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Abstract. We have performed 3 one-dimensional full par-
ticle electromagnetic simulations of a quasi-perpendicular
shock with the same Alfv́en Mach numberMA∼5, shock
normal-magnetic field angle2Bn=87◦ and ion and electron
beta (particle to magnetic field pressure) of 0.1. In the first
run we used an ion to electron mass ratio close to the physical
one (mi/me=1024). As expected from previous high mass
ratio simulations the Modified Two-Stream instability devel-
ops in the foot of the shock, and the shock periodically re-
forms itself. We have then self-consistently included in the
simulation 10% pickup protons distributed on a shell in ve-
locity space as a third component. In a run with an unreal-
istically low mass ratios of 200 the shock still reforms itself;
reformation is due to accumulation of specularly reflected
particles at the upstream edge of the foot. In a third run in-
cluding pickup protons we used a mass ratio of 1024. The
shock reforms periodically as in the low mass ratio run with
a somewhat smaller time constant. The specular reflection of
pickup protons results in an increase of the shock potential
some distance ahead of the shock foot and ramp. The min-
imum scale of the cross shock potential during reformation
is about 7 electron inertial lengthλe. We do not find any
pickup proton acceleration in the ramp or downstream of the
shock beyond the energy which specularly reflected ions gain
by the motional electric field of the solar wind during their
upstream gyration.

Keywords. Space plasma physics (Numerical simulation
studies; Shock waves; Waves and instabilities)

1 Introduction

It is generally accepted that interstellar neutral atoms, which
are ionized in the heliosphere and picked up by the solar
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wind, are ultimately accelerated at the termination shock
by first order Fermi acceleration, also known as diffusive
shock acceleration, up to several 100 MeV nucleon−1 (Pesses
et al., 1981) and constitute the so-called anomalous cos-
mic rays (ACRs). If pickup ions are sufficiently energetic
to begin with, diffusive acceleration at a collisionless ter-
mination shock can accelerate them to the energies of the
ACRs. The acceleration process has to be fast, i.e., in or-
der for ACRs to be singly ionized the acceleration time
for 10 MeV nucleon−1 is limited to∼4.6 yr (Jokipii, 1992).
Jokipii (1992) pointed out that such a short acceleration time
can only be achieved by diffusive acceleration at the quasi-
perpendicular termination shock assuming weak (in the hard-
sphere sense) scattering perpendicular to the magnetic field.
However, the requirement for the scattering to be weak re-
quires that pickup ions are already energetic in order to be
Fermi accelerated, since otherwise particles downstream of
the shock are not capable of diffusing upstream (Jokipii,
1987), (Webb et al., 1995). Zank et al. (2001) derived as
a condition for particles to be Fermi accelerated that the in-
jection velocityv is larger than 3(U1/r)(1+η2)1/2 whereU1
is the upstream solar wind speed,r the shock compression
ratio, andη=λ||/rg, the ratio of the particle’s parallel mean
free pathλ|| to the gyroradiusrg. Since for weak scattering
η≫1, the energy at which particles are injected into a Fermi
process is larger than the energy of the pickup ions, and this
is the so-called injection problem.

Lee et al. (1996) and Zank et al. (1996) have investigated
the possibility that pickup ions are accelerated at a quasi-
perpendicular shock by so-called shock surfing, where part of
the pickup ions incident on the shock are trapped between the
electrostatic potential of the shock and the upstream Lorentz
force. The efficiency of this mechanism strongly depends
on the scale of the cross-shock potential: the surfing mech-
anism, also called multiply reflected ion (MRI) mechanism,
is only efficient when the cross-shock potential scale is of
the order of the electron inertial length. Zank et al. (2001)
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have proposed that the MRI mechanism works as a pickup
ion injection mechanism into a first order Fermi accelera-
tion mechanism at the termination shock. The MRI mecha-
nism discriminates against heavier pickup ions: the reflection
fraction of pickup ions decreases with increasing mass. This
is at variance with the conclusion drawn from ACR obser-
vations in the outer heliosphere: the injection efficiency for
ACRs seems to be higher for higher mass pickup ions (Cum-
mings and Stone, 1996). To circumvent this problem Zank
et al. (2001) have argued, that since according to quasi-linear
resonant scattering theory the parallel mean free path is an
increasing function of rigidityR=pc/M, η decreases with
pickup ion massM (p is particle momentum,Q is charge,
c is speed of light). Since in the weak scattering limit the
injection velocity for diffusive acceleration has to be larger
than 3(U1/r)(1+η2)1/2 it follows that the injection velocity
is for heaver ions at a lower value, where fluxes of MRI ac-
celerated pickup ions are higher. This overcompensates for
the lower acceleration efficiency of the MRI mechanism with
increasing mass.

The crucial question is whether the scale of the cross-
shock potential at a quasi-perpendicular collisionless termi-
nation shock of the order of the electron inertial scale, a pre-
requisite for the MRI mechanism. Scholer et al. (2003) have
performed full particle simulations of quasi-perpendicular
shocks with the physical mass ratio and have found that low
ion beta,βi , shocks periodically reform. The length scale
of the potential during reformation cycle can, at best, get as
small as about 4 electron inertial lengthsλe=c/ωpe (ωpe is
the electron plasma frequency). They have therefore con-
cluded that the MRI process is not a viable mechanism for
pre-acceleration of pickup ions at the termination shock, al-
thoughLipatov and Zank (1999) found such an acceleration
process in their finite electron mass hybrid shock simulations
where pickup protons were included. We will comment on
the Lipatov and Zank (1999) result at the end of the paper. An
additional problem for the MRI mechanism is the existence
of higher dimensional effects on the structure of the shock
surface, like the shock ripples seen in the hybrid simulations
by Lowe and Burgess (2003).

In the full particle simulations by Scholer et al. (2003)
pickup protons were not included as a third component. Fur-
thermore, they based their arguments on runs with rather low
ion beta (magnetic field to particle pressure). However, the
process of shock self-reformation and the associated shock
transition scale depends critically onβi . The Voyager data
show a strong deviation of the temperature in the inner as
well in the outer heliosphere from an adiabatic temperature
profile (Richardson and Smith, 2003). This is attributed in
the inner heliosphere to stream interaction and shocks and
in the outer heliosphere to turbulent heating by interstellar
pickup ions. At∼80 AU the temperature is about by a factor
60 above the adiabatic value. Taking a value of 1.5×104 K,
and assuming a magnetic field strength of 0.1 nT and a den-
sity of 1.6×10−3 cm−3 we obtainβi∼0.083. The magnetic

field strength is closer to 0.06 nT (Burlaga et al., 2003). Ac-
cording to the Wang et al. (2000) model for the evolution of
the solar wind the density changes in the outer heliosphere
synchronously with the magnetic field. Assuming thus a
reduced density of 0.8×10−3 results inβi∼0.11. We as-
sume thatβi=0.1 is a representative value upstream of the
heliospheric termination shock. We want to explore in the
following the consequences of pickup protons for a quasi-
perpendicular shock. We assume in the present paper a mag-
netic field – shock normal angle of2Bn=87◦. The exactly
perpendicular shock is a singular case since in a 1-D sim-
ulation waves with a component of the wave vectors paral-
lel to the magnetic field are excluded. For instance a 1-D
shock simulation of an exactly perpendicular shock does not
exhibit the Modified Two-Stream instability (MTSI) in the
shock foot region (Scholer et al., 2004).

Recently Lee at al. (2005) have for the first time included
pickup protons self-consistenlly in a full particle perpen-
dicular shock simulation with parameters appropriate for
the termination shock. Two important parameters enter a
PIC (Particle-In-Cell) simulation: the mass ratiomi/me

and the ratio of electron plasma frequency to gyrofrequency
ωpe/�ce. Lee at al. (2005) used the large value of 20 for
ωpe/�ce, but had to compromise because of computational
reasons by using the rather low mass ratio ofmi/me=20.
Lee at al. (2005) found that a perpendicular shock with 10%
pickup protons added also reforms. Due to the dynamics of
the shock the reflected pickup protons are accelerated up to
20 times the solar wind proton energy. Since we found in pre-
vious PIC simulations that the use of the physical mass ratio
is important for the dynamics of lowβi quasi-perpendicular
shocks we will present in the following results for high mass
ratio simulations. However, in order to achieve reasonable
run times and simulation domains a ratio ofωpe/�ce=2 had
to be used.

2 Simulation

The shock is produced by the so-called injection method: a
high-speed plasma consisting of solar wind electrons, solar
wind protons, and pickup protons is injected from the left
hand boundary of a one-dimensional simulation system and
travels toward positivex. The plasma carries a uniform mag-
netic field which has aBz and aBx component. At the right
hand boundary the particles are specularly reflected. A shock
then propagates in the−x-direction, i.e., the simulation sys-
tem is the downstream rest frame, and the shock normal is the
x-axis. Furthermore, the simulations are done in the so-called
normal incidence frame where the upstream bulk velocity is
parallel to the shock normal. Initially there are 100 parti-
cles for each proton species as well as for the electrons in a
computational cell. As in earlier work (Liewer et al., 1993),
(Kucharek and Scholer, 1995) the pickup protons velocity
distribution is assumed to be a spherical shell comoving with
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Fig. 1. Magnetic fieldBz component stacked in time for the ion to
electron mass ratio 1024 run. Time runs from bottom to top.

the solar wind, which neglects adiabatic deceleration and ve-
locity space diffusion. Since the shock moves in the simu-
lation system with speedMs (in units of the Alfv́en speed)
from the right toward the left the shock Mach number is
MA=Mo+Ms whereMo is the injection velocity of the solar
wind protons. In order to initialize and subsequently inject
from the left hand boundary pickup protons for a termination
shock simulationMs has to be known: the pickup protons
have to be injected on a sphere in velocity space centered at
Mo with radiusMA. In the simulations the injection veloc-
ity Mo is assumed to be 3.5. This produces a shock which
moves withMs∼2.3 in the simulation frame to the left hand
side, so that the shock Mach number isMA∼5.8 shock.

The size of a cell is one Debye lengthλD. In the fol-
lowing, time will be given in units of the inverse of the pro-
ton cyclotron frequency�ci , distances in units of the elec-
tron inertial lengthλe, the velocity in units of the upstream
Alfv én speedvA, magnetic field and the density in units of
their upstream valuesB0 andn0, respectively. The poten-
tial e8 is given in units ofcB0/λe. As outlined in the In-
troduction, we will investigate a low beta case and assume
βi=βe=0.1. Because of computational reasons the parame-
ter τ=(ωpe/�ce)

2 is set to 4. We will return to the problem
of smallτ in the Discussion section.

2.1 High mass ratio (mi/me=1024), no pickup protons

We will first discuss a high mass ratiomi/me=1024 simu-
lation run without the addition of pickup protons. Figure 1
shows the magnetic field componentBz stacked in time; time
runs from bottom to top, and beginning and end is indicated
at the y-axis. As can be seen the magnetic field profile is not
steady, but the foot and ramp is highly structured. The ramp
reforms itself on a time scale of about 2�−1

ci , although it has
to be noted that in the high mass ratio case we can follow the
shock development only over three reformation cycles. How-
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Fig. 2. From top to bottom: magnetic fieldBz component, ion
densityni , and ionvix phase space versus shock normal direction
x for the ion to electron mass ratio 1024 run.
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Fig. 3. From top to bottom: magnetic fieldBz component, ion
densityni , and ionvix phase space versus shock normal direction
x for the ion to electron mass ratio 1024 run.

ever, in contrast to earlier lower ionβi simulations presented
in Scholer et al. (2003), there exists already an extended foot
immediately after the new ramp has build up. Figures 2 and
3 show from top to bottom the magnetic fieldBz component,
the ion densityni and the ionvix−x phase space plot at two
particular times of the simulation (t�ci=5.73 andt�ci=6.0,
respectively). In Fig. 2 the shock ramp is at∼390λe, there
is an extended foot region with specularly reflected ions in
which the incoming solar wind protons are decelerated and
the magnetic field is increased. The ion phase space plot in
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Fig. 4. Upper panel: Magnetic fieldBz component stacked in time
for the ion to electron mass ratio 200 run. Lowe panel: Same for a
single reflection cycle.

the bottom panel of Fig. 2 shows structure in the phase space
distribution of the incoming ions. These ions interact with
the incoming electrons: due to the high density of reflected
ions the incoming electrons are decelerated relative to the
incoming ions in order to achieve zero current in the shock
normal direction. Due to the relative velocity between solar
wind ions and solar wind electrons the solar wind ion beam
mode can interact with the whistler mode, as shown in more
detail by Matsukiyo and Scholer (2003), which results in the
MTSI. Phase mixing of the reflected ions and the incoming
ions due to the MTSI turbulence leads to solar wind ion ther-
malization in the foot region. Eventually a new shock ramp
emerges at the upstream edge of the foot, as can be seen from
Fig. 3 at a somewhat later time. Similar simulations have
been discussed in detail in Scholer et al. (2003).

2.2 Low mass ratio (mi/me=200), pickup protons in-
cluded

We have included self-consistently 10% pickup protons on
a shell in velocity space. As described above the particle
number of solar wind protons and pickup protons per cell is
identical; the relative contribution of pickup protons is scaled
down by assuming the appropriate mass and charge. First we
present results from a low mass ratio (mi/me=200) run. Lee
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Fig. 5. Upper panel: Magnetic fieldBz component stacked in time
for the ion to electron mass ratio 1024 run with pickup protons in-
cluded. Lower panel: Same for the cross shock potential8.

at al. (2005) found in a mass ratiomi/me=20 run that self-
reformation indeed occurs. They have argued that the shock
dynamics during reformation is important for the accelera-
tion of the specularly reflected pickup protons in the foot re-
gion. Figure 4 shows the magnetic field stacked in time over
an extended time period (longer run times can be achieved
in this low mass ratio case). One can see repeated reforma-
tion cycles with a period of∼1.5�−1

ci . The development of
the magnetic field during one of these cycles can be seen in
more detail from the lower panel of Fig. 4. Reformation is
due to accumulation of specularly reflected solar wind pro-
tons at the upstream edge of the solar wind proton foot as
discussed byLemb̀ege and Savoini (1992) and Hada et al.
(2003). In this lower mass ratio run the MTSI is absent. Fig-
ure 4 also shows that an extended second foot exists in front
of the solar wind proton foot due to the reflected pickup pro-
tons. Self-reformation is independent of the mass ratio and
the presence of (up to 10%) pickup ions, although the de-
tails of processes in the shock foot region during reformation
strongly depend on these. Since Lee at al. (2005) also found
reformation in simulations withωpe/�ce=20 it seems that
reformation is also independent of the ratio of speed of light
to Alfv én speed (becauseωpe/�ce=(c/vA)(me/mi)

1/2).
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2.3 High mass ratio (mi/me=1024), pickup protons in-
cluded

We now increase the ion to electron mass ratio to 1024 and
include 10% pickup protons. Initially there is a total number
of 2.4×106 particles in the system, but particles are contin-
uously added so that by the end of the run the total num-
ber of particles has doubled. In the upper panel of Fig. 5
is shown the stacked magnetic field profile; the lower panel
exhibits time-stacked profiles of the cross shock potential
8=

∫
Exdx. Reformation clearly occurs also in this case

with a somewhat smaller cyclic time period of∼1.7�−1
ci and

is even more pronounced than in the case without pickup
ions. The lower panel shows that the potential increases a
considerable distance in front of the reflected solar wind pro-
ton generated foot. This is due to reflected pickup ions and
pickup ions which are first transmitted and then re-enter the
upstream region due to their large gyroradius. During their
gyration in the upstream field these pickup ions contribute to
an ion bulk velocityvy in the direction perpendicular to the
field and to the shock normal. As pointed out by Lee at al.
(2005) the electric field in the shock normal, x-direction can
be approximated by

Ex ≈ −
1

enµo

∂(B2/2)

∂x
− vyBz (1)

The pickup ion bulk velocity in the y-direction results in an
increase of the potential far ahead of the specularly reflected
solar wind proton foot. In the foot the magnetic field rapidly
increases (see top panel of Fig. 5) leading to a further in-
crease of the cross shock potential8. Figure 6 shows the
magnetic field profile and the cross shock potential during
two instances in time. Att�−1

ci =4.9 there is a large foot in
the magnetic field followed by a steep ramp. At this time
more than 80% of the total potential change occurs across
the foot. The potential decreases slightly before the ramp
and has only a small increase in the ramp. Att�−1

ci =5.5 a
new ramp has formed at the upstream edge of the former foot
and a very small foot in the magnetic field exists. At this time
∼1/3 of the potential occurs in the extended region upstream
due to reflected and gyrating pickup protons,∼1/3 of the po-
tential occurs in the small new foot region and∼1/3 in the
ramp. This is contrary to the synchronous behavior of8 and
B when no pickup ions are present. The scale of the ramp
potential during this time period is∼6−7λe.

Figure 7 shows reduced distribution functions of pickup
protonsfpi(vx), fpi(vy), andfpi(vz) in the region down-
stream of the shock at timet=7.1�−1

ci close to the end of the
run. The distribution is averaged over a distance of 200λe;
the total number of particles used for this averaged distribu-
tion is about 2×106. Pickup protons gain maximum veloc-
ities of about 15vA. The downstream distribution function
does not exhibit a high energy tail, in contrast to what has
been seen in the low mass ratio, highωpe/�ce ratio simula-
tions by Lee at al. (2005). Also no further high energy tail
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Fig. 6. Magnetic fieldBz component and cross shock potential8

versus shock normal directionx for two different times during the
reformation cycle.

in the distribution function of reflected pickup ions is either
seen upstream or far downstream (not shown here).

In Fig. 8 we present the energy of the pickup ions nor-
malized to the solar wind energyǫin in the downstream rest
frame as a function of distancex at�ci t=7.1. Also shown in
the top panel for reference is the profile of the magnetic field
Bz component. In the lower panel we have plotted the nor-
malized energy of each individual pickup ion in the system.
As can be seen, the maximum pickup ion energy is below
ǫpi/ǫin≈17, i.e., at this time there are no ions with higher
energy in the system. In the Appendix we give a simple ana-
lytic derivation of the maximum energy obtained by a pickup
ion during the gyration in the foot. The analytically obtained
value ofǫpi/ǫin=14.1 is close to the value obtained in the
simulation.
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3 Conclusions

We have presented in this paper 3 full particle simulations
of a quasi-perpendicular shock with the same Alfvén Mach
numberMA and shock normal – magnetic field angle2Bn

but different ion to electron mass ratios, and with or without
contribution of pickup protons. The parameters are such that
they might be characteristic for the heliospheric termination
shock. The results of the present study can be summarized
as follows.

1. Without the addition of pickup protons in a high ion
to electron mass ratio simulation the Modified Two-
Stream instability (MTSI) occurs in the foot of the
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0

pi in

0
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Fig. 8. Magnetic fieldBz component (top panel) and normalized
pickup ion energyǫpi/ǫin (bottom panel) versus shock normal co-
ordinatex.

shock and leads to important changes of the shock struc-
ture as compared to low mass ratio simulations.

2. In a low mass ratio (mi/me=200) simulation reforma-
tion still occurs on about the same time scale (∼2�−1

ci ,
but the magnetic field in the foot is smooth and the
MTSI is absent. Reformation is due to accumulation
of specularly reflected ions at the upstream edge of the
foot. A feedback effect leads to a magnetic field in-
crease, further deceleration of incoming ions and den-
sity increase, and eventually to a new shock ramp. This
mechanism has been described by a semi-analytical
model for exactly perpendicular shocks by Hada et al.
(2003) .

3. In the high mass ratio simulation without pickup ions
and with 10% pickup protons included the MTSI oc-
curs. Reformation is still due to accumulation of spec-
ularly reflected ions at the upstream edge of the foot as
described above.

4. A large part of the cross shock potential drop occurs al-
ready in the upstream region, where reflected and/or es-
caping pickup protons gyrate in the upstream magnetic
field.

5. The cross shock potential in the ramp has scales vary-
ing between∼6 and∼40λe during a reformation cycle.
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Small scale lengths occur when there is a clear sepa-
ration between foot and a steepened up ramp. How-
ever, during such times only one third of the total po-
tential change occurs across the ramp. Approximately
one third of the potential drop occurs over the extended
upstream region with gyrating reflected pickup protons
and one third occurs in the foot associated with the re-
flected solar wind protons.

6. Reduced distribution functions of pickup ions do not in-
dicate that there exists any acceleration process beyond
the energy gain of reflected pickup protons during up-
stream gyration by the solar wind convection electric
field.

Some of the results of this paper are at variance with previ-
ous work. Lipatov and Zank (1999) found in finite electron
mass hybrid simulations by including pickup protons self-
consistently that these ions were accelerated to higher ener-
gies by the shock surfing process. However, as shown in the
review by Lemb̀ege et al. (2004), large differences can oc-
cur in the pickup proton spectra obtained from such simula-
tions depending on whether the electrons are treated adiabat-
ically or by implicitly solving the electron energy equation.
In the latter case considerable artificial electron heating oc-
curs through the shock ramp due to resistivity. This leads to
a sharp increase of the electron pressure and, in turn, of the
potential, through the shock ramp. In their PIC simulations
of perpendicular shocks with pickup protons included Lee at
al. (2005) did not find any acceleration of the pickup protons
due to shock surfing. However, these authors found acceler-
ation of pickup protons up to 20 times the solar wind proton
energy, which they attributed to the shock dynamics during
self-reformation. This is not seen in the present simulation
either.

There are a number of reasons for the lack of pickup ion
acceleration found here as compared to the Lee at al. (2005)
result. The lack of acceleration may either be due to (1) the
high, realistic mass ratio used here, (2) the small, unrealis-
tic value ofωpe/�ce used here, or (3) the combination of
both. At a small value ofωpe/�ce electrostatic effects are
suppressed and strong electric fields possibly occurring on
electron scales are reduced or absent. This is definitively a
drawback of the present high mass ratio simulations. On the
other hand, ion dynamics is expected to be independent of
electric fields occurring on electron scales. Thus we con-
clude that small scale electric fields present in highωpe/�ce

simulations have no effect on ion dynamics. However, in low
mass ratio, highωpe/�ce simulations it might well be that
the low mass protons can still be accelerated in small scale
electric field structures. Such an acceleration process would
disappear in largeωpe/�ce simulations if the physical mass
ratio were used.

Other limitations of the present simulations are the lim-
ited system size and run time. Lee at al. (2005) found a

high energy tail in the downstream pickup proton distribu-
tion, which they attributed to acceleration downstream of the
shock. Since we have rather short run times we would prob-
ably not observe such a stochastic acceleration mechanism.
Furthermore, the downstream region is still rather small, so
that our particle statistics is poor. But any process deal-
ing with the dynamics downstream of a quasi-perpendicular
shock is anyway beyond what can be inferred from 1-D
shock simulations. The downstream large scale dynamics in
a 2- or 3-dimensional system is dominated by waves propa-
gating parallel to the magnetic field, i.e., almost perpendic-
ular to the x-axis. Such waves are not allowed for in 1-D
simulations. The same holds in the ramp region: instabil-
ities with k vectors less oblique to the magnetic field may
have larger growth rates and can modify the reformation pro-
cess. In particular the modified two-stream instability be-
tween solar wind electrons and reflected ions withk vec-
tor components parallel to the magnetic field can occur in
a multi-dimensional spatial system (Gary et al., 1987) and
plays an important role in the foot region (Matsukiyo and
Scholer, 2006).

How can then the injection problem at quasi-perpendicular
shocks be attacked? As recently pointed out by Giacalone
(2005) there might not really exist an injection problem. In
2-D hybrid simulations of quasi-perpendicular shocks Gi-
acalone (2005) found that part of the thermal protons are re-
flected and move upstream along magnetic field lines that are
multiply connected to other locations on the shock surface.
The latter is due to long-wave lengths fluctuations superim-
posed on the upstream magnetic field. Such a reflection and
acceleration mechanism is also possible, or even more likely,
for the pickup protons. The proposal by Scholer (2004) that
fluctuations with a length scale of the order of 0.1 AU lead to
a locally quasi-parallel shock, which preferentially reflects
and accelerates pickup ions, is on the same line. It is likely
that in the case of ion acceleration large-scale higher dimen-
sional effects are more significant than the small scale dy-
namics of the shock. It would nevertheless be very important
to verify whether a micro-scale ion acceleration process like
the one reported by Lee at al. (2004) exists. Computer re-
sources to do this with mass ratios sufficiently high (≈200) to
clearly separate ion and electron spatial and temporal scales
and withωpe/�ce ratios sufficiently high (≈10) so that the
speed of light and the Alfv́en speed are sufficiently far apart
are now in reach.

Appendix A

Maximum energy

In the following we give an estimate of the maximum en-
ergy of a pickup ion in the foot of a perpendicular shock
after specular reflection at the ramp. In the downstream
rest frame (simulation frame) the incoming solar wind has
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a speedvsw and the shock moves with speedvsh (in the x-
direction). Since we assume the shock to be standing in the
inertial frame the solar wind velocity isu0=vsw + vsh and
pickup ions are assumed to be on a sphere in velocity space
with radiusu0 and being centered atvsw. The velocity of
pickup ions with zero velocity in the z-direction is then given
by

vx = u0 cosφ + vsw

vy = −u0 sinφ. (A1)

or

vx = vsw(1 + cosφ) + vsh cosφ

vy = −vsw sinφ − vsh sinφ (A2)

Let us assume that a pickup ion reaches the ramp with the
above velocity. After specular reflection the velocity is given
by (note that the shock moves with velocityvsh)

vrx = −vsw(1 + cosφ) − vsh cosφ − vsh

vry = −vsw sinφ − vsh sinφ (A3)

This can also be written in the following form

vrx = ur0 cosφr + vsw

vry = −ur0 sinφr , (A4)

whereur0 andφr are given by

ur0 = (vsw + vsh)
sinφ

sinφr

tanφr = −
(vsw + vsh) sinφ

2vsw + vsh + (vsw + vsh) cosφ
. (A5)

The reason for the transformation of Eq. (A3) into the form
(A4) becomes obvious when we consider the solution of the
equation of motion of an ion with massmi in the foot with
magnetic fieldB0 in the z-direction and a motional electric
field Ey . The equation of motion is given by

dvx

dt
=

e

mic
vyB0

dvy

dt
=

e

mi

(Ey −
vx

c
B0), (A6)

which by usingEy=vswB0/c and introducing the gyrofre-
quency�ci can be written as

dvx

dt
= �civy

dvy

dt
= �ci(vsw − vx). (A7)

with the general solution

vx(t) = w0 cos(�ci + φ̂) + vsw

vy(t) = −w0 sin(�ci + φ̂). (A8)

This solution has the same form as the velocity (A4) of a
reflected pickup ion when we setw0=ur0 andφ̂ = φr . The
velocity and the positionx of the reflected pickup ion at time
t after reflection is then given by

vrx(t) = vsw − (2vsw + vsh) cos�ci t

−(vsw + vsh) cos(�ci − φ)

vry(t) = (2vsw + vsh) sin�ci t + (vsw + vsh) sin(�ci + φ)

xr(t) = vswt −
2vsw + vsh

�ci

sin�ci t

−
vsw + vsh

�ci

[sin(�ci + φ) + sinφ]. (A9)

We normalize the energyǫr=v2
rx+v2

ry to the solar wind en-

ergyǫin=v2
sw. Only pickup ions withπ/2<φ<3π/2 can get

specularly reflected; for all other values ofφ the ions are
transmitted downstream. Downstream transmitted ions may
again gyrate back upstream. In the following we will not con-
sider such ions. Of all ions withφ betweenπ/2 and 3π/2 the
ions withφ=π/2 have the largest initial energy and stay the
longest time in the foot during their gyration. This acceler-
ation timeτacc can be found by settingxr(t)=−vsht : at this
time the particle reencounters again the ramp. Sinceτacc is
a decreasing function withφ in the regionφ>π/2 a parti-
cle with φ=π/2 is most efficiently accelerated. Substituting
�ci t=π+α in the equation forxr one obtains for smallα

α =
2(1 + vsh/vsw) − π

3 + vsh/vsw

(A10)

In the pickup ion run with the high mass ratiovsh/vsw≈0.65
and thusα≈−0.44. Hence we can roughly estimate the max-
imum energy obtained by a reflected pickup ion by assum-
ing �ci t=π−0.44 andφ=π/2. This results inǫr/ǫin≈14.1
which is somewhat smaller than the simulation result shown
in Fig. 8.
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