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Abstract. Previous analyses have shown that polar wind
fluctuations at MHD scales appear as a mixture of Alfvénic
fluctuations and variations with an energy imbalance in
favour of the magnetic term. In the present study, by sep-
arately examining the behaviour of kinetic and magnetic en-
ergies versus the Alfv́enic correlation level, we unambigu-
ously confirm that the second population is essentially re-
lated to a large increase of the magnetic energy with respect
to that of the Alfv́enic population. The relevant new result
is that this magnetic population, though of secondary impor-
tance in terms of occurrence frequency, corresponds to a pri-
mary peak in the distribution of total energy. The fact that
this holds in the case of polar wind, which is the least struc-
tured type of interplanetary plasma flow and with the slow-
est evolving Alfv́enic turbulence, strongly suggests the gen-
eral conclusion that magnetic structures cannot be neglected
when modeling fluctuations for all kinds of wind regime.

Keywords. Interplanetary physics (MHD waves and turbu-
lence; Sources of the solar wind) – Space plasma physics
(Turbulence)

1 Introduction

Since the first continuous observations of solar wind per-
formed by Mariner 2 in 1962 it was recognized the exis-
tence of a correlation of Alfv́enic type between velocity and
magnetic field fluctuations (Coleman, 1967; Unti and Neuge-
bauer, 1968). At almost the same time, analyses of 1965–
1966 Pioneer 6 data gave evidence of the filamentary struc-
ture of the interplanetary magnetic field (Bartley et al., 1966;
McCracken and Ness, 1966), described as bundles of mag-
netic tubes of force embedded in the solar wind. Thus, al-
ready at the very beginning of the space exploration the main
ingredients of the solar wind variability at MHD scales were
well identified.
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In the next decades impressive advances have been done
thanks to the increasing quality of plasma and magnetic field
measurements, performed on extended ranges of solar dis-
tance and latitude in the heliosphere. Fundamental contri-
butions have been also given by new analysis methods and
use of advanced concepts to describe the behaviour of so-
lar wind fluctuations. Several reviews offer exhaustive dis-
cussions about all this (e.g., Goldstein et al., 1995a; Tu and
Marsch, 1995; Bavassano et al., 2004; Bruno and Carbone,
2005).

Still, there are points that need further analyses. One is that
of the energy distribution among the various components of
solar wind fluctuations. In particular, the question addressed
here is that of how the kinetic and magnetic energies are dis-
tributed between Alfv́enic and non-Alfv́enic disturbances or,
versus the level of the Alfv́enic correlation.

Past studies (e.g., Bavassano et al., 1998) have shown how
the normalized residual energy (defined as the difference be-
tween kinetic and magnetic energies divided by their sum,
see section on data analysis) varies with the Alfvénic corre-
lation. In the present study, instead of using a normalized
quantity, we will directly look at the kinetic and magnetic
energy values. This will be done for two different samples
of the polar solar wind. This is the wind that is typically ob-
served in the high-latitude heliosphere for conditions of low
solar activity. A fast, teneous, and steady flow, as compared
to low-latitude conditions, the polar wind is the best example
in the heliosphere of an almost structureless flow. As typi-
cal of the fast wind regime (Tu and Marsch, 1995), the polar
wind is characterized by the presence of a strong flow of fluc-
tuations of Alfv́enic type (e.g., Goldstein et al., 1995b; Smith
et al., 1995; Bavassano et al., 2000).

2 Data analysis

Our analysis is based on data of the solar wind plasma and
magnetic field experiments aboard Ulysses, the first space-
craft that, with a highly inclined orbital plane with respect
to the ecliptic, has been able to explore the heliosphere up
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Table 1. Start and end times (year, day, hour), minimum and max-
imum distances (R, in AU), and latitudes (λ, in degrees, northern
hemisphere) of the core (first row) and boundary (second row) in-
terval.

time interval R λ
min max min max

1995 176 13 – 1995 260 17 1.77 – 2.36 72.5 – 80.2
1996 106 17 – 1996 182 23 3.65 – 4.02 32.8 – 40.1

to 80◦ of latitude, with extended full immersions in the po-
lar wind. The available plasma data are the fluid velocity
vector (averaged over proton and alpha-particle populations),
the proton number density, the alpha-particle number density,
and the proton temperature. The time resolution is either 4
or 8 min, depending on the spacecraft mode of operation. As
regards the magnetic field, the data used are 1-min averages
of both components and magnitude, computed from higher
resolution measurements.

In the present study we will use two samples selected from
the northern leg of the Ulysses’ first out-of-ecliptic orbit,
when the polar wind is exceptionally stable (McComas al.,
2000). Both intervals are three solar rotations long, as seen
by Ulysses. Their time, distance, and latitude ranges are
given in Table 1. The interval of the first row, in the following
indicated as “core” interval, corresponds to a top-latitude cut
of the Ulysses’ trajectory, while that of the second row, in the
following indicated as “boundary” interval, is from the dis-
tant polar wind, near the low-latitude boundary of the polar
flow.

Before describing the analysis method we would like to
recall that two different Alfv́enic populations are usually
present in the solar wind (e.g., see review by Tu and Marsch,
1995), one of fluctuations propagating, in the wind plasma
frame, away from Sun (outward population) and the other
of fluctuations propagating towards the Sun (inward popu-
lation). Outside the Alfv́enic critical point, where the solar
wind becomes super-Alfv́enic, both kinds of fluctuation are
obviously convected outwards as seen from the Sun. Gen-
erally most of the energy comes from the outward popula-
tion. The Sun is the major source for outward fluctuations,
with smaller contributions from interplanetary sources. Con-
versely, inward fluctuations can only come from sources out-
side the Alfv́enic critical point, since inside this point inward
waves fall back to the Sun (for the completeness it should be
mentioned that they might originate inside the critical point
as well, if they initially propagate outward and then are scat-
tered backward due to some non-linear process).

The computational scheme of our analysis is simple. In
a first step, for each plasma velocity vectorV we have
determined the corresponding magnetic field vectorB by
averaging over 4 (or 8) min, then have derived the corre-
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Fig. 1. Distribution of the occurrence frequencyF (in per cent) in
the planeσC -σR for core (top) and boundary (bottom) polar wind
intervals. Note that the scale forF is different in the two panels.

sponding Els̈asser’s variablesZ± (Elsässer, 1950), defined as
V ±B/

√
4πρ (with ρ the mass density, computed by includ-

ing both proton and alpha-particle contributions). These vari-
ables are ideally suited to separately identify Alfvénic fluc-
tuations propagating in opposite directions (e.g., see Tu and
Marsch (1995) for a discussion on their use). When studying
Alfv énic fluctuations in solar wind, it is useful to have that
Z+ (Z−) fluctuations always correspond to an outward (in-
ward) propagation, whatever the direction of the background
magnetic field is. This request is fulfilled by applying the
above definition only when the background field has a sun-
ward component along the local spiral direction, while for
the opposite magnetic polarityZ± is taken asV ∓B/

√
4πρ.

In the following we will apply this dual definition. Obvi-
ously, in the case of folded (or S-shaped) field configura-
tions, erroneous outward/inward classifications are obtained.
This, however, occurs for a quite small number of cases (see
Balogh et al., 1999).
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Fig. 2. σC -eB (top) andσC -eV (bottom) scatter plots for core (left)
and boundary (right) polar wind intervals.

In the next step, from the time series ofV , B/
√

4πρ, Z+,
andZ− we have computed the corresponding total variances
eV , eB , e+, ande−, as given by the trace of the variance ma-
trices. These values give a measure of the energy (per unit
mass) associated to the various fluctuating fields in a given
frequency band, determined by the data sampling time (see
above) and by the averaging time used to evaluate variances.
Results discussed here refer to hourly variances. With this
choice we essentially focus on fluctuations in the core of the
inertial Alfvénic regime (e.g., Goldstein et al., 1995b; Hor-
bury et al., 1995). We would like to underline that, as already
mentioned, the computed energies are for unit mass. In par-
ticular, when dealing with the magnetic energyeB , one has
to keep in mind that it is the variance ofB/

√
4πρ, namely the

magnetic field scaled to Alfv́en units or, the Alfv́en speed.

Finally, from the above quantities we have derived two
normalized differences, namely 1) the normalized residual
energyσR=(eV −eB )/(eV +eB ), a measure of the energy shar-
ing between kinetic and magnetic fluctuations, and 2) the
normalized cross-helicityσC=(e+−e−)/(e++e−), a measure
of the energy sharing between the two components (outward
and inward) of the Alfv́enic fluctuations. The normalized
cross-helicity gives also a measure of the level of corre-
lation between velocity and magnetic fluctuations (Roberts
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Fig. 3. Energy distributions versus cross-helicity for core polar
wind. The top and middle panels give mean and total values of the
magnetic (red) and kinetic (blue) energies (in km2/s2) for 0.1-bin of
σC , respectively. In the top panel error bars are standard deviations.
In the middle panel the black line refers to the sum of magnetic and
kinetic energies. The bottom panel gives the number of cases (in
per cent) for eachσC bin.

et al., 1987). In fact (Bavassano et al., 1998), provided that
σR 6=±1, the correlation coefficient isσC /

√

1−σR
2 (note the

constraintσC
2+σR

2≤1).

3 Magnetic and kinetic energies versus cross-helicity

Figure 1 shows 2-D frequency distributions ofσC and
σR hourly values for the analysed polar wind intervals. As
expected on the basis of previous analyses by Bavassano
et al. (1998, 2005), in both cases essentially the same pat-
tern is observed, with a prominent peak nearσC∼0.8 and
σR∼−0.5 and a tail extending towardsσC∼0 andσR∼−1,
with a secondary peak near the end. The main peak is easily
interpreted in terms of wind regions dominated by outward
(Z+) Alfv énic fluctuations, while the secondary peak corre-
sponds to an ensemble of fluctuations with a strong energy
imbalance in favour of the magnetic term. Not surprisingly
(e.g., see Bavassano et al., 2000), for the core sample the
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Fig. 4. The same as in Fig. 3, for boundary polar wind.

Alfv énic peak is more pronounced than for the boundary
sample.

Obviously, plots as those in Fig. 1 do not allow to under-
stand if cases falling near (0,−1) in theσC–σR plane have
to be related to an increase of magnetic fluctuations, or to a
decline of velocity fluctuations, or to both events. Moreover,
from a normalized quantity asσR it is impossible to under-
stand the relative weight, in terms of energy content, of the
different kinds of fluctuation. These points are addressed in
Fig. 2, where scatter plots of cross-helicity and energy val-
ues are given inσC–eB (top) andσC–eV (bottom) planes for
the core (left) and boundary (right) polar sample. The energy
levels are different in the two samples (higher in core polar
wind), but the overall pattern is the same, with the decrease
of cross-helicity (in absolute value) essentially associated to
a robust increase of the magnetic energyeB . In the following
we will indicate this ensemble of fluctuations as “magnetic
population”.

To further investigate these features the−1 to 1σC range
has been divided into 20 bins and for each subset of data
falling in a bin we have computed means, standard devia-
tions, and total values of magnetic and kinetic energy. Total
values are defined as product of the mean value by the per-
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Fig. 5. Geometrical properties of the magnetic fluctuations versus
cross-helicity for the core polar wind sample. Plotted data are the
ratios between values ofeB along thertn frame axes (see definition
in the text).

centage of cases in the bin (this makes meaningful a com-
parison between total energies from samples with a different
number of data). Plots of all these quantities are given in
Figs. 3 and 4 for the core and boundary interval, respectively.
The top panel of each figure shows the variation withσC of
the mean values, with standard deviations as error bars (red
for magnetic energy, blue for kinetic energy). The middle
panel is for the totaleB andeV values (again red and blue
lines, respectively) and for their sum (black line). The bot-
tom panel gives the percentage of cases for eachσC bin.

Again, trends are similar in the two figures, though with
different energy levels (scales are higher of a factor of two
for the core sample). The curves in the top panels confirm
that low (in absolute value) cross-helicity corresponds to a
strong increase in the energy of fluctuations of magnetic type
(velocity fluctuations only have a weak decrease forσC from
∼1 to ∼0.7). A second point to be stressed is that (see mid-
dle panels) the low cross-helicity population, though a sec-
ondary peak in terms of number of cases, is a major peak in
the distribution of total magnetic energy (red curve). Given
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the low level of total kinetic energy, this also holds for the
sum of total energies (black curve). Thus, from the point
of view of the energy content of solar wind fluctuations, the
magnetic population is seen to play a primary role. It is wor-
thy of note that this feature is more pronounced for the near-
boundary, and more distant, polar wind.

4 Geometrical properties of the magnetic fluctuations
versus cross-helicity

Given the predominant role of the magnetic fluctuations it
seems useful to further characterize them by looking at a
possible dependence onσC of their geometrical properties.
This has been done for the core polar wind sample, when the
background magnetic field is nearly radial (average spiral an-
gle of 8.5◦). In a first approximation, this geometry allows to
separate parallel and perpendicular (to the background field)
fluctuations by directly using thertn reference axes of the
Ulysses data (r outwards along the Sun-spacecraft line,n

northwards in the plane defined byr and solar rotation axis,
andt to complete a right-handed system).

Figure 5 shows the ratios betweeneBr , eBt , andeBn (the
eB values alongr, t , andn axes, respectively) as a function
of σC . For all theσC range the magnetic fluctuations appear
characterized by 1) an equipartition between transverse fluc-
tuations (seeeBn/eBt in the bottom panel) and 2) a predom-
inance of these fluctuations with respect to the radial ones
(seeeBt /eBr and eBn/eBr in top and middle panel, respec-
tively). It is worthy of note that this last feature becomes
more pronounced asσC goes to 0. In other words, for low
cross-helicity the fluctuations tend to be more planar (in a
plane nearly perpendicular to the background magnetic field)
than for cross-helicity approaching 1.

5 Discussion and conclusion

Previous studies (Bavassano et al., 1998, 2005) have shown
that polar wind fluctuations at hourly scale essentially are a
mixture of 1) variations of Alfv́enic type and 2) variations
characterized byσC∼0 andσR∼−1.

In the present analysis, by separately examining the be-
haviour of eB and eV versusσC , we have unambiguously
confirmed that the second population is essentially related to
a large increase of the magnetic energy with respect to the
levels typically observed for the Alfv́enic population.

The relevant new result is that this magnetic population,
though of secondary importance in terms of occurrence fre-
quency, corresponds to a primary peak in the distribution of
total (magnetic plus kinetic) energy. Thus, from the point
of view of the energy content of solar wind fluctuations, the
magnetic population plays a primary role.

As regards geometrical properties, the magnetic popu-
lation appears to be made of fluctuations more planar, in
a plane roughly perpendicular to the background magnetic

field, than those of the Alfv́enic population. This is remi-
niscent of quasi-two-dimensional fluctuations, first discussed
by Matthaeus et al. (1990) to account for the Maltese-cross
shape of the 2-D magnetic correlation function (with the
caveat that no analysis is done here for the propagation vec-
tors, that for 2-D fluctuations have to be transverse to both
the background and the fluctuating fields). Yet, it should be
noted that the observed geometry may well come from coro-
nal magnetic flux tubes that, turbulently mixed, are swept out
by the solar wind (e.g., see Thieme et al., 1990). Planar mag-
netic structures embedded in the solar wind were discussed
in detail by Tu and Marsch (1991), who named them “mag-
netic field directional turnings”. A recent study of Bruno et
al. (submitted, 2006)1 shows how remarkable their role is for
solar wind variability.

In conclusion, though the polar wind is a weakly struc-
tured plasma flow (e.g., McComas et al., 2000) with a slowly
evolving Alfvénic turbulence (Goldstein et al., 1995b; Hor-
bury et al., 1995), in the hourly-scale domain the ensemble
of magnetic structures appears to have a total energy con-
tent comparable to that of the Alfvénic population. This
strongly supports the view that magnetic structures cannot be
neglected when modeling MHD fluctuations for all kinds of
wind regime. Efforts done in the past (Tu and Marsch, 1993;
Schmidt and Marsch, 1995; Schmidt, 1995) to combine the
effects of Alfvén waves and convective structures should be
further developed.
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