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Abstract. The altitude profiles of temperature fluctuations in
the stratosphere and mesosphere observed with the Rayleigh
Lidar at Gadanki (13.5◦ N, 79.2◦ E) on 30 nights during Jan-
uary to March 1999 and 21 nights during February to April
2000 were analysed to bring out the temporal and verti-
cal propagation characteristics of gravity wave perturbations.
The gravity wave perturbations showed periodicities in the
0.5–3-h range and attained large amplitudes (4–5 K) in the
mesosphere. The phase propagation characteristics of gravity
waves with different periods showed upward wave propaga-
tion with a vertical wavelength of 5–7 km. The mean flow
acceleration computed from the divergence of momentum
flux of gravity waves is compared with that calculated from
monthly values of zonal wind obtained from RH-200 rockets
flights. Thus, the contribution of gravity waves towards the
generation of Stratospheric Semi Annual Oscillation (SSAO)
is estimated.

Keywords. Meteorology and atmospheric dynamics (Mid-
dle atmosphere dynamics; Waves and tides)

1 Introduction

The importance of gravity waves in the middle atmospheric
dynamics is now widely recognized and they are impor-
tant in determining the gross circulation of much of the
mesosphere through the process of momentum deposition at
heights where wave saturations occurs. Thus, the upward
propagating gravity waves generated at lower heights pro-
vide a significant coupling between different regions of the
atmosphere. The momentum deposition by dissipating grav-
ity waves is largely responsible for driving the Quasi Bien-
nial Oscillation (QBO) (Lindzen and Holton 1968; Lindzen,
1981; Holton, 1983; Fritts, 1984; Dunkerton, 1997; Baldwin
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et al., 2001) in the lower stratosphere and the Semiannual
Oscillations (SAO) in the stratospheric (SSAO) and meso-
spheric (MSAO) regions (Holton and Wehrbein, 1980). Ex-
tensive studies on the source and propagation characteristics
of gravity waves in the middle atmosphere have been car-
ried out in the past several years using both observations and
theoretical models (e.g. Hines, 1991; Tsuda et al., 1994;
Vincent and Alexander, 2000). Most of the observations on
the gravity wave characteristics were made in the middle and
high latitudes (e.g. Marsh et al., 1991; Mitchell et al., 1991;
Wilson et al., 1991a, b; Whiteway and Carswell, 1994, 1995;
McDonald et al., 1998). Over the tropical region, observa-
tions using the high-resolution radiosonde data have shown a
strong correlation between the strength of convection in the
troposphere and the level of wave activity in the upper strato-
sphere (Vincent and Alexander, 2000).

The eastward phase of SAO was supposed to be driven by
fast Kelvin waves (Holton, 1975). But later studies showed
that their forcing was insufficient to drive the SAO (Hitch-
man and Leovy, 1988). The gravity wave forcing is be-
lieved to be important in driving stratospheric QBO and SAO
(Dunkerton, 1982, 1997; Sato and Dunkerton, 1997; Ray
et al., 1998; Scaife et al., 2002). The relative contribution
of various scales of waves to the forcing of the SAO is yet
to be quantified. Since the QBO and SAO are the domi-
nant features of middle atmospheric dynamics, their repre-
sentation is an important requirement in the climate mod-
els. Even though some of the Global Circulation Models
(GCM) could simulate SAO, the simulated SAOs differ sig-
nificantly among GCMs and are often not realistic (Amodei
et al., 2001). There are number of theoretical studies on the
wave-mean flow interaction and the generation of QBO and
SAO (Dunkerton, 1982; Jackson and Gray, 1994; Alexan-
der and Holton, 1997; Sassi and Garcia, 1997; Medvedev
and Klaassen, 2001). The momentum fluxes of vertically
propagating equatorial waves and gravity waves are impor-
tant parameters in the simulation of QBO and SAO. From
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the divergence of momentum flux the meanflow acceleration
produced by these waves can be estimated. There are ob-
servational studies which show that the contribution of equa-
torial waves alone is not sufficient to generate the observed
meanflow acceleration (Sato and Dunkerton, 1997; Sasi and
Deepa, 2001; Sasi et al., 2003).

To study the effects of gravity waves on the middle and
upper atmosphere it is necessary to acquire the knowledge of
the wave properties, such as phase speed, amplitude, wave-
lengths and gravity wave spectrum. A measure of momen-
tum flux of gravity waves is to be specified for parameteriz-
ing gravity wave effects in GCMs. Measurements of wave
perturbation cannot be directly converted to momentum flux
without detailed knowledge of the properties associated with
every wave perturbation. Currently, there is lack of observa-
tions at low-latitude stations about the gravity wave proper-
ties and their interaction with meanflow. Using Upper Atmo-
spheric Research Satellite data and UK Met Office analysed
wind data and temperature fields Alexander and Rosenlof
(2003) estimated the gravity wave meanflow forcing in the
stratosphere.

Two major experimental campaigns were conducted dur-
ing January–March 1999 and February–April 2000 using the
MST radar and the Rayleigh lidar at the tropical station
Gadanki (13.5◦ N, 79.2◦ E), mainly to determine the char-
acteristics of equatorial waves (Krishnamurthy et al., 2002;
Sasi et al., 2003). In the 1999 campaign, which was con-
ducted for a period of 46 days from 18 January–5 March
1999, there were Rayleigh lidar temperature measurements
from Gadanki. In the February–April 2000 campaign, con-
ducted for a period of 34 days during 29 February to 2 April,
along with temperature measurements using the Rayleigh Li-
dar from Gadanki, wind measurements using rocket flights
were also carried out simultaneously from a nearby location
Sriharikota Range (SHAR) (13.7◦ N, 80.2◦ E). The scientific
objectives of the Equatorial Wave Studies (EWS) 2000 cam-
paign were (1) to delineate equatorial waves in winds and
temperatures in the region from the troposphere to the meso-
sphere, and to estimate the vertical fluxes of their horizontal
momentum and (2) to delineate gravity waves in tempera-
tures in the stratosphere- mesosphere region and to evaluate
the role of gravity waves in the evolution of SSAO.

As a continuation of this campaign, RH200 rocket flights
were conducted from SHAR once in a month up to July 2000.
These wind data in the middle atmospheric region were used
to derive the monthly mean wind and thus the SAO and the
mean flow acceleration. The present study is based on the
temperature data of∼3-h duration, collected from lidar ob-
servations at NARL, Gadanki, during 30 nights of the 1999
EWS campaign and 21 nights of the EWS 2000 campaign.

In this paper the temporal and vertical propagation char-
acteristics of shorter period gravity waves are studied. The
potential energy and momentum fluxes of prominent peri-
odic components of gravity waves are calculated. From the
divergence of momentum flux of gravity waves their contri-

bution towards the generation of SSAO are estimated. These
estimated values are compared with observed meanflow ac-
celeration using rocket-measured wind values.

2 Data and method of analysis

The lidar system at Gadanki uses the second harmonic output
of the laser source at 532 nm with maximum energy of about
0.4 J per pulse. The laser is operated at a pulse width of 7 ns
and a repetition rate of 20 Hz. The Rayleigh receiver is used
for collecting the backscattered light from air molecules and
operates in the range of∼30 to∼80 km. It employs a vertical
Newtonian type telescope with a field of view of 1 mrad and
the primary mirror is a concave mirror with effective diam-
eter of 750 mm. The lidar system records a 5000 laser shots
averaged photon count profile as one frame with a time reso-
lution of 250 s. The photon count profiles thus obtained from
the basic data are used for studies concerning atmospheric
density and temperature. Estimation of temperature from li-
dar data and the sources of error are explained in detail by
Parameswaran et al. (2000). In order to reduce the statisti-
cal error in the derived parameters, the raw data is integrated
for 3 bins in altitude and time, so that the temperature pro-
files are obtained with an altitude resolution of 900 m and a
time resolution of 12.5-min. The statistical error due to sig-
nal variance is∼1 K in the lower altitudes (30–50 km) and
increases with altitude (∼2.5 K at 65 km). To minimize the
uncertainty due to various errors, temperature data in the al-
titude region 27–60 km alone is used for the present study.

The zonal and meridional winds used in the present study
are obtained from RH-200 rocket flights from SHAR. The
altitude profiles of horizontal winds in the 20–65 km region
with a vertical resolution of 1 km are obtained by tracking
the chaff released from the RH-200 rockets.

The time series of temperature fluctuationsT ′(z) at each
altitude is obtained by subtracting the mean temperature
T0(z) from the observed temperaturesT (z) in the height re-
gion of 27–60 km. The time series of temperature fluctua-
tions during∼3 h were initially subjected to spectral analysis
by Maximum Entropy Method (MEM) to look for the pres-
ence of prominent periodicities and it was found that an∼2.5-
h period is present on all days during the two campaign peri-
ods. The prominent periodicities of gravity waves were also
identified by spectral analysis using Fast Fourier Transform
(FFT), which could give the height profiles of amplitudes and
phases corresponding to all days of the observation period.
From the height profiles of amplitudes and phases, the verti-
cal propagation characteristics were studied for all prominent
harmonic periodicities. It may be noted here that as 14 data
points go into the FFT analysis at each altitude, the standard
error in the amplitude is reduced by

√
14. The available po-

tential energy and momentum flux of prominent periodicities
of gravity wave components were also calculated. From the
divergence of momentum flux, the mean flow acceleration
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Fig. 1:  Mean values of (a) temperature  (1999) (b) Brunt Vaisala Frequency (1999) (c) 

temperature (2000) (d) Brunt Vaisala Frequency (2000) (e) Zonal Wind (2000) (f) 

Meridional Wind (2000) 

Fig. 1. Mean values of(a) temperature (1999),(b) Brunt Vaisala Frequency (1999),(c) temperature (2000),(d) Brunt Vaisala Frequency
(2000),(e)Zonal Wind (2000),(f) Meridional Wind (2000).
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Fig. 1. Mean values of(a) temperature (1999),(b) Brunt Vaisala Frequency (1999),(c) temperature (2000),(d) Brunt Vaisala Frequency
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Fig. 1:  Mean values of (a) temperature  (1999) (b) Brunt Vaisala Frequency (1999) (c) 

temperature (2000) (d) Brunt Vaisala Frequency (2000) (e) Zonal Wind (2000) (f) 

Meridional Wind (2000) 

Fig. 1. Mean values of(a) temperature (1999),(b) Brunt Väis̈alä Frequency (1999),(c) temperature (2000),(d) Brunt Väis̈alä Frequency
(2000),(e)Zonal Wind (2000),(f) Meridional Wind (2000).

in the 40–60 km height region were estimated. The mean
flow acceleration is also calculated from monthly mean val-
ues of zonal winds obtained from RH-200 rocket data and
were compared with the derived values.

3 Results and discussion

3.1 Vertical propagation characteristics

The altitude profiles of the mean temperature (T ), the Brunt-
Väis̈alä frequency (N), the zonal wind (u) and meridional
wind (v) for the whole period of observation during the
1999 and 2000 campaigns are shown in Figs. 1a–f. Mean

www.ann-geophys.net/24/2481/2006/ Ann. Geophys., 24, 2481–2491, 2006
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Fig. 2: Time series of temperature fluctuations at 30 km, 35 km, 40 km, 45 km,  

50 km, 55 km, 60 km height levels for 162 minute time period  (a) 11 February 1999  

(b) 19 March 2000.  
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Fig. 3: Frequency – height section of spectral amplitudes of temperature 

fluctuations on (a) 11 February 1999 and  (b) 19 March 2000   
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Fig. 4: Height profiles of amplitude and phase of 162 min. period gravity wave 

during (a) 1999 (b) 2000 
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Fig. 3. Frequency–height section of spectral amplitudes of temperature fluctuations on(a) 11 February 1999 and(b) 19 March 2000.

temperature profiles show that the stratopause is warmer and
sharper during 2000 compared to that during 1999. Corre-
sponding variations are also seen in the “N profile”. Mean
zonal winds (available during 2000) are mostly westerly and
meridional winds are very weak during the period of obser-
vation. Figures 2a and b give the time variation of temper-
ature fluctuations at different height levels during 1999 and
2000, respectively. The time variation of temperature fluctu-
ation indicates that the wave motions of different periodici-
ties with periods of few minutes to a few hours produce these
perturbations. Figures 3a and b give the height distribution of
spectral amplitudes of temperature fluctuations on 11 Febru-
ary 1999 and 19 March 2000, respectively. Although, there
are day-to-day variations in the dominant periods present, on
most of the days of observations, it is seen that a 162.5-min

(∼2.5 h) period is prominently present with large amplitudes
and a clear downward phase propagation. Other periodicities
such as 81-min, 54-min, 40-min, and 32-min are also present
on some days.

The height profiles of the amplitudes and phases of all har-
monic components derived from the Fourier analysis were
studied in detail for deriving the propagation characteristics
of these different periodicities of gravity waves (Figs. 4a
and b for the year 1999 and 2000, respectively). From the
amplitude profile, it can be seen that the amplitude increases
with height, indicating that there is growth of the gravity
wave activity with height. This brings out one aspect of the
gravity waves in the middle atmosphere, viz. the waves are
generated somewhere down in the troposphere with small
amplitudes and attain larger amplitudes as they propagate

Ann. Geophys., 24, 2481–2491, 2006 www.ann-geophys.net/24/2481/2006/
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Fig. 4: Height profiles of amplitude and phase of 162 min. period gravity wave 

during (a) 1999 (b) 2000 
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Fig. 4. Height profiles of amplitude and phase of 162-min period gravity wave during(a) 1999,(b) 2000.

into the stratosphere and mesosphere. The maximum am-
plitude of the 162.5-min period gravity wave is 4–5 K during
1999 and 6–8 K during 2000. The amplitude obtained for
other periodicities, such as 81-min, 54-min, 40-min, and 32-
min, are 2–3 K. This indicates that 162.5-min is the strongest
component present throughout the observation period. An
examination of the phase profiles clearly shows downward
phase propagation, indicating upward energy propagation.
Observed amplitudes, in general, are larger during 2000 com-
pared to that during 1999.

The vertical wavelengths of different periods of gravity
waves are inferred from the phase profiles on each day of ob-
servation during 1999 and 2000. The vertical wavelength of
162.5-min, 81-min, 54-min and 40-min are calculated from
phase profiles in the stratosphere and mesosphere separately.
The average vertical wavelength of all the observed period-
icities in the stratosphere and mesosphere are given in Ta-
ble 1a and b for 1999 and 2000, respectively. Vertical wave-
lengths are found to be slightly increased during 2000. For
the 162.5-min period, the vertical wavelength in the meso-
sphere is slightly larger than that in the stratosphere.

3.2 Potential energy of gravity waves

The gravity waves generated at the lower atmospheric re-
gion propagate upwards, carrying energy and momentum
into stratospheric and mesospheric regions. Like the verti-
cal propagation characteristics, the potential energy and mo-
mentum flux carried by the different periodicities of gravity
waves also can be studied from the temperature fluctuations
and the mean temperature. The available potential energy
of prominent periodicities of gravity waves were calculated
using the equation (Wilson et al., 1991a)

Ep(z) =
1

2

(
g(z)

N(z)

)2 (
T ′ (z)

T0 (z)

)2

, (1)

Table 1. Average vertical wavelength of gravity waves for different
periodicities both in stratosphere and mesosphere during(a) 1999
(b) 2000.

(a)

Period Vertical Wavelength (km)
(min)

Stratosphere Mesosphere

162.5 6.4 7.0
81.2 6.2 7.1
54.0 5.9 4.5
40.0 5.2 5.5
32.0 6.7 5.3

(b)

Period Vertical Wavelength (km)
(min)

Stratosphere Mesosphere

162.5 7.1 7.5
81.2 6.4 6.6
54.0 8.3 6.0
40.0 4.5 4.0
32.0 6.5 5.2

whereg(z) is the acceleration due to gravity,N(z) is the
Brunt-Väis̈alä frequency,T ′(z) is the amplitude of the partic-
ular period, andT0(z) is the mean temperature.N is calcu-
lated from the mean temperature profiles. Figures 5a–e and
6a–e show the altitude profiles of the meanEp for different
periods during 18 January to 5 March 1999 and 29 Febru-
ary to 2 April 2000, respectively. The observed variation of

www.ann-geophys.net/24/2481/2006/ Ann. Geophys., 24, 2481–2491, 2006
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Fig. 5. Height profiles of potential energy for(a) 162-min,(b) 81-min,(c) 54-min,(d) 40-min, and(e) 32-min period gravity waves during
1999. Black squares represents the observed potential energy and red squares represent the theoretically expected potential energy.

potential energy (PE) with height is compared with the the-
oretically expected growth of PE. The theoretically expected
growth of gravity waves is proportional to exp(z/H(z)),
whereH(z) is the scale height,H(z)=kT(z)/mg, k is Boltz-
mann’s constant,T (z)-temperature at the heightz km, m-
mean molecular weight, andg the acceleration due to grav-
ity. The black squares represent the observed potential en-

ergy and red squares represent the theoretically expected po-
tential energy. The PE of gravity waves during the year 1999
is slightly larger than that observed during the year 2000.

Since the rate of growth is different in different height re-
gions, wave growth is studied in three altitude regions sep-
arately, i.e. 27–40 km, 40–45 km and 45–65 km. The ob-
served growth of PE of gravity waves is smaller than the
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Fig. 6. Same as Fig. 5, but for the year 2000.

theoretically expected exponential growth, indicating the dis-
sipation of wave energy as it goes up. During the year 2000
the wave growth in the stratosphere is almost matching the
theoretically expected growth, except for 162-min.

The variation of potential energy with height is given by

Etheory = E0e
z

H0 (2)

Eobserved= E0e
z

H1 , (3)

whereE0 is the energy at heightz0, andH0 is the scale height
of the theoretically expected growth. In the case of dissipat-
ing waves,E increases with scalesH1>H0. Dissipation with
height are derived as follows:

Dissipation=
|Etheory−Eobserved|

Etheory
=

E0

[
e

z
H0 −e

z
H1

]
E0e

z
H0

.
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Table 2. (a)Potential energy dissipated at various height levels (in
percentage) during the year 1999.(b) Potential energy dissipated at
various height levels (in percentage) during the year 2000.

(a)

Period (27-40) (40-45) (45-65)
(min) km km km

162 4.4 0 13
81 2 0 11
54 2.5 2.2 7
40 1.4 0 10
32 0 1 10

(b)

Period (27-40) (40-45) (45-65)
(min) km km km

162 1 4 13
81 1 6 12
54 0 2 10
40 0 0 8
32 0 1 8

=
e

z
H0 − e

z
H1

e
z

H0

= 1 − e
z
(

1
H1

−
1

H0

)

For z = 1 km intervals:

Dissipation= 1 − e

(
1

H1
−

1
H0

)
. (4)

The percentages of dissipated energy at various height levels
for different periods are given in Table 2a and b for the years
1999 and 2000, respectively. Generally, for all the periods,
the dissipation is found to be more or less the same in the
lower mesospheric region for both years. In the stratosphere
the 162-min, 81-min and 54-min periodicities show dissipa-
tion during 1999. During 2000 no dissipation is observed in
the stratosphere. But in the 40–45 km altitude region dissi-
pation is observed during 2000, but little or no dissipation
is seen during 1999. The gravity wave becomes more dis-
sipated in the mesosphere (45–65 km height range) than in
stratosphere during both years. The 162-min periodic com-
ponent undergoes more dissipation than other periodicities.

3.3 Momentum flux of gravity waves

The contribution of gravity waves towards the generation of
SSAO through wave-mean flow interaction is well under-
stood (Dunkerton, 1982, 1997; Sato and Dunkerton, 1997;
Ray et al., 1998; Scaife et al., 2002). In the present study, an
attempt is made to calculate the momentum flux of gravity
waves and in turn the divergence of the momentum flux, giv-
ing rise to mean flow acceleration. The vertical flux of zonal
momentum per unit density for the prominent periodicities of

gravity waves can be estimated using the parameters of the
periodicities obtained in the present investigation. The flux
F is given by the equation

F =

〈
u′w′

〉
=

ω

N

(
g

N̄

)2 〈
T ′

T̄

〉2

, (5)

whereu′ andw′ are wave perturbations in zonal and verti-
cal winds. This equation is valid forN�ω�f , whereN

is the Brunt V̈ais̈alä frequency,ω is frequency of the wave
and f is the Coriolis parameter.N̄ and T̄ are the mean
Brunt Väis̈alä frequency and temperature, respectively.T ′

is the temperature fluctuations for each period. The time se-
ries of T ′ for each period is reconstructed using respective
amplitudes and phases. When weighted by the atmospheric
density,F yields the vertical flux of zonal momentum. The
height profiles of the average momentum flux for different
periods are shown in Figs. 7a and b for the years 1999 and
2000, respectively. The values ofF lie between 0.05 m2s−2

and 0.1 m2s−2 below 45 km and above this altitude this value
varies from 0.1 m2s−2 to 0.2 m2s−2. At the tropical station,
Jicamarca (12◦ S) the zonal momentum flux of gravity waves
were reported to be in the range of∼2–8 m2s−2 (Hitchman
et al., 1992) in the 70–85 km altitude region. The mean mo-
mentum fluxes in the lower stratosphere over the MU radar
(at 35◦ N) were ∼0.1–0.3 m2s−2 (Fritts et al., 1990). Us-
ing MU radar Tsuda et al. (1990) obtained the momentum
flux values of gravity waves for the periods 5 min to 2 h as
1.5 m2s−2 in December–February, in the 60–90 km altitudes.

3.4 Mean flow acceleration near the stratopause region

In the previous sections, it is seen that the gravity waves
originating from source regions propagate upwards, grow in
amplitude and become dissipated at higher heights. These
waves as they propagate interact with the background wind
and produce mean flow acceleration, giving rise to SAO.

The mean flow acceleration is calculated using zonal wind
(u) data collected from monthly flights of RH-200 rockets
during February to July 2000. During 1999, the horizontal
winds in the middle atmospheric region were not available,
since rocket flights were not carried out during that campaign
period. From the time series ofu, the mean zonal wind (ū)
was removed, in order to obtain zonal wind fluctuations. The
time series of these zonal wind fluctuations were subjected to
Fourier analysis, in order to obtain the amplitude and phase
of SAO. The vertical profile of amplitude and phase of SAO
is shown in Fig. 8. A maximum amplitude of 50 ms−1 is
observed at 55 km and the phase is constant during second
month, i.e. March. The mean flow acceleration is calculated
as the difference in zonal wind speed between March and
April.
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Fig. 7: Height profiles of momentum fluxes of 162 min, 81 min, 54 min, 40 min, 

and 32 min period gravity waves during (a) 1999 and (b) 2000 

 

 

 

 

 

 

 

 

 

 

 

            

 

 

 

 

 

 

 

 

 

 

                Fig. 8: Height profile of amplitude and phase of Semi Annual Oscillation 
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Fig. 7: Height profiles of momentum fluxes of 162 min, 81 min, 54 min, 40 min, 

and 32 min period gravity waves during (a) 1999 and (b) 2000 
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Fig. 8. Height profile of amplitude and phase of Semiannual
Oscillation.

The mean flow acceleration produced by the gravity waves
can be estimated using the equation (Lindzen, 1984)

∂u

∂t
= −

d

dz

〈
u′w′

〉
+

〈
u′w′

〉
H

(6)

H being the scale height. In the above equation, instead of
u′w′, we have used momentum flux derived from the tem-
perature fluctuation using Eq. (5). To find out the contribu-
tion of gravity waves towards the generation of stratospheric
SAO, the divergence of momentum fluxes of gravity waves
is estimated using Eq. (6). This equation treats the propa-
gation and dissipation of a monochromatic wave. The total
acceleration produced by the observed spectrum of waves is
computed as the linear sum over all the waves in the spec-
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Fig. 9: Height profile of meanflow acceleration produced by gravity waves 

(blue squares) and observed meanflow acceleration obtained from rocket 

measured zonal winds (red circles). 

 

 

 

Fig. 9. Height profile of meanflow acceleration produced by gravity
waves (blue squares) and observed meanflow acceleration obtained
from rocket measured zonal winds (red circles).

trum. The maximum value of the estimated mean flow ac-
celeration is 25 ms−1month−1, which is in good agreement
with the earlier reported value of 1 ms−1day−1 (Fritts and
Alexander, 2003; Horinouchi et al., 2003). Using MU radar
wind observations Tsuda et al. (1990) obtained the meanflow
acceleration produced by the divergence of momentum flux
of 5 min–2 h gravity waves as 8–11 ms−1day−1 in the west-
ward direction, in the 70–78 km altitude during winter.

The mean flow acceleration calculated using observed
rocket wind data and that estimated from the momentum
flux divergence of gravity waves are shown in Fig. 9. From
the rocket measured wind data a maximum acceleration of
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∼40 ms−1month−1 in the westward direction is observed at
55 km. This is in agreement with earlier studies, that the first
cycle of the stratospheric SAO begins with the stratopause
easterly phase in northern winter (Garcia et al., 1997).
The mean flow acceleration produced by gravity waves is
estimated as 25 ms−1month−1 at 55 km. Below 35 km, there
is negligible contribution from short period gravity waves to-
wards the meanflow acceleration. From 35 km onwards the
mean flow acceleration produced by gravity waves increases.
The acceleration derived from gravity wave momentum flux
divergence is less than the acceleration obtained from rocket
wind data. In the 47–52 km height region the acceleration
due to gravity wave is slightly overestimated. The differ-
ence between the observed acceleration and estimated accel-
eration may be attributed to long period gravity waves and
planetary waves. Other possible sources for the generation
of the easterly phase of SSAO are the equatorward propaga-
tion of wintertime Rossby waves and the advection of west-
ward momentum by the mean meridional wind (Holton and
Wehrbein, 1980; Ray et al., 1998). Fritts and Vincent (1987)
presented the results of the analysis of gravity wave momen-
tum fluxes in the mesosphere and lower thermosphere (80–
100 km), inferred using a dual beam Doppler radar. They ob-
served that 70% of the momentum flux and zonal wave drag
was due to gravity waves with periods less than 1 h, i.e. grav-
ity waves of high frequency. But our study shows that zonal
wind drag observed in the 30–60 km altitude region is mainly
due to 2–3-h period gravity waves. This is because low fre-
quency waves get dissipated more in the lower atmosphere
than shorter period gravity waves and produce zonal drag.
The high frequency waves travel to high altitudes without
much dissipation in the lower altitude regions and becomes
more dissipated at higher altitudes and produce zonal wind
acceleration there.

Earlier studies using the data from these two (EWS 1999,
EWS 2000) campaigns estimated the contributions of equa-
torial waves (fast and slow Kelvin waves) towards the gener-
ation of SAO as 25% (Sasi et al., 2003). From this study it is
seen that on average, about 50–60% of the mean flow accel-
eration is due to the divergence of momentum flux of gravity
waves with periods in the range half an hour to three hours.

4 Summary and conclusion

The vertical and temporal characteristics of gravity waves
in the 30–60 km altitude region during the January–March
period of the two consecutive years (1999 and 2000) are
studied using the Rayleigh lidar observations of tempera-
ture at Gadanki during the EWS campaign. The prominent
periods of the gravity waves lie in the range of 30 min to
∼3 h. The vertical wavelengths of these prominent peri-
ods are∼5–7 km. From the amplitude and phase profile,
it is observed that the phase is decreasing with height indi-
cating upward propagation of energy. The average poten-

tial energy of prominent periods is less than 1 Jkg−1 below
the 45 km altitude and 1–3 Jkg−1 in the 45–60 km altitude
range. The potential energy increases almost exponentially
with altitude below 45 km and above this the growth of the
potential energy with altitude is less than the theoretically
expected value. This gives the inference that the observed
waves are more often damped in the mesosphere than in the
stratosphere. The momentum flux values estimated for the
prominent period of 162.5-min are 0.05 to 0.1 m2s−2 below
45 km, and above this altitude this value varies from 0.1 to
0.2 m2s−2. The westward mean flow acceleration produced
by the divergence of momentum flux of gravity waves is
∼25 ms−1month−1. The observed meanflow acceleration is
40 ms−1month−1. The altitude profiles of the observed and
estimated mean flow acceleration are in good agreement.
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