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Abstract. Spatial localization and azimuthal wave numbers
m of poloidal Alfvén waves generated by energetic particles
in the magnetosphere are studied in the paper. There are
two factors that cause the wave localization across magnetic
shells. First, the instability growth rate is proportional to the
distribution function of the energetic particles, hence waves
must be predominantly generated on magnetic shells where
the particles are located. Second, the frequency of the gener-
ated poloidal wave must coincide with the poloidal eigenfre-
quency, which is a function of the radial coordinate. The
combined impact of these two factors also determines the
azimuthal wave number of the generated oscillations. The
beams with energies about 10 keV and 150 keV are consid-
ered. As a result, the waves are shown to be strongly local-
ized across magnetic shells; for the most often observed sec-
ond longitudinal harmonic of poloidal Alfv́en wave (N=2),
the localization region is about one Earth radius across the
magnetic shells. It is shown that the drift-bounce resonance
condition does not select them value for this harmonic. For
10 keV particles (most often involved in the explanation of
poloidal pulsations), the azimuthal wave number was shown
to be determined with a rather low accuracy,−100<m<0.
The 150 keV particles provide a little better but still a poor
determination of this value,−90<m<−70. For the funda-
mental harmonic (N=1), the azimuthal wave number is de-
termined with a better accuracy, but both of these numbers
are too small (if the waves are generated by 150 keV par-
ticles), or the waves are generated on magnetic shells (in
10 keV case) which are too far away. The calculated val-
ues ofγ /ω are not large enough to overcome the damping
on the ionosphere. All these have cast some suspicion on the
possibility of the drift-bounce instability to generate poloidal
pulsations in the magnetosphere.
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1 Introduction

The paper is devoted to studying drift-bounce instability
which is suggested as a generation mechanism of azimuthally
small-scale, ultra-low frequency waves in the magnetosphere
(azimuthal wave numbersm�1). These waves are repre-
sented by poloidally polarized pulsations Pc4 and giant pul-
sations Pg (Takahashi, 1988, 1996). Drift-bounce instability
takes place in the presence of inverted energetic particle pop-
ulations, i.e.∂f/∂ε>0, wheref is the distribution function
and ε is the energy of the particle. Such particle popula-
tions associated with high-m pulsations, are often observed
in the magnetosphere (Hughes et al., 1978, 1979; Wright et
al., 2001; Baddeley et al., 2002). It is assumed that inverted
populations emerge as a result of substorm injections (Karp-
man et al., 1977; Glassmeier et al., 1999).

The features of observed ULF oscillations are probably
determined by their sources, in this case by unstable pro-
ton populations. As observations show, these oscillations
usually have negative azimuthal wave numbers,m<0, that
is, they propagate in the direction of the positive ion drift.
Though they are strongly localized across the magnetic shells
in the region about 1RE wide (Takahashi, 1988, 1996), these
waves are usually rather broadly distributed in the azimuthal
coordinate (Engebretson et al., 1992). In this paper an at-
tempt is taken to find out how the features of unstable pro-
ton populations influence these principal features of observed
poloidally-polarized pulsations.

The particles can effectively interact with ULF waves, pro-
vided that the condition of drift-bounce resonance,

ω − mω̄d − Kωb=0 , (1)

is satisfied. HereK is an integer,ωb is the bounce frequency,
andω̄d is a bounce averaged drift frequency. Glassmeier et
al. (1999) argued that in the case of a mode, highly asymmet-
ric with respect to equator, this resonance condition must be
generalized, allowing for non-integerK. These asymmetric
modes can exist when the conductances of the Northern and
Southern Hemispheres are strongly different. This statement
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caused some debate (Mann and Chisham, 2000; Glassmeier,
2000), but we are not going to consider the asymmetric
modes and will use the resonance condition in Eq. (1) with
integerK.

The bounce and drift frequencies both depend on the en-
ergy ε of the particle. If the unstable distribution is ob-
served, it is possible to infer the energy of the particles
presumably generating the simultaneously observed poloidal
high−m wave. Knowingε, it is possible to calculateωb and
ω̄d and, after substituting them into Eq. (1), to calculate the
azimuthal wave number,

m=
ω − Kωb

ω̄d

.

Then, it is possible to compare this number with the re-
ally measuredm value. The comparison usually gives good
agreement (Glassmeier et al., 1999; Wright et al., 2001; Bad-
deley et al., 2002). It should be noted that in writing the ob-
served value asm±1m, the error1m is usually attributed
to the measurement rather than to the nature of the waves,
tacitly implying that the realm number of the wave has a
well-defined value.

It should be mentioned, however, that the resonance con-
dition Eq. (1) is important only as a part of the growth rate
expression,

γ ∝

〈
∂f

∂ε
δ(ω − mω̄d − Kωb)

〉
, (2)

where〈. . .〉 means averaging over the whole velocity space
with some weight (see Sect. 2.1). The line of the argumenta-
tion described above is valid only in the case when the growth
rateγ has a very steep and narrow dependence onm. In the
opposite case, the instability does not select any particularm

value, and the whole logic comparising the drift-bounce res-
onance theory with the experiments fails. To elucidate this
issue, it is necessary to perform the integration over the ve-
locity space and to calculate the growth rate as a function of
the azimuthal wave number. One of the tasks of this paper is
such an integration.

Moreover, according to expression Eq. (2), γ is a function
of the wave frequencyω. However, for the poloidally polar-
ized wave, the wave frequency coincides with the poloidal
eigenfrequency�P , which depends on the radial coordinate
L. Thus, the condition of instability can be satisfied only for
a certainL value. Hence, the following questions arise: How
strong is the dependence of the growth rate onm andL for
the given distribution function? In particular, how sharply
are the poloidal Alfv́en waves generated by the instability
localized across magnetic shells? And what values of the az-
imuthal wave numbersm can these poloidal Alfv́en waves
have?

2 Basic equations

2.1 Input equations

A general expression of the drift-bounce instability growth
rate was obtained in a number of papers (e.g. Southwood et
al., 1969; Karpman et al., 1977; Chen and Hasegawa, 1988).
When the energetic particles are represented by protons, the
expression for the growth rate is as follows:

γ=

∞∑
K=−∞

γK , (3)

γK =
4π

c2

q2

M2
B0LRE

∫
∂f

∂ε

(
1 −

ω∗

ω

)
ωb

× δ(ω − mω̄d − Kωb)G
2(µ, ε)dµdε, (4)

G(µ, ε)=

∫ b

a

|v‖|
−1ωdJ0FN cosI (l)dl, (5)

I (l)=

∫ l

a

|v‖|
−1(ω − mωd)dl. (6)

HereK is an integer,M, q, ε andµ=v2
⊥
/2B0 are the mass,

charge, energy and the magnetic moment of a proton,v⊥, v‖

are the transverse and the longitudinal components of the
particle velocity,RE is the Earth radius,B0=BEL−3 is the
equatorial magnetic field value,L is the McIlwain parame-
ter; BE is the magnetic field on the Earth’s surface,ω is the
Alfv én wave frequency,N is the longitudinal harmonic num-
ber,ω∗ is the diamagnetic drift frequency,ωb is the bounce
frequency;ωd is the drift frequency,ω̄d is the bounce av-
eraged drift frequency,f (ε, µ, L) is the distribution func-
tion of energetic particles,J0=J0(k⊥v⊥/ωc) is a zero order
Bessel function,ωc is the gyrofrequency,dl is the length el-
ement along the field line,a, b are points of particle reflec-
tion, m is the azimuthal wave number,k⊥=m/

√
g2 is the

wave vector transverse component,gi are metric tensor com-
ponents, the functionFN describes the longitudinal structure
of the Alfvén wave. Later on we will not take into account
finite Larmor radius effects, soJ0'1.

Let us introduce a new variableξ≡sinα, whereα is the
pitch angle. The argument of the delta-function can be writ-
ten as

gK(ε, ξ) ≡ ω − mω̄d − Kωb. (7)

We denote the solution of the equation

gK(ε, ξ)=0

with respect to energy asεK . Then we substitute the inte-
gration variablesε, µ with ε, ξ in Eq. (4), and after that we
integrate overε. As a result we have the integral only over
the variableξ :

γK =
4π

c2

q2

M2
B0LRE

∫
∂f

∂ε

(
1 −

ω∗

ω

)
ωb G2(ξ, εK)

×

(
∂gK

∂ε

)−1 2εKξ

B0
dξ, (8)
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where all the derivatives over energy are taken in the point
εK(ξ).

2.2 Input functions

For the growth rate calculation we need to know the longi-
tudinal structure of the poloidal Alfv́en wave and the dis-
tribution function. The longitudinal structure of the Alfvén
wave in an axi-symmetric magnetosphere is approximately
described in the WKB approximation:

FN=2

(√
g2

g1

A

τA

)1/2

sin

(
2πN

τA

∫ l

aI

dl

A

)
(9)

(Leonovich and Mazur, 1993), whereaI , bI are magnetocon-
jugated points of the ionosphere,A is the Alfvén velocity,
andτA is the transit time with a local Alfv́en velocity along
the field line “there and back”. Although the WKB solu-
tion is strictly valid for largeN values, qualitatively, it also
describes well the wave longitudinal structure for smallN

numbers considered in this paper. This function is normal-
ized as∫ bI

aI

√
g1

g2

1

A2
F 2

Ndl=1.

The Alfvén velocity is modeled by the expression
(Leonovich and Mazur, 1993)

A(L, θ)=A0(4/L)3/2f
1/4
B (θ),

fB(θ)=(1 + 3 sin2 θ)1/2 cos−6 θ,

whereθ is the geomagnetic latitude,A0=103 km/s.
We used the expression

f (ε, µ, L)=f0 exp

[
−

(
ε − ε0

1ε

)2

−

(
L − L0

1L

)2
]

(10)

as a distribution function. The most often observed unstable
distributions associated with poloidal pulsations have proton
energies of about 10 keV (Hughes et al., 1978, 1979; Wright
et al., 2001; Baddeley et al., 2002). So, we putε0=10 keV.
For such energies, the inequalityω∗/ω�1 holds in Eqs. (4
and8). The amplitudef0=103 km−6s3 is also chosen in ac-
cordance with the observations. Henceforth we will assume
1ε=1 keV. L0 and1L can vary considerably as described
below.

Bumps with higher energies of about 150 keV are also
sometimes observed (e.g. Takahashi et al., 1990). In this
case, we takeε0=150 keV. For such values, the amplitude
f0=10km−6s3 and1ε=10 keV. The ratioω∗/ω is more sig-
nificant in this case than in theε0=10 keV; nonetheless, we
will not take this into account.

We omitted the pitch-angle dependency of the distribution
function from the calculations, because the observed particle
distributions are usually nearly isotropic.
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Fig. 1. Sketch of determination of theL andm values of the mode
generated by the instability: a) determination of the mode local-
ization regionL0 from the drift-bounce resonance condition and
dependence of the poloidal eigenfrequencyΩP on the radial coor-
dinate; b) selection ofm numbers generated by the instability:mL

is a value determined on the selectedL shell, andmtot is a total
set ofm-numbers in the whole wave localization region (the inter-
section of the regions determined by the resonance condition and
ΩP (L) dependence, strip I, and the spatial localization of the ener-
getic particle population, strip II).

3 Drift-bounce instability growth rate as a function of
L and m

3.1 Formulation of the problem

Let us clarify the task mentioned at the end of the intro-
duction. In this paper we study the spatial localization of
poloidally-polarized Alfv́en waves generated by the drift-
bounce instability in the magnetosphere. As it is seen from
the equation (4), the instability growth rate for the given dis-
tribution functionf(ε, µ, L) and longitudinal wave structure
FN depends on the wave frequencyω and azimuthal wave
numberm. In a two-dimensionally inhomogeneous magne-
tosphere, the frequency of poloidal Alfvén waveΩP depends
on the radial coordinateL (e.g., Leonovich and Mazur, 1993;
Mager and Klimushkin, 2002), hence the growth rate de-
pends onL, and the mode located near a shell with a definite
coordinateLres, as is shown in Fig. 1a. On the other hand,
according to (1),ω depends onm, so differentm will give

Fig. 1. Sketch of determination of theL andm values of the mode
generated by the instability:(a) determination of the mode local-
ization regionL0 from the drift-bounce resonance condition and
dependence of the poloidal eigenfrequency�P on the radial coor-
dinate;(b) selection ofm numbers generated by the instability:mL

is a value determined on the selectedL shell, andmtot is a total
set ofm-numbers in the whole wave localization region (the inter-
section of the regions determined by the resonance condition and
�P (L) dependence, strip I, and the spatial localization of the ener-
getic particle population, strip II).

3 Drift-bounce instability growth rate as a function of
L and m

3.1 Formulation of the problem

Let us clarify the task mentioned at the end of the Intro-
duction. In this paper we study the spatial localization of
poloidally-polarized Alfv́en waves generated by the drift-
bounce instability in the magnetosphere. As it is seen from
Eq. (4), the instability growth rate for the given distribu-
tion functionf (ε, µ, L) and longitudinal wave structureFN

depends on the wave frequencyω and the azimuthal wave
numberm. In a two-dimensionally inhomogeneous magne-
tosphere, the frequency of the poloidal Alfvén wave�P de-
pends on the radial coordinateL (e.g. Leonovich and Mazur,
1993; Mager and Klimushkin, 2002), hence the growth rate
depends onL, and the mode located near a shell with a def-
inite coordinateLres , as is shown in Fig.1a. On the other
hand, according to Eq. (1), ω depends onm, so differentm
will give different locations of the modeLres . Thus, the drift-
bounce resonance condition (DBRC) selects the most unsta-
ble region as a strip in theL-m plane (Fig.1b). The width of
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Fig. 2. Location of regions of the most effective instability inL-m plane for variousK andε ∼ 10 keV : a) N = 1 case, b)N = 2 case.
Thick solid lines correspond to the growth rate maximum location, thin lines correspond to ane-times smaller growth rate than its maximal
value. The shaded region corresponds to the observed values of azimuthal wave numbers−100 < m < 0.

Fig. 3. Location of regions of the most effective instability inL-m plane for variousK andε ∼ 150 keV : a) N = 1 case, b)N = 2 case.
Thick solid lines correspond to the growth rate maximum location, thin lines correspond to ane-times smaller growth rate than its maximal
value. The shaded region corresponds to the observed values of azimuthal wave numbers−100 < m < 0.
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Fig. 2. Location of regions of the most effective instability inL-m
plane for variousK andε∼10 keV: (a) N=1 case,(b) N=2 case.
Thick solid lines correspond to the growth rate maximum location,
thin lines correspond to ane-times smaller growth rate than its max-
imal value. The shaded region corresponds to the observed values
of azimuthal wave numbers−100<m<0.

the strip is determined by the width of the distribution func-
tion f with respect to particle energy. It also determines the
range ofm values on a selectedL shell (mL). We are going
to elucidate how narrow this strip is, and whether it varies
more in theL or m direction.

The dependence of the distribution functionf on the radial
coordinateL causes an additionalγ (L) dependence. The lo-
cation of the particle population forms yet another strip in
theL-m plane. The region of the most efficient generation is
situated on the intersection of those two strips (see Fig.1b).
Thus, thef (L) dependence can assist the selection of a to-
tal set of azimuthal wave numbersmtot of the most unstable
modes in the whole wave localization region (see Fig.1b).

Different bounce harmonics in the resonance condition
Eq. (3) result in different DBRC strips in theL-m plane. If

they are well isolated from each other, only some particu-
lar K numbers should be taken into account. Quite the re-
verse, if they are close to each other or intersect, summation
over differentK-numbers must be performed (Pilipenko et
al., 1977).

So, after calculation of the instability growth rate for the
given distribution function is performed, we can determine
the magneticL-shells and the azimuthal wave numbersm on
which the poloidal Alfv́en waves are most efficiently gener-
ated.

3.2 Contribution of different bounce harmonics

As is seen from Eqs. (4–6), for odd longitudinal harmon-
ics N=1, 3, .., odd bounce components (K=±1,±3, ..) in
the sum Eq. (3) are equal to zero, while for even harmonics
N=2, 4, .., even bounce components (K=0, ±2, ..) are equal
to zero (Southwood, 1980). Energy in the integral Eq. (8) is
determined by the ratio Eq. (7). The ratio Eq. (7) includes
the quantitiesωb andω̄d , depending on the energyε and the
integration variableξ= sinα. For oddN , the largest con-
tribution to the growth rate is made by particles always lo-
cated near the equator, i.e. with pitch-angles close toπ/2.
For evenN , in turn, the largest contribution is made by the
particles traveling the largest distances between the turning
points, which corresponds to the smallest pitch-anglesαmin
(Southwood, 1980):

sinαmin=f
1/2
B (θI ),

θI= arccos

(
LI

L

)1/2

,

whereLI is the radius of the ionosphere’s external border in
units of the Earth’s radius,RE ; θI is the geomagnetic lati-
tude of the point where the magnetic field line crosses the
top of the ionosphere. If we do not take into account the spa-
tial localization of distribution function (f (L)=const), the
growth rate is maximal with energy valuesεeff correspond-
ing to the function maximum∂f/∂ε. For our model distri-
bution function Eq. (10), εeff =ε0−1ε/

√
2. Thus, substi-

tuting into Eq. (7) the energy quantityεeff and the pitch-
angleα=π/2 for N=1 or αmin for N=2, we can determine
at whichL-shells and with whichm values the growth rate is
the largest. The borders of region of the most effective insta-
bility are approximately determined from Eq. (7) for particle
energies corresponding to the function∂f/∂ε valuese-times
smaller than its maximal value.

The most frequently observed poloidal oscillations are
usually the first or the second longitudinal harmonics,
N=1, 2. The DBRC regions are shown in Figs. 2a and 3a for
N=1 and in Figs. 2b and 3b forN=2, as regions between
thin solid lines. It is seen in Figs. 2 and 3 that the instabil-
ity regions for differentK values are mutually isolated. It
means that in considering some region on theL-m diagram,
only some selectedK-values are essential.

Observed poloidal waves usually propagate westward
(m<0), and have|m|-values from 50 to 100. For such
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Fig. 2. Location of regions of the most effective instability inL-m plane for variousK andε ∼ 10 keV : a) N = 1 case, b)N = 2 case.
Thick solid lines correspond to the growth rate maximum location, thin lines correspond to ane-times smaller growth rate than its maximal
value. The shaded region corresponds to the observed values of azimuthal wave numbers−100 < m < 0.

Fig. 3. Location of regions of the most effective instability inL-m plane for variousK andε ∼ 150 keV : a) N = 1 case, b)N = 2 case.
Thick solid lines correspond to the growth rate maximum location, thin lines correspond to ane-times smaller growth rate than its maximal
value. The shaded region corresponds to the observed values of azimuthal wave numbers−100 < m < 0.
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Fig. 3. Location of regions of the most effective instability inL-m
plane for variousK andε∼150 keV:(a) N=1 case,(b) N=2 case.
Thick solid lines correspond to the growth rate maximum location,
thin lines correspond to ane-times smaller growth rate than its max-
imal value. The shaded region corresponds to the observed values
of azimuthal wave numbers−100<m<0.

m values and energiesε∼10 keV, only components with
K=0, 2 contribute to the growth rate for the fundamental
standing harmonic (N=1), and components withK=1, 3
do the same for the second harmonic (N=2), because the
components withK<0 for N=1 and withK<1 for N=2
are essential only form<−100, and the components with
K>2 for N=1 and withK>3 for N=2 are essential only for
m>0. Moreover, the energetic particles with unstable dis-
tributions with (∂f/∂ε>0) are observed in magnetospheric
regions withL∼6−10RE . It follows that for N=1 only
the componentK=0 (drift resonance) can contribute to the
growth rate, and forN=2 the contribution can be made by
the componentK=1 (drift-bounce resonance). For the same
reason, in theε∼150 keV case, forN=1, the contribution to
the growth rate can be made only by the component with
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Fig. 4. Location of the regions of the most effective instability inL-m plane forε ∼ 10 keV : a) for K = 0 andN = 1, b) for K = 1 and
N = 1. Thick solid lines correspond to the growth rate maximum location, thin ones correspond to ane-times smaller growth rate than its
maximal value. Shaded areas show regions of the most effective instability for the spatially inhomogeneous distribution. The solid horizontal
line indicates the maximum of distribution function, the dotted lines indicates ane-times smaller value.

Let us now take into account the spatial inhomogeneity
of the particle distribution, that is, thef(L) dependence.
In the most interesting case the population is localized near
thoseL−shells where the DBRC regions are situated (see
Fig. 4a,b). These regions are situated nearL = 9 in the
N = 1 case and nearL = 6.5RE in theN = 2 case. Let the
width of the localization region be1 RE . So, in our model
distribution function (10), we will assumeL0 = 9 for N = 1
andL0 = 6.5RE for N = 2, ∆L = 0.5RE . As a result,
the region of the most effective generation of poloidal Alfvén
waves, gived the spatial inhomogeneity of the population (the
shaded region in Fig. 4), is located between the magnetic
shellsL = 8 − 9 for N = 1, and betweenL = 6 − 7 RE

for N = 2, thus,mtot (azimuthal wave numbersmtot in
the entire wave localization region) is enclosed in the inter-
val from −100 to 0. It should be mentioned that poloidal
waves can exist only with the values|m| � 1 (Leonovich
and Mazur, 1997; Klimushkin at al., 2004), and that also
limits the value ofm and the instability region width onL.
The maximum growth rateγmax is reached whenL = 9 and
mL = −50±5 for N = 1, and forN = 2 whenL = 6.5RE

andmL = −40± 15.

The results of numerical calculation of the instability
growth rateγ as a function ofL andm are presented in Fig. 5.
The maximum growth rate for10 keV is γ/ω = 2.4 · 10−1

for N = 1, andγ/ω = 2.2 · 10−3 for N = 2. Note a slight
difference between locations of instability regions shown in
Fig. 5 (numerically calculated) and in Fig. 4 (analytically de-
termined). It is mainly an apparent difference, because it is

the ratioγ/ω that is shown in Fig. 5, where the eigenfre-
quencyω itself strongly depends onL.

Theε ∼ 150 keV case.The DBCR region is strongly lo-
calized acrossL shells as well asm for bothN harmonics.
The mL value is determined with accuracy±2 for N = 1
and±3 for N = 2. It must be noted, however, that such
high accuracy is determined by the small∆ε value chosen in
this paper. Putting in (10) the width∆L = 0.5RE and the
maximum locationL0 = 6.5 for N = 1 andL0 = 8RE for
N = 2, we find the location of the most unstable region (the
shaded region in Fig. 6) forN = 1 between the magnetic
shellsL = 6 and7 RE , and forN = 2 betweenL = 7.5 and
8.5 RE . Thus,mtot is confined in the interval−20 to−10 for
N = 1 and−90 to −70 for N = 2. The maximum growth
rateγmax is reached whenL = 6.5 andm = −14 ± 2 for
N = 1, and forN = 2 whenL = 8RE andm = −78± 3.

The results of numerical calculation ofγ(L,m) for ener-
gies150 keV are presented in Fig. 7. The largest value of the
growth rate isγ/ω = 3·10−2 for N = 1, andγ/ω = 2·10−3

for N = 2.

4 Discussion

The width of the distribution functionf with respect to par-
ticle energy is the crucial factor of the drift-bounce instabil-
ity growth rate, because the values of driftωd and bounce
ωb frequencies depend on the energyε. The variation of
these frequencies appears to be quite narrow because of the
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Fig. 4. Location of the regions of the most effective instability inL-m plane forε ∼ 10 keV : a) for K = 0 andN = 1, b) for K = 1 and
N = 1. Thick solid lines correspond to the growth rate maximum location, thin ones correspond to ane-times smaller growth rate than its
maximal value. Shaded areas show regions of the most effective instability for the spatially inhomogeneous distribution. The solid horizontal
line indicates the maximum of distribution function, the dotted lines indicates ane-times smaller value.

Let us now take into account the spatial inhomogeneity
of the particle distribution, that is, thef(L) dependence.
In the most interesting case the population is localized near
thoseL−shells where the DBRC regions are situated (see
Fig. 4a,b). These regions are situated nearL = 9 in the
N = 1 case and nearL = 6.5RE in theN = 2 case. Let the
width of the localization region be1 RE . So, in our model
distribution function (10), we will assumeL0 = 9 for N = 1
andL0 = 6.5RE for N = 2, ∆L = 0.5RE . As a result,
the region of the most effective generation of poloidal Alfvén
waves, gived the spatial inhomogeneity of the population (the
shaded region in Fig. 4), is located between the magnetic
shellsL = 8 − 9 for N = 1, and betweenL = 6 − 7 RE

for N = 2, thus,mtot (azimuthal wave numbersmtot in
the entire wave localization region) is enclosed in the inter-
val from −100 to 0. It should be mentioned that poloidal
waves can exist only with the values|m| � 1 (Leonovich
and Mazur, 1997; Klimushkin at al., 2004), and that also
limits the value ofm and the instability region width onL.
The maximum growth rateγmax is reached whenL = 9 and
mL = −50±5 for N = 1, and forN = 2 whenL = 6.5RE

andmL = −40± 15.

The results of numerical calculation of the instability
growth rateγ as a function ofL andm are presented in Fig. 5.
The maximum growth rate for10 keV is γ/ω = 2.4 · 10−1

for N = 1, andγ/ω = 2.2 · 10−3 for N = 2. Note a slight
difference between locations of instability regions shown in
Fig. 5 (numerically calculated) and in Fig. 4 (analytically de-
termined). It is mainly an apparent difference, because it is

the ratioγ/ω that is shown in Fig. 5, where the eigenfre-
quencyω itself strongly depends onL.

Theε ∼ 150 keV case.The DBCR region is strongly lo-
calized acrossL shells as well asm for bothN harmonics.
The mL value is determined with accuracy±2 for N = 1
and±3 for N = 2. It must be noted, however, that such
high accuracy is determined by the small∆ε value chosen in
this paper. Putting in (10) the width∆L = 0.5RE and the
maximum locationL0 = 6.5 for N = 1 andL0 = 8RE for
N = 2, we find the location of the most unstable region (the
shaded region in Fig. 6) forN = 1 between the magnetic
shellsL = 6 and7 RE , and forN = 2 betweenL = 7.5 and
8.5 RE . Thus,mtot is confined in the interval−20 to−10 for
N = 1 and−90 to −70 for N = 2. The maximum growth
rateγmax is reached whenL = 6.5 andm = −14 ± 2 for
N = 1, and forN = 2 whenL = 8RE andm = −78± 3.

The results of numerical calculation ofγ(L,m) for ener-
gies150 keV are presented in Fig. 7. The largest value of the
growth rate isγ/ω = 3·10−2 for N = 1, andγ/ω = 2·10−3

for N = 2.

4 Discussion

The width of the distribution functionf with respect to par-
ticle energy is the crucial factor of the drift-bounce instabil-
ity growth rate, because the values of driftωd and bounce
ωb frequencies depend on the energyε. The variation of
these frequencies appears to be quite narrow because of the

Fig. 4. Location of the regions of the most effective instability in
L−m plane forε∼10 keV:(a) for K=0 andN=1,(b) for K=1 and
N=1. Thick solid lines correspond to the growth rate maximum lo-
cation, thin ones correspond to ane-times smaller growth rate than
its maximal value. Shaded areas show regions of the most effective
instability for the spatially inhomogeneous distribution. The solid
horizontal line indicates the maximum of distribution function, the
dotted lines indicates ane-times smaller value.

K=0 (drift resonance), and forN=2, by the component
K=−1 (drift-bounce resonance).

3.3 γ=γ (L, m): qualitative considerations and numerical
calculations

Theε∼10 keV case.Figure4 shows the important instability
regions from Fig.2 in more detail. For bothN=1, 2 lon-
gitudinal harmonics, the DBRC region (region between thin
solid lines in Fig.4) appeared to be strongly localized across
L shells: for a certain value ofm their width is less than
0.5RE . As this takes place, forN=1 the DBRC region in
the L-m plane is strongly localized with respect to the az-
imuthal wave numbers:mL (them-value at a certainL-shell)
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is determined with a±5 accuracy. On the contrary, for the
often observed second harmonic (N=2) the localization with
respect tom is weak:mL is defined with an uncertainty larger
than 30; the DBRC region runs almost parallel to them axis
in theL-m plane. The weakm-dependence of the growth rate
in theN=2 case is explained by the smallness of the termωd

in resonance condition Eq. (7), for the observed values of the
wave period of∼100 seconds,m-number from−50 to−100,
and the proton energies of about 10 keV forK=1.

Let us now take into account the spatial inhomogeneity of
the particle distribution, that is, thef (L) dependence. In the
most interesting case the population is localized near those
L−shells where the DBRC regions are situated (see Figs.4a,
b). These regions are situated nearL=9 in theN=1 case and
nearL=6.5RE in theN=2 case. Let the width of the local-
ization region be 1RE . So, in our model distribution function
Eq. (10), we will assumeL0=9 for N=1 andL0=6.5RE for
N=2, 1L=0.5RE . As a result, the region of the most ef-
fective generation of poloidal Alfv́en waves, given the spa-
tial inhomogeneity of the population (the shaded region in
Fig. 4), is located between the magnetic shellsL=8−9 for
N=1, and betweenL=6−7RE for N=2, thus,mtot (az-
imuthal wave numbersmtot in the entire wave localization
region) is enclosed in the interval from−100 to 0. It should
be mentioned that poloidal waves can exist only with the val-
ues|m|�1 (Leonovich and Mazur, 1997; Klimushkin et al.,
2004), and that also limits the value ofm and the instabil-
ity region width onL. The maximum growth rateγmax is
reached whenL=9 andmL=−50±5 for N=1, and forN=2
whenL=6.5RE andmL=−40±15.

The results of the numerical calculation of the instability
growth rateγ , as a function ofL and m, are presented
in Fig. 5. The maximum growth rate for 10 keV is
γ /ω=2.4·10−1 for N=1, and γ /ω=2.2·10−3 for N=2.
Note a slight difference between locations of the instability
regions shown in Fig.5 (numerically calculated) and in
Fig. 4 (analytically determined). It is mainly an apparent
difference, because it is the ratioγ /ω that is shown in Fig.5,
where the eigenfrequencyω itself strongly depends onL.

Theε∼150 keV case.The DBCR region is strongly localized
acrossL shells, as well asm, for bothN harmonics. ThemL

value is determined with an accuracy of±2 for N=1 and of
±3 for N=2. It must be noted, however, that such a high
accuracy is determined by the small1ε value chosen in this
paper. Inserting in Eq. (10) the width1L=0.5RE and the
maximum locationL0=6.5 forN=1 andL0=8RE for N=2,
we find the location of the most unstable region (the shaded
region in Fig.6) for N=1 between the magnetic shellsL=6
and 7RE , and forN=2 betweenL=7.5 and 8.5RE . Thus,
mtot is confined to the interval−20 to−10 forN=1 and−90
to −70 forN=2. The maximum growth rateγmax is reached
whenL=6.5 andm=−14±2 for N=1, and forN=2 when
L=8RE andm=−78±3.

The results of numerical calculation ofγ (L,m) for ener-
gies 150 keV are presented in Fig.7. The largest value of the
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Fig. 5. Numerically calculated growth rate dependencyγ/ω on radial coordinateL and azimuthal wave numberm for ε0 = 10 keV : a) in
N = 1 case, b) inN = 2 case. Dotted line corresponds to the zero growth rate,γ = 0.

Fig. 6. Location of the regions of the most effective instability inL-m plane forε ∼ 150 keV : a) forK = −2 andN = 1, b) for K = −1
andN = 2. Thick solid lines correspond to the growth rate maximum location, thin lines correspond to ane-times smaller growth rate
than its maximal value. Shaded areas show regions of the most effective instability for the spatially inhomogeneous distribution. The solid
horizontal line indicates the maximum of distribution function, the dotted lines indicates ane-times smaller value.
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Fig. 6. Location of the regions of the most effective instability inL-m plane forε ∼ 150 keV : a) forK = −2 andN = 1, b) for K = −1
andN = 2. Thick solid lines correspond to the growth rate maximum location, thin lines correspond to ane-times smaller growth rate
than its maximal value. Shaded areas show regions of the most effective instability for the spatially inhomogeneous distribution. The solid
horizontal line indicates the maximum of distribution function, the dotted lines indicates ane-times smaller value.

Fig. 5. Numerically calculated growth rate dependencyγ /ω on ra-
dial coordinateL and azimuthal wave numberm for ε0=10 keV:(a)
in N=1 case,(b) in N=2 case. Dotted line corresponds to the zero
growth rate,γ=0.

growth rate isγ /ω=3·10−2 for N=1, andγ /ω=2·10−3 for
N=2.

4 Discussion

The width of the distribution functionf with respect to par-
ticle energy is the crucial factor of the drift-bounce instabil-
ity growth rate, because the values of driftωd and bounce
ωb frequencies depend on the energyε. The variation of
these frequencies appears to be quite narrow because of the
small width of the functionf (ε). Consequently, the wave
frequency range (with fixedm andK) which satisfies the res-
onance condition Eq. (7) is also quite narrow. On the other
hand, the eigenfrequency of standing Alfvén waves depends
on the radial coordinateL. Thus, the condition of the drift-
bounce resonance can be satisfied in the vicinity of a cer-
tain L-shell. Moreover, there is another factor, namely, the
beam localization in the magnetosphere. The highest growth
rate takes place when these two factors select the sameL
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Fig. 5. Numerically calculated growth rate dependencyγ/ω on radial coordinateL and azimuthal wave numberm for ε0 = 10 keV : a) in
N = 1 case, b) inN = 2 case. Dotted line corresponds to the zero growth rate,γ = 0.

Fig. 6. Location of the regions of the most effective instability inL-m plane forε ∼ 150 keV : a) forK = −2 andN = 1, b) for K = −1
andN = 2. Thick solid lines correspond to the growth rate maximum location, thin lines correspond to ane-times smaller growth rate
than its maximal value. Shaded areas show regions of the most effective instability for the spatially inhomogeneous distribution. The solid
horizontal line indicates the maximum of distribution function, the dotted lines indicates ane-times smaller value.
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Fig. 5. Numerically calculated growth rate dependencyγ/ω on radial coordinateL and azimuthal wave numberm for ε0 = 10 keV : a) in
N = 1 case, b) inN = 2 case. Dotted line corresponds to the zero growth rate,γ = 0.

Fig. 6. Location of the regions of the most effective instability inL-m plane forε ∼ 150 keV : a) forK = −2 andN = 1, b) for K = −1
andN = 2. Thick solid lines correspond to the growth rate maximum location, thin lines correspond to ane-times smaller growth rate
than its maximal value. Shaded areas show regions of the most effective instability for the spatially inhomogeneous distribution. The solid
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Fig. 6. Location of the regions of the most effective instabil-
ity in L−m plane forε∼150 keV: (a) for K=−2 andN=1, (b)
for K=−1 andN=2. Thick solid lines correspond to the growth
rate maximum location, thin lines correspond to ane-times smaller
growth rate than its maximal value. Shaded areas show regions of
the most effective instability for the spatially inhomogeneous distri-
bution. The solid horizontal line indicates the maximum of distri-
bution function, the dotted lines indicates ane-times smaller value.

shells. For the particles with energiesε∼10 keV and waves
with |m|∼50−100, the beam should be located near the mag-
netic shell withL=6.5 for the second longitudinal harmonic
(N=2) andL=9 for the fundamental one (N=1). For parti-
cles with energiesε∼150 keV it isL=8 for N=2 andL=6.5
for N=1.

As it is seen from our analytical and numerical calcula-
tions, the localization width is less than 1RE . This can ex-
plain the narrow localization of the observed poloidal pul-
sation. For example, Engebretson et al. (1992) found that
poloidal wave events observed in situ are strongly localized
across the magnetic shells (scale of 1RE). On the other hand,
other explanations exist. Poloidally polarized waves can be
enclosed in the resonator in magnetospheric regions where
the function�P (L) has a local extremum (e.g. Vetoulis and
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Fig. 7. Numerically calculated growth rate dependencyγ/ω on radial coordinateL and azimuthal wave numberm for ε0 = 150 keV : a) in
N = 1 case, b) inN = 2 case.

small width of the functionf(ε). Consequently, the wave
frequency range (with fixedm and K), satisfying the res-
onance condition (7) is also quite narrow. On the other
hand, the eigenfrequency of standing Alfvén waves depends
on the radial coordinateL. Thus, the condition of drift-
bounce resonance can be satisfied in the vicinity of certain
L-shell. Moreover, there is another factor, namely, the beam
localization in the magnetosphere. The highest growth rate
takes place when these two factors select the sameL shells.
For the particles with energiesε ∼ 10 keV and waves with
|m| ∼ 50 − 100, the beam should be located near magnetic
shell with L = 6.5 for the second longitudinal harmonic
(N = 2) andL = 9 for the fundamental one (N = 1). For
particles with energiesε ∼ 150 keV it is L = 8 for N = 2
andL = 6.5 for N = 1.

As it is seen from our analytical and numerical calcula-
tions, the localization width is less than1 RE . This can ex-
plain the narrow localization of the observed poloidal pul-
sation. For example, Engebretson et al. (1992) found that
poloidal wave events observedin situ are strongly localized
across the magnetic shells (scale of1 RE). On the other
hand, other explanations exist. Poloidally polarized waves
can be enclosed in the resonator in magnetospheric regions
where the functionΩP (L) has a local extremum (e.g., Ve-
toulis and Chen, 1996; Klimushkin et al., 2004), which has
some experimental support (Denton et al., 2003). The res-
onator width is also1 RE . Outside such extreme regions,
a high-m wave propagates acrossL-shells, changing its po-
larization from poloidal to toroidal (Leonovich and Mazur,
1993); but if the damping rate on the ionosphere is much
larger than the instability growth rate, then the wave is atten-
uated rermaining poloidally polarized (Klimushkin, 2000),

and also will be observed as a poloidal wave localized in a
narrow range ofL values.

The next important issue is theγ(m) dependence. As it
was mentioned in the Introduction, a comparison of the in-
stability theory with the observations tacitly implies thatm is
a well defined value, and theγ(m) dependence is very sharp
and narrow, like a delta-function. Our calculations show,
however, that the drift-bounce instability practically does not
single out a particular value ofm. It is especially evident for
the oscillations withN = 2, generated by10 keV particles
(the most often observed harmonic and the most often sug-
gested energy):mL can be determined with accuracy±15,
andmtot > −100 can be generated. We used quite a nar-
row distribution function in our calculations:∆ε ∼ 2 keV ;
for wider distributions, the azimuthal wave number will be
determined with even smaller accuracy. Thus, the usual case
for the drift-bounce instability as a generation mechanism of
poloidally-polarized pulsations Pc4 and Pg (which are often
identified with the second longitudinal harmonic,N = 2)
loses its meaning.

There are additional limitations on them number that fol-
low from the fact that the condition|m| � 1 is neces-
sary, but not sufficient for the poloidal polarization of the
wave (Klimushkin et al., 2004). Even the values as high as
|m| ' 40 can be not high enough for the poloidal polariza-
tion. In order to increase the|m| number of the mode gen-
erated by the instability, the beam of energetic particles must
move closer to Earth. But in this case additional constraints
arise, because particles usually cannot penetrate into the plas-
masphere. Due to a large number of these limitations, some
doubts are cast upon the possibility of those 10 keV popula-
tions to generate poloidal pulsations. Anyway, the corridor
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Fig. 7. Numerically calculated growth rate dependencyγ/ω on radial coordinateL and azimuthal wave numberm for ε0 = 150 keV : a) in
N = 1 case, b) inN = 2 case.

small width of the functionf(ε). Consequently, the wave
frequency range (with fixedm and K), satisfying the res-
onance condition (7) is also quite narrow. On the other
hand, the eigenfrequency of standing Alfvén waves depends
on the radial coordinateL. Thus, the condition of drift-
bounce resonance can be satisfied in the vicinity of certain
L-shell. Moreover, there is another factor, namely, the beam
localization in the magnetosphere. The highest growth rate
takes place when these two factors select the sameL shells.
For the particles with energiesε ∼ 10 keV and waves with
|m| ∼ 50 − 100, the beam should be located near magnetic
shell with L = 6.5 for the second longitudinal harmonic
(N = 2) andL = 9 for the fundamental one (N = 1). For
particles with energiesε ∼ 150 keV it is L = 8 for N = 2
andL = 6.5 for N = 1.

As it is seen from our analytical and numerical calcula-
tions, the localization width is less than1 RE . This can ex-
plain the narrow localization of the observed poloidal pul-
sation. For example, Engebretson et al. (1992) found that
poloidal wave events observedin situ are strongly localized
across the magnetic shells (scale of1 RE). On the other
hand, other explanations exist. Poloidally polarized waves
can be enclosed in the resonator in magnetospheric regions
where the functionΩP (L) has a local extremum (e.g., Ve-
toulis and Chen, 1996; Klimushkin et al., 2004), which has
some experimental support (Denton et al., 2003). The res-
onator width is also1 RE . Outside such extreme regions,
a high-m wave propagates acrossL-shells, changing its po-
larization from poloidal to toroidal (Leonovich and Mazur,
1993); but if the damping rate on the ionosphere is much
larger than the instability growth rate, then the wave is atten-
uated rermaining poloidally polarized (Klimushkin, 2000),

and also will be observed as a poloidal wave localized in a
narrow range ofL values.

The next important issue is theγ(m) dependence. As it
was mentioned in the Introduction, a comparison of the in-
stability theory with the observations tacitly implies thatm is
a well defined value, and theγ(m) dependence is very sharp
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row distribution function in our calculations:∆ε ∼ 2 keV ;
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sary, but not sufficient for the poloidal polarization of the
wave (Klimushkin et al., 2004). Even the values as high as
|m| ' 40 can be not high enough for the poloidal polariza-
tion. In order to increase the|m| number of the mode gen-
erated by the instability, the beam of energetic particles must
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arise, because particles usually cannot penetrate into the plas-
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doubts are cast upon the possibility of those 10 keV popula-
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Fig. 7. Numerically calculated growth rate dependencyγ /ω on ra-
dial coordinateL and azimuthal wave numberm for ε0=150 keV:
(a) in N=1 case,(a) in N=2 case.

Chen, 1996; Klimushkin et al., 2004), which has some exper-
imental support (Denton et al., 2003). The resonator width
is also 1RE . Outside such extreme regions, a high-m wave
propagates acrossL-shells, changing its polarization from
poloidal to toroidal (Leonovich and Mazur, 1993); but if the
damping rate on the ionosphere is much larger than the in-
stability growth rate, then the wave is attenuated, remaining
poloidally polarized (Klimushkin, 2000), and also will be ob-
served as a poloidal wave localized in a narrow range ofL

values.
The next important issue is theγ (m) dependence. As it

was mentioned in the Introduction, a comparison of the in-
stability theory with the observations tacitly implies thatm is
a well-defined value, and theγ (m) dependence is very sharp
and narrow, like a delta-function. Our calculations show,
however, that the drift-bounce instability practically does not
single out a particular value ofm. It is especially evident
for the oscillations withN=2, generated by 10 keV parti-
cles (the most often observed harmonic and the most often
suggested energy):mL can be determined with an accuracy
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of ±15, andmtot>−100 can be generated. We used quite a
narrow distribution function in our calculations:1ε∼2 keV;
for wider distributions, the azimuthal wave number will be
determined with an even smaller accuracy. Thus, the usual
case for the drift-bounce instability as a generation mecha-
nism of poloidally-polarized pulsations Pc4 and Pg (which
are often identified with the second longitudinal harmonic,
N=2) loses its meaning.

There are additional limitations on them number that fol-
low from the fact that the condition|m|�1 is necessary,
but not sufficient for the poloidal polarization of the wave
(Klimushkin et al., 2004). Even the values as high as|m|'40
can be not high enough for the poloidal polarization. In order
to increase the|m| number of the mode generated by the in-
stability, the beam of energetic particles must move closer to
Earth. But in this case additional constraints arise, because
particles usually cannot penetrate into the plasmasphere. Due
to a large number of these limitations, some doubts are cast
upon the possibility of those 10 keV populations to generate
poloidal pulsations. Anyway, the corridor of possibilities is
rather narrow.

For the fundamental harmonic of poloidal oscillations
(N=1), the azimuthal wave numberm can be determined
with greater accuracy: for the distribution function with
ε=10 keV, mL is determined with the accuracy of±5 and
mtot with the accuracy of±10, but the region of their local-
ization with observed values|m|∼50−100 is located in the
distant part of the magnetosphere withL>9RE .

If pulsations are excited by higher energy distributions,
like protons withε∼150 keV considered here, the situation
is almost the same. The second harmonic can havemtot val-
ues from−90 to−70, thoughmL is determined with the ac-
curacy±3. These oscillations can have reasonablem values
only if particles are localized nearL'8. In the vicinity of
the geosynchronous orbit, such particles will generate waves
with |m|>100. It should be noted that the results are sensi-
tive to the dependence of the Alfvén velocity on the radial
coordinate. A weakerA(L) dependence than discussed in
our paper will result in increasing the|m| number of the gen-
erated wave on the same magnetic shell, and a stronger one
will do the opposite.

In the N=1 case, the instability region is situated in the
vicinity of the geosynchronous orbit (Figs.6a and7a), but
only rather low-m oscillations (mtot∼−15±5) will be gen-
erated there. Suchm values are not large enough for waves
to be poloidally polarized (Klimushkin et al., 2004). Though
such factors as finite plasma pressure, transverse and longitu-
dinal equilibrium current can provide more possibilities for
moderately-high-m poloidal waves to exist (Klimushkin et
al., 2004; Klimushkin and Mager, 2004a).

Thus, drift-bounce instability hardly explains the observed
values of|m|. Moreover, there are problems with the expla-
nation of the azimuthal wave number sign. For example, as
is seen from Fig.2b, 10 keV particles can generate the sec-
ond standing harmonic withm>0: nearL'7.5RE for K=1.
This also is true for 150 keV particles (see Fig. 3b). Thus, the
drift-bounce instability cannot explain the fact that observed

poloidal Alfvén waves usually (though not always) have neg-
ative m values, propagating in the direction of the positive
ions drift.

The values of the growth rate areγ /ω∼10−1
−10−2 for

N=1 and γ /ω∼10−3 for N=2. These values are calcu-
lated using realistic densities of the energetic particles, in
agreement with the observed values. We used rather sharp
functionsf (ε), broader (perhaps, more realistic) distribu-
tions will give even smaller growth rates. The instability can
be an effective generation mechanism if the growth rate is
substantially larger than the damping rate on the ionosphere,
which is typically 10 or 100 times smaller than the wave fre-
quency. Hence, some doubts are cast upon the capability of
the instability to overcome the attenuation on the ionosphere.

5 Conclusions

First, let us describe the methodological approach of this
work.

(i) The way in which drift-bounce instability defines local-
ization of poloidal Alfv́en oscillations across magnetic shells
is found. The wave frequency is determined from the reso-
nance conditionω−mω̄d −Kωb=0. As this takes place, the
frequency of the generated waveω must coincide with the
poloidal eigenfrequency, which is a function of the radial co-
ordinate. Further,ωd andωb depend on the particle energy,
hence the range ofL shells of generated waves is determined
by the width of the distribution function with respect to en-
ergy.

(ii) The distribution function also determines azimuthal
wave numbers of generated oscillations. First, since the az-
imuthal wave number is involved in the resonance condition,
the radial coordinate of the generated pulsations is a func-
tion of m. So, if L is fixed, the range of the azimuthal wave
numbers is ultimately determined by the width of the func-
tion f (ε). Then, waves must be generated on those magnetic
L shells where the particles are located. By this means, az-
imuthal wave numbers of the pulsation in the whole localiza-
tion region are determined.

Let us describe the main results of our work.

1. It has been found that the functionf (ε) itself deter-
mines the location and width of the generation region
of poloidal Alfvén waves. If particles with energies
∼10 keV are responsible for the excitation, the waves
with reasonablem values haveL'8RE (the fundamen-
tal longitudinal harmonic,N=1) orL'6.5RE (the sec-
ond harmonic,N=2 – the most often observed case).
For energies∼150 keV, the waves are situated near
L'6.5RE (N=1 case) orL'8RE (N=2 case). The
width of the localization region is about 1 Earth radius
in each case. This is in agreement with an observed nar-
row localization of the poloidal pulsations (Takahashi,
1988, 1996; Engebretson et al., 1992). However, there
are other explanations of this phenomenon.
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2. The predicted azimuthal wave numbers are presented in
the following:

ε∼10 keV N=1 N=2
mtot −50±10 −50±50
mL −50±5 −40±15

ε∼150 keV N=1 N=2
mtot −15±5 −80±10
mL −14±2 −78±3

Here mtot and mL are the azimuthal wave numbers in the
entire wave localization region and on theL shell where the
growth rate reaches its maximum value, respectively.

As we see, for the most often observed second longitudinal
harmonic, the drift-bounce instability does not select any def-
inite value of the azimuthal wave numberm. The situation is
a little better for 150 keV particles than for the 10 keV parti-
cles, especially if the waves on a fixedL shell are considered,
but it is not clear as to whether it has more sense thanm in
the entire wave localization region. Anyway, the usual argu-
mentation employed in the comparison of the theory with the
experiments is invalid, since it tacitly assumes thatm is well
defined by the drift-bounce resonance condition. Observa-
tions often give higher accuracy,±5 (e.g. Glassmeier et al.,
1999; Wright et al., 2001; Baddeley et al., 2002). This raises
the questions: What determines the azimuthal wave number
in the most characteristic case (N=2)? Is the error in them
determination due to measurement or due to the wave nature?
Is m experimentally determined on some selectedL shell or
in the entire wave localization region?

Moreover, the instability in both the 10 keV and 150 keV
cases can generate waves of both signs ofm, whereas the
majority of observed poloidal waves have negative signs.

3. Growth rates are calculated for different particle ener-
gies and longitudinal wave numbers using realistic particle
densities. The results areγ /ω∼10−1

−10−2 for N=1 and
γ /ω∼10−3 for N=2. It is the same order of magnitude as
the damping rate on the ionosphere. Hence, it is not clear
whether the instability can overcome the attenuation.

It should also be added that poloidal modes in the magne-
tosphere quickly transform into toroidal modes (Leonovich
and Mazur, 1993, 1997; Klimushkin et al., 2004). If the in-
stability condition is satisfied for the time of the transforma-
tion, then the toroidal rather than the poloidal amplitude in-
creases (Klimushkin, 2000; Klimushkin and Mager, 2004b).

Thus, drift-bounce instability as a generation mechanism
produces more questions than answers. It means that other
generation mechanisms can be suggested. In particular, an
azimuthally drifting cloud of substorm-injected particles can
be a direct driver of the wave, as it represents a current that
serves as a right-hand side of the wave equation, as was
first proposed by Zolotukhina (1974) and Gul’elmi and Zolo-
tukhina (1980).
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