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Abstract. In order to avoid the ambiguity of the applica-
tion of the Triangulation Method (multi-spacecraft timing
method) to two-dimensional structures, another version of
this method, the Multiple Triangulation Analysis (MTA) is
used, to calculate the velocities of these structures based on
4-point measurements. We describe the principle of MTA
and apply this approach to a real event observed by the Clus-
ter constellation on 2 October 2003. The resulting velocity
of the 2-D structure agrees with the ones obtained by some
other methods fairly well. So we believe that MTA is a reli-
able version of the Triangulation Method for 2-D structures,
and thus provides us a new way to describe their motion.

Keywords. Magnetospheric physics (Magnetospheric con-
figuration and dynamics; Solar wind-magnetosphere interac-
tions; Instruments and techniques)

1 Introduction

In order to study the motion of various 2-D structures, sev-
eral tools have been developed based on in-situ data from
single or multiple satellites. Some of the most widely-used
examples are: Spatio-temporal Difference, or STD method
(Shi et al., 2006), DeHoffmann-Teller analysis (in detail,
see Khrabrov and Sonnerup, 1998), and the Triangulation
Method, also referred to as the “timing method” (Russell
et al., 1983; Harvey, 1998).

The STD method assumes that the temporal change of the
magnetic field, observed by the spacecraft, is only caused by
the structure motion, which leads to a set of difference equa-
tions. By solving these equations, the velocities can be de-
termined point by point. It should be noted that this method
can be applied to 1-D, 2-D or 3-D structures.
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On the other hand, the DeHoffmann-Teller analysis was
originally suggested to calculate the velocity of 1-D struc-
tures, such as current layers, by seeking a reference frame
in which the mean square of the electric field is as small as
possible. Khrabrov and Sonnerup (1998) further applied this
analysis to 2-D cases, to calculate the frame velocity perpen-
dicular to the invariant direction.

The Triangulation Method was also developed initially for
1-D structures, and makes use of the time differences be-
tween four spacecraft encountering the same planar struc-
ture, in order to calculate its normal direction along with the
normal component of the velocity (Russell et al., 1983). It
should be noted that due to the relative complexity of the 2-D
structures, the application of this method to the 2-D structure
is less successful, with difficulties in the determination of the
time differences.

In many calculations for 2-D cases, one single character-
istic contour plane (such asBz=0, et cetera) is selected as
the signal to judge the time differences (e.g. Eastwood et al.,
2005). However, the different signals selected often corre-
spond to distinct timing consequences and thus lead to dif-
ferent velocities, and it is usually hard to tell why one should
select a certain signal instead of another when performing
the timing analysis. As a modified version, the time differ-
ences can be determined by maximizing the cross-correlation
function between the magnetic profiles observed by different
satellites (e.g. Fear et al., 2005). However, unlike 1-D cases,
the cross-correlation peak is often less clear, and the max-
imum value is also much lower. In some of the cases, the
time durations of the structure traversal for different satel-
lites are shown to be different, which makes it even harder to
precisely determine the time differences.

In this paper, we make use of the Multiple Triangula-
tion Analysis (Zhou et al., 2006) as another version of the
Triangulation Method, to calculate the velocity of the two-
dimensional structures. As an example, this approach is also
applied to Cluster data and the resulting velocity is compared
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Fig. 1. Sketch of the Cluster constellation traversing a 2-D structure.
The set of magnetic contour planes are represented by the dashed
circles and the normal directions of these planes are the solid ar-
rows. All of these arrows are shown to be perpendicular to the axial
orientation of the 2-D structure.

with those obtained by other methods to test the accuracy of
the MTA technique.

2 Method

The Multiple Triangulation Analysis was initially developed
to obtain the main orientation of 2-D structures, e.g. mag-
netic flux ropes (Zhou et al., 2006). Selecting a series of
magnetic field magnitudes as the signals, the Triangulation
Method can be applied to the 2-D structures for several times,
each time with a resulting speed along a certain normal direc-
tion. Figure 1 sketches the orbit of the Cluster constellation
(the dashed arrow) traversing a 2-D structure. During this
traversal, the constellation penetrates a set of magnetic con-
tour planes (the dashed circles). Although the shapes of these
contour planes may be more complicated, their normal direc-
tions (solid arrows) should be basically contained within the
cross-section plane and thus perpendicular to the axial orien-
tation of the 2-D structure.

These normal directionsN(m)(m=1, M), along with the
normal speedsV(m), are now put into the MTA calculation
to obtain the the axial orientationH, as the direction “most
perpendicular” to these normals, by the minimization of

σ 2 =
1

M

M∑

m=1

|N(m) · H|2 ,

which leads to an eigenproblem of a symmetric matrixL:

Lµν = 〈N(m)
µ N(m)

ν 〉, (1)

where the subscriptsµ, ν=1,2,3 denote the Cartesian com-
ponents of the vectorN(m) along the X, Y, Z directions, re-
spectively. One of the three eigenvectors ofL, with the small-
est eigenvalue, can be treated as the axial orientation of the
2-D structure (for a more detailed analysis and error estima-
tion, see Zhou et al., 2006).

On the other hand, if the structure does not change its con-
figuration significantly during the analyzed time interval, the
set of normal speedsV(m) can be treated as the components
of the structure velocity along their corresponding normal di-
rections, i.e.VS ·N(m)=V(m). HereVS denotes the structure
velocity. In practice, this velocity can be obtained by the
minimization of

D(V S) =
1

M

M∑

m=1

|V S · N
(m) − V (m)|2. (2)

A least-squares approach can be used to determine this veloc-
ity. After a straightforward analysis, the minimization prob-
lem leads to the linear equation

L · VS = 〈V(m) · N(m)〉, (3)

where the brackets〈 〉 represent an averaging over the whole
data set, and the symmetric matrixL is defined as (1). There-
fore, the solution of Eq. (3),VS=L−1·〈V(m)·N(m)〉, would be
the optimal estimation of the structure velocity.

Since we are discussing the velocity of a 2-D structure,
it should be noted that the resulting structure velocity com-
ponent along the axial orientation is less meaningful. Any
arbitrary velocity component alongH can be added to the
resulting structure velocity with little change in the value of
V·N(m), due to the perpendicular properties between the axial
orientation and each magnetic contour normal, by definition.

So it is natural to set the axial velocity equal to zero. The
axial orientation(H1, H2, H3), as was discussed before, is es-
timated as the eigenvector of the matrixL with the smallest
eigenvalue. Then we can simply remove the axial compo-
nent, thereby obtaining transversal velocity.

An alternative way to obtain the velocity is based on the
following constraint:

H1VS1 + H2VS2 + H3VS3 = 0,

so that one of the velocity components, sayVS3, can be ex-
pressed as the function of the other two components. Thus,
the minimization of (2) becomes the equation of:

K · V∗
S = 〈V(m) · H3 · N(m)∗〉 (4)

instead of Eq. (3). Here the asterisk denotes the first two
components of the certain vector, and the 2×2 matrix K is
defined as:

Kµν = N(m)
µ · (N(m)

ν H3 − N(m)
3 Hν),

whereµ, ν=1, 2 corresponds to the Cartesian X and Y com-
ponents. The solution of Eq. (4) would provide us the first
two components of the structure velocity. Following the con-
straint that the velocity is perpendicular to the structure’s ax-
ial orientation, the Z component of the velocity can also be
obtained.

There are two error sources in the MTA velocity calcula-
tion: the systematic parts and the random ones. The system-
atic errors are mostly produced by the nonplanar properties
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Fig. 2. The error range obtained by the set of MTA tests, selecting
10 contour planes within the structure as the signals. The bootstrap
procedure is further applied in each of the MTA tests to display the
effect of quantization errors. The difference between the modeled
“true” velocity and the MTA velocity, divided by the “true” velocity,
can be defined as the error.(a) The error versus flux rope radius
R (normalized tod=400 km) in a certain type of Cluster trajectory
with X (the constellation’s closest distance to the axis) of 0.707R.
(b) The error dependency onX, which is normalized to the structure
radiusR), whenR is fixed to be 30 times greater than the satellite
separationd.

of the magnetic contour planes within the structure, while the
random ones may occur because of the quantization effect in
applying the timing method.

In order to estimate the error range of the MTA veloc-
ity, we simulate a number of 2-D structures with different
sizes and make the Cluster constellation cross it along dif-
ferent paths. The quantization errors in the determination
of traversal times (randomized for each satellite, with the
maximum error of 0.08 s) are also taken into account in each
simulation, using the bootstrap procedure (e.g. Kawano and
Higuchi, 1995; Sonnerup and Scheible, 1998).

For simplicity, the cross-section of the 2-D structure is set
to be circular in the xy-plane, and the z-direction-orientated
structure is moving with the velocity of 200 km·s−1 along
the x-direction. The formation of Cluster is set to be a regu-
lar tetrahedron, with the separation of 400 km between each
satellite pair. Selecting 10 contour planes as the signals,
the MTA technique can be applied on each simulated cross-
ing, and the difference between the resulting velocity and the
“true” one can be treated as the error in the simulation. The
error shows strong dependencies on both the structure ra-
diusR and the constellation crossing path (characterized by
the closest distanceX from the constellation to the structure
axis), as is displayed in Fig. 2.

Figure 2a shows the error dependency on the radius of
the 2-D structure, with a fixed constellation trajectory of
X/R=0.707. For the cases with the spacecraft separation
to be comparative to the scale of the structure, the error is
large because the magnetic contour planes are no longer pla-
nar, which violates the basic assumption of the Triangulation
Method.
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Fig. 3. A 2-D structure observed by FGM/Cluster on 2 October
2003, 00:46:40 UT to 00:47:30 UT. (Left panel) Magnetic strength
(Right panel)Bz components, as the function of time (both 6-s slid-
ing averages at 0.2-s resolution).

It can be clearly seen from Fig. 2b that the MTA ve-
locity error is highly dependent on the path of the Cluster
constellation, which is typically less than 4% in the region
of 0.2R<X<0.9R. For theX>0.9R cases, the relatively
larger systematic errors are caused by the skimming motion
over the 2-D structure. On the other hand, for theX<0.2R

cases, for which the path is very close to the structure axis,
the errors are mainly random ones, which should be pro-
duced by the ambiguity in the determination of the axial ori-
entation (see the error estimation part of Zhou et al., 2006).
However, because of the approximate parallelism of the set
of normal directions in these cases, the resulting minimum
eigenvalueλ3 should be very close to the intermediate one
λ2. So the relatively smaller value ofλ2/λ3 can provide us
with a warning of the invalidation of the MTA technique on
the estimation of both axial orientation and traversal velocity.

3 Applications

On 2 October 2003, the Cluster constellation was in the mag-
netotail observing a 2-D structure. This event was originally
discovered by Eastwood et al. (2005), as an example of a flux
rope-type structure moving earthward. The authors assumed
that the surfaceBz=0 is planar on the scale of the space-
craft tetrahedron and by applying the timing method, found
a speed of 140±13 km·s−1 along the direction of (0.778,
0.595, 0.158) GSM.

Now we apply the Multiple Triangulation procedure to this
data set as a comparison, using magnetic field data (FGM
data) (Balogh et al., 1997). Figure 3 shows the events in
the time interval of 00:46:40 UT–00:47:30 UT:|B| in the left
panel, andBz in the right panel. Note that the high-frequency
fluctuations were removed with a sliding average procedure

www.ann-geophys.net/24/3173/2006/ Ann. Geophys., 24, 3173–3177, 2006
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Fig. 4. The MTA analysis on the event during 00:46:40 UT to
00:47:30 UT. The blue lines show the normal directions obtained by
the Triangulation method as the first step of MTA, and the red lines
are the three eigenvectors of the corresponding matrix. The green
circle represents the cross-section plane of the flux rope, basically
containing all of the blue lines, while the red line perpendicular to
the green circle suggests the flux rope orientation. The left box is in
GSM, while the right one is in the LMN coordinate system defined
by three eigenvectors.

(Haaland et al., 2004). Here we use a sliding window of
6 s, with a time resolution of 0.2 s, and apply linear inter-
polation between each consecutive measurements. Then we
select a set of magnetic field values as the signals, shown as
magenta dashed lines in the left panel of Fig. 3, to obtain
23 normal directions and speeds using the timing method.
The 23 directions, displayed as blue lines in Fig. 4, thus lead
us to the calculation of the matrixL and its three eigenval-
ues and eigenvectors (shown as red lines). The eigenvector
(0.289,−0.570, 0.769) GSM with the smallest eigenvalue
(λ2/λ3=66.6) should be, in principle, perpendicular to all of
the 23 normals, as the estimated axial orientation of the 2-D
structure. The large separation between eigenvalues further
suggests that the statistical error of the estimated axial orien-
tation is as small as 1.5 degree (see Zhou et al., 2006). As can
be clearly seen in Fig. 4, all of the 23 normals are very well
confined in the plane (green circle) composed by the other
two eigenvectors.

The estimated axial orientation can now be used to calcu-
late the matrixK. Solving Eq. (4) thus leads to the calcula-
tion of a structure velocity of around (95.19, 100.03, 38.28),
i.e. the speed of 143.3±2.4 km·s−1 along the direction of
GSM (0.664, 0.698, 0.267), with an angular error of 2.0 de-
gree.

All of the 23 velocity vectors are plotted together (as blue
lines) in the LMN coordinate system, defined by theL eigen-
vectors, in the left panel of Fig. 5. As was discussed before,
the LM plane of this coordinate system can be treated as the
cross-section plane of the certain 2-D structure. The struc-
ture velocity, obtained by the least-squares procedure, is also
shown in the figure, as the red line. Since the 23 velocity
vectors are believed to be the components of the structure
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Fig. 5. (Left panel) The set of velocitiesV (m)·N (m) as blue lines
and the structure velocityV S as the red line in the LMN coordinate
system defined by three eigenvectors. (Right panel) Scatter plot
of the speedV (m) as the function ofV S ·N (m). The correlation
coefficient is 0.995.

velocity, all of the vector-end points should be theoretically
located in the circle with the structure velocity as the diame-
ter, as is also very clearly seen in the figure.

To give an impression of the precision of the obtained ve-
locity, the two speeds,V S ·N (m) andV (m), are plotted against
each other, in the right panel of Fig. 5. The correlation be-
tween these two speeds is high, with the correlation coeffi-
cient of 0.995. Then we may go back to the result obtained
by Eastwood et al. (2005), with the speed of 140±13 km·s−1

along the direction of GSM (0.778, 0.595, 0.158). However,
in their timing analysis, only one signal is selected (the ma-
genta dashed line in the right panel of Fig. 3). Although their
resulting velocity seems to be similar with the MTA veloc-
ity, it should be noted that this velocity cannot be treated as
the structure velocity based on our discussion. Instead, the
velocity is one component of the structure velocity along the
normal direction of theBz=0 plane. Therefore, the velocity
(shown in the left panel of Fig. 5 as the black line) should
play the same role as the 23 normal velocities discussed be-
fore. The vector-end point of this black line is found to be
precisely located in the green circle, similar to the 23 vector-
end points. Actually, the component of

−→
VS in this direction is

139.6±2.3 km·s−1, which agrees with their result extremely
well.

As another comparison, the STD method is also applied in
this case. During this time period, the STD velocity is rather
stable, with the mean speed of 152.8 km·s−1 along the direc-
tion of GSM (0.706, 0.675, 0.213). The estimated speed is
9.5 km·s−1 larger than the MTA result and the angular devi-
ation between them is only 4.2 degrees. Their similarities, in
some sense, confirm the reliability and consistency of both
the MTA and STD methods.

DeHoffmann-Teller analysis, as a classical technique to
obtain the velocity of structures, should be also applied to
examine the precision of MTA approach. However, in this
2-D structure crossing, the time interval is fairly short, which
invalidates theVHT result.
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4 Summary

In order to avoid the ambiguity in the application of the Tri-
angulation Method to 2-D structures, the approach of the
Multiple Triangulation Analysis is presented as a new ver-
sion of Triangulation Method. While the traditional Triangu-
lation Method can only provide one single component of the
structure velocity, the MTA approach makes use of the set of
velocity components obtained by the traditional method to
calculate both the axial orientation and the optimal structure
velocity. Real Cluster data sets are used and comparisons
with other methods are also made to prove the precision of
this approach. In addition, the MTA approach can have the
ability to provide more accurate results for future missions
with more than 4 satellites.
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