysis, this was checked for some years around
solar minimum and for three months (November, December,
January) when the negative Q-disturbances were the most nu-
merous. The monthlyAp indices and the data of the Slough
station for negative Q-disturbances were used to obtain the
results presented in Table 4. One can see a tendency of the
Q-disturbances to appear under less disturbed conditions for
each of the three months.

The area of the long-duration positive F2-layer dis-
turbances in Fig. 3 corresponds to moderately disturbed
(5≤Ap≤15) conditions and the positive Q-disturbances just
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Fig. 3. A sketch to illustrate the place of Q-disturbances on theAp

index scale.

occupy the left-hand wing of this area. Their formation
mechanism is the same: the damping of the poleward solar-
driven thermospheric wind due to the increase in the auro-
ral heating, the downwelling of the neutral gas and the re-
lated increase in the atomic oxygen abundance. A further in-
crease in the auroral activity inverses the solar-driven circu-
lation and this corresponds to the area where the usual nega-
tive F2-layer disturbances occur, their mechanism being well
established (e.g. Prölss, 1995). According to Zevakina and
Kiseleva (1978), there are two types of positive disturbances
in the F2-region. Short and strong positive disturbances of
type II (unlike long-duration positive disturbances of type I)
are followed by negative storm effects. They just present the
first (positive) phase of a two-phase disturbance, so they may
take place in this area, as well.

5 Discussion

In their morphological analysis, Mikhailov et al. (2004) em-
phasized the difference between negative and positive Q-
disturbances with regard to spatial variations, in particular.
They also noted the principle difference in the latitudinal
variations between Q and the usual negative F2-layer dis-
turbances, but a similarity in these variations in the case of
positive perturbations. The occurrence frequency and the
amplitude of the positive Q-disturbances increase with lat-
itude, whereas both characteristics exhibit no pronounced
variation in the case of the negative Q-disturbances. All this
implies different formation mechanisms for the two types of
Q-disturbances.

The simultaneous consideration of theNmF2 andNmE
variations during Q-disturbance events was expected to show
the path to an explanation via the vertical gas motion. More-
over, the WINDII/UARS observations (Shepherd et al., 1999,
2004; Ward et al., 1997; Wang et al., 2002) relate directly the
atomic oxygen abundance with the vertical gas motion in the
lower thermosphere. But the absence of the point-to-point

Table 4. Monthly Ap indices and number (in parenthesis) of nega-
tive Q-disturbances observed at Slough for three months and years
around solar minimum. Months with lowAp are marked bold.

Month 1962 1963 1964 1965 1966

Nov 12.8 (1) 12.3 (1) 7.3 (1) 6.0 (3) 9.5 (1)
Dec 12.8 (0) 10.9 (2) 5.3 (5) 7.1 (1) 11.6 (1)
Jan 7.0 (4) 11.3 (1) 11.8 (0) 6.2 (1) 7.5 (4)

correlation betweenδNmF2 andδNmE and the weak latitu-
dinal dependence of the occurrence frequency and the am-
plitude of negative Q-disturbances has forced us to look for
some other solution. The fact that negative Q-disturbances
occur under very quiet geomagnetic activity allowed us to
propose an idea of the ground state of the thermosphere with
an unconstrained solar-driven circulation (due to the mini-
mal auroral heating level) and relatively low atomic oxy-
gen abundance in the thermosphere. This made it possible
to explain both the morphological features of the negative
Q-disturbances. It was shown earlier that the atomic oxy-
gen variations provide the main contribution to theNmF2
changes (Table 3). According to the NRLMSISE-00 model,
the latitudinal variations of atomic oxygen at F2-region
heights are very small (5–10%), within the (35–65◦) latitu-
dinal interval under low geomagnetic activity in December
(winter solstice). These small latitudinal variations are in line
with the results of the model calculations by Rishbeth and
Müller-Wodarg (1999, their Fig. 3), showing almost constant
moderate upwelling in a wide range of latitudes under day-
time quiet conditions in December. The other parameter, the
downward vertical plasma drift W=VnxSinICosI, also does
not change much with latitude. Although the SinICosI prod-
uct decreases by a factor of 2 within the considered latitu-
dinal range, according to the UARS observations, the north-
ward wind Vnx increases with latitude during the December
solstice under daytime quiet conditions (Fejer et al., 2000,
their Fig. 1). Therefore, one should not expect pronounced
latitudinal variations ofNmF2 for the conditions in question.
The small changes inδNm=Nm/Nmmed also imply small lat-
itudinal variations in theNmF2 median values. The analysis
of the monthly medians for the chain of stations from the
low-latitude one Alma-Ata (8=33.4) to the sub-auroral sta-
tion St.Petersburg (8=56.2) shows small (<6% under solar
maximum and<20% under solar minimum)NmF2med vari-
ations for the noon hours in December.

As was noted earlier, the appearance of negative Q-
disturbances does not imply any physical process but just
manifests the difference between theNmF2 values corre-
sponding to the ground state of the ionosphere and to its me-
dian level. The latter is always higher, as it bears the effect
of downwelling under moderate (Ap≤15) geomagnetic ac-
tivity. Therefore, we have synchronousδNmF2 andδNmE
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variations only on average, that is, both deviations are less
than the unity, on average.

Considering the mechanism of the F2-layer negative Q-
disturbances, it is worth mentioning an attempt to relate the
large NmF2 reduction on 16 April 2002 (Fig. 2) with the
strong positiveBy component of IMF (Goncharenko et al.,
2006). Based on the GUVI/TIMED data on the O/N2 column
density, the authors tried to interpret the observed negative
perturbation in terms of an usual negative F2-layer storm ef-
fect. Indeed, the GUVI observations show a 30–50% reduc-
tion of this ratio on 16 April as compared to the preceding ge-
omagnetically quiet days. During the usual F2-layer negative
storms, the O/N2 ratio also decreases (e.g. Prölss, 1995), but
the F2-layer perturbation on 16 April belongs to a different
class of events. The F2-layer maximum heighthmF2 always
increases during usual F2-layer negative daytime storms due
to the enhanced neutral temperature Tex and linear loss co-
efficientβ. However, during the 16 April event the daytime
hmF2 values were much lower as compared to the 15 April
values (Fig. 2, also their Fig. 2), while both Tex andβ were
only slightly decreased (Table 2), that is, they changed in the
opposite way as compared to the normal variations of these
parameters during F2-layer negative storms. The main con-
tribution to theNmF2 reduction in that case belonged to the
atomic oxygen variations, but the O/N2 column density bears
no indications of that. The electron concentration in the F2-
layer depends on various aeronomic parameters and the de-
pendence is different for each of them (Ivanov-Kholodny and
Mikhailov, 1986), so one parameter (the O/N2 column den-
sity) is not sufficient for any physical interpretation.

The positive, long-duration F2-layer disturbances (positive
Q-disturbances belong to the same class of the F2-layer per-
turbations) are related to low or moderate auroral activity,
when the solar-driven thermospheric circulation is damped
and the neutral gas downwelling increases the atomic oxy-
gen concentration in the thermosphere. This was shown,
for instance, by Rishbeth (1998, his Fig. 3). The down-
welling increases towards the auroral oval and this explains
the increase with latitude of the amplitude and the occur-
rence frequency of the positive Q-disturbances. By anal-
ogy with the negative Q-disturbances, we have the same
two factors (the atomic oxygen amount and meridional ther-
mospheric wind), but now they work in opposite direction,
thereby increasingNmF2. Another morphological feature of
high-and middle-latitude positive Q-disturbances is cluster-
ing around equinoxes (Mikhailov et al., 2004). The feature
can be related to the maximal occurrence of geomagnetic dis-
turbances during equinoxes (e.g. Roosen, 1966). According
to the proposed concept, the enhanced auroral activity damps
the meridional wind and stimulates the downwelling, thereby
increasing the atomic oxygen abundance at sub-auroral and
middle latitudes.

It has been mentioned earlier that the WINDII/UARS data
on atomic oxygen variations in the lower thermosphere are
directly related to the problem of the Q-disturbances, as these

variations are due to the vertical gas motion during the tran-
sition periods (Shepherd et al., 2004). Moreover, the spatial
and seasonal variations of the O(1S) emission demonstrate
the features similar to those revealed for the F2-layer Q-
disturbances. Unfortunately, the March–April 1992 period,
which is the most thoroughly covered in publications (Shep-
herd et al., 1999, 2004), was not geomagnetically quiet, and
the corresponding variations of ionospheric parameters can-
not be considered as Q-disturbances. The other problem is
that the authors relate the observed transitions with down-
welling and upwelling in the lower thermosphere, whereas
in the scope of the proposed concept only the positive Q-
disturbances are related to the downwelling, but the up-
welling is only supposed to form the ground state of the ther-
mosphere. The coupling from below does exist and some
types of the Q-disturbances undoubtedly are related to this
coupling, therefore future analyses are needed to check the
relationship between such transitions in the lower thermo-
sphere and the Q-disturbances in the F2-region.

6 Conclusions

The results of our analysis may be summarized as follows:

1. The analysis of the daytime (11:00–14:00 LT) obser-
vations of NmF2 and NmE at sub-auroral and mid-
latitude stations for the periods of positive and nega-
tive F2-layer Q-disturbances has shown a synchronous
type of theδNmF2 andδNmE variations. TheδNmE
difference from the unity (i.e. the median) is signifi-
cant at any confidence level for both negative and pos-
itive Q-disturbances. Therefore, under the negative Q-
disturbances in the F2-layer we have negative deviations
in the E-layer and the positive F2-layer disturbances
are accompanied by positive deviations inNmE. Thus,
δNmF2 andδNmE exhibit in-phase variations in a sta-
tistical sense. In the case of the positive Q-disturbances,
the in-phase variations take place not only on average,
but also at the point-to-point level. This confirms the
morphological conclusion obtained earlier that the pos-
itive and negative F2-layer Q-disturbances are due to
different formation mechanisms.

2. The only mechanism capable of explaining the ob-
served δNmE variations is the vertical gas motion,
which changes the effective scale height H(O2) of
the molecule oxygen distribution at E-region heights.
The neutral gas downwelling enriches the thermosphere
with atomic oxygen at F2-layer heights and decreases
H(O2) in the E-region, to result in synchronousNmF2
andNmE increases. The upwelling of the neutral gas
should result in the opposite effect.

3. The expected variations of atomic oxygen during F2-
layer Q-disturbance events were confirmed by the Mill-
stone Hill ISR observations for the periods of positive
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and negative Q-disturbances. The self-consistent ap-
proach to the Ne(h) modelling at F2-region heights de-
veloped earlier has been used to find the thermospheric
neutral composition ([O], [O2], and [N2]), temperature
Tn(h), and vertical plasma drift W related to the ther-
mospheric winds and electric fields. It was shown that
both the positive and negative Q-disturbances in the F2-
region are mainly due to the atomic oxygen concentra-
tion variations. The negative disturbances correspond
to low concentration of atomic oxygen and strong pole-
ward neutral wind. The opposite situation takes place
for the positive Q-disturbances. However, some mor-
phological features of the negative Q-disturbances can-
not be explained by the neutral gas upwelling. There-
fore, an idea of the ground state of the thermosphere is
proposed.

4. The ground state of the thermosphere corresponds to
very low geomagnetic activity, with an unconstrained
solar-driven thermospheric circulation characterized by
relatively strong daytime poleward wind and relatively
low atomic oxygen concentrations at middle and sub-
auroral latitudes. It follows from the model calcula-
tions by Rishbeth and M̈uller-Wodarg (1999) that the
low concentrations may be related to a moderate up-
welling (about 0.5 m/s).

5. The negative Q-disturbances occur under the ground
state of the thermosphere, with low atomic oxygen
concentration and strong poleward thermospheric wind,
which produces the downward plasma drift decreasing
NmF2. A weak latitudinal variation of both aeronomic
parameters explains the small latitudinal variations in
the occurrence frequency and amplitude of the negative
Q-disturbances revealed earlier in the morphological
analysis. The clustering of the negative Q-disturbances
around winter solstice is related to the poleward wind,
which is the strongest under such conditions. Actu-
ally, the occurrence of negative Q-disturbances is not
related to any physical process, but depends on the
NmF2 median level from where they are counted. If the
month was geomagnetically disturbed with usual neg-
ative F2-layer storm events, theNmF2 median level is
lower and this does prevent the appearance of the neg-
ative Q-disturbances. On the contrary, the negative Q-
disturbances should appear if a month was quiet and the
NmF2 median level was relatively high.

6. The positive Q-disturbances appear under slightly en-
hanced auroral activity when the high-latitude heating
increases and damps the solar-driven poleward thermo-
spheric circulation. This damping produces a down-
welling of the neutral gas with the corresponding en-
richment of the thermosphere with atomic oxygen at
F2-region heights and a decrease in H(O2) in the E-
region. This results in a synchronousNmF2 andNmE

increase. The downwelling is expected to increase to-
wards the auroral oval and this explains the increase
with latitude of the amplitude and occurrence frequency
of the positive Q-disturbances revealed in our pre-
vious morphological analysis. The tendency of the
high- and middle-latitude positive Q-disturbances to
cluster around equinoxes can be related to the max-
imal occurrence of geomagnetic disturbances during
equinoxes. According to the proposed concept, en-
hanced auroral activity damps the meridional wind and
stimulates neutral gas downwelling, thereby increasing
the atomic oxygen abundance at sub-auroral and mid-
dle latitudes. The damped poleward neutral wind also
reduces the downward plasma drift in the F2-region,
thereby increasingNmF2. The positive Q-disturbances
just present the left-hand wing of the positive, long-
duration F2-layer disturbances area on theAp-index
scale. The mechanism of both disturbances is the same:
the damped poleward circulation and neutral gas down-
welling resulting in the [O] abundance increase.

7. Different formation mechanisms of the daytime posi-
tive and negative Q-disturbances explain the different
level of the synchronism in theδNmF2 andδNmE vari-
ations. For the negative Q-disturbances, we have in-
phaseδNmF2 andδNmE changes only on average (i.e.
in a statistical sense), as no physical processes relating
δNmF2 andδNmE are involved in this case. On the
contrary, in the case of the positive Q-disturbances, the
downward gas motion in the thermosphere produces the
in-phaseδNmF2 andδNmE changes not only on aver-
age, but at the point-to-point level, as well.
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