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Abstract. A dispersion relation for parallel propagating
whistler mode waves has been applied to the magnetosphere
of Saturn and comparisons have been made with the ob-
servations made by Voyager and Cassini. The effect of
hot (suprathermal) electron-density, temperature, tempera-
ture anisotropy, and the spectral index parameter,κ, on the
temporal growth rate of the whistler mode emission is stud-
ied. A good agreement is found with observations. Electron
pitch angle and energy diffusion coefficients have been ob-
tained using the calculated temporal growth rates.

Keywords. Magnetospheric physics (Energetic particles,
precipitating; Planetary magnetospheres; Plasma waves and
instabilities)

1 Introduction

The observations of the plasma wave spectrum observed
at Saturn by Voyager 1 were first reported by Gurnett et
al. (1981). Whistler mode hiss and chorus emissions were
found as Voyager approached the equator at a radial dis-
tance of about 5RS (RS is radius of Saturn). Whistler mode
emissions within Saturn’s magnetosphere were also detected
by the plasma wave instruments on Voyager 2 (Scarf et al.,
1982). First results from the Cassini Radio and Plasma Wave
Science Instrument during the approach and first orbit around
Saturn have been reported by Gurnett et al. (2005). Several
diffuse emissions were seen at frequencies belowfc (electron
cyclotron frequency). These have been identified as whistler
mode emissions. The radial distance of these emissions is
about 2∼6RS . Whistler waves are electromagnetic waves
in magnetized plasmas at frequencies below the electron cy-
clotron frequency. The ionosphere/magnetosphere produces
various plasma instabilities which lead to the emission of
waves propagating in the whistler mode waves branch. Most
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of these instabilities are due to anisotropic electron distri-
butions, such as beams, loss-cones, rings and temperature
anisotropies. Whistler mode emissions are also triggered by
lightning generated whistler. Whistler mode wave-particle
interactions are important processes which can lead to wave
amplification and precipitation of energetic electrons from
the magnetosphere into the lower ionosphere/atmosphere. In
this study we investigate the whistler mode driven unsta-
ble by the electron temperature anisotropy in the presence
of a suprathermal power law tail on the electron population
(Mace, 1998). The source of free energy driving the insta-
bility is the electron temperature anisotropy,T⊥>T||. We
consider only the wave propagation parallel to the magnetic
field.

The plasma science experiment during the Voyager en-
counters with Saturn investigated the low energy plasma
electron environment within Saturn’s magnetosphere. The
electron distribution functions are found to be non-
Maxwellian in character; they are composed of a cold
(thermal) component with a Maxwellian shape and a hot
(suprathermal), non-Maxwellian component (Sittler et al.,
1983). Similar characteristics of electron distribution func-
tions have been found during Cassini’s initial orbit (Young et
al., 2005). The colder component (∼3 to 30 eV) increases in
density and decreases in temperature with decreasing radial
distance. The hotter component (∼100 to 1000 eV) has the
opposite behaviour; it decreases in density and increases in
temperature with decreasing radial distance. The hot plasma
component can be modelled by a loss-cone, bi-Lorentzian
(or kappa) distribution (Summers and Thorne, 1991). In the
present work we have investigated the whistler mode insta-
bility driven by temperature anisotropy in the hot electron
component in the magnetosphere of Saturn and compare our
results with the whistler mode wave observations by Voy-
ager and Cassini. We have also calculated the pitch-angle
and energy diffusion coefficients from resonant interactions
with whistler mode waves using the expressions derived by
Lyons (1974), generalized to the temporal growth rates ob-
tained from our calculations.
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Table 1. Voyager 1 observational data.

Distance nc (cm−3) nh (cm−3) Tc (eV) Th (eV) B0 (nT)

R∼ 6RS 13 1 12 400 80

R∼ 12RS 0.34 0.06 25 500 12

R∼ 18RS 0.042 0.028 44 600 4.4

Section 2 gives the dispersion relation for parallel propa-
gating whistler mode waves. The plasma parameters in Sat-
urn’s magnetosphere and those used in the present study are
discussed in Sect. 3. Results of the temporal growth rates are
given in Sect. 4. In Sect. 5 we give the calculated normal-
ized pitch angle and energy diffusion coefficients. Finally, in
Sect. 6, a brief discussion and the conclusions of the present
study are given.

2 Dispersion relation

We consider a plasma consisting of a cold electron compo-
nent represented by a Maxwellian distribution, a hot electron
component given by the bi-Lorentzian loss-cone distribution
and a proton component represented by cold and hot compo-
nents, which are also given by Maxwellian and bi-Lorentzian
loss-cone distributions, respectively. The Maxwellian distri-
bution is given by

fM
σ (v⊥, v||) =

1

π3/2a2
⊥σ

a||σ

exp

(
−

v2
||

a2
||σ

−
v2
⊥

a2
⊥σ

)
(1)

with associated perpendicular and parallel thermal speeds

a⊥σ = (2T⊥σ /mσ )
1/2 , a||σ = (2T||σ /mσ )

1/2 (2)

and temperature anisotropy
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The bi-Lorentzian loss-cone distribution is given by
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The parameterθ⊥σ andθ||σ are thermal speeds given by
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θ||σ =

(
2κ − 3

κ

)1/2 (
T||σ

mσ

)1/2

, (6)

and the temperature anisotropy is given by

Aκσ =
T⊥σ
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− 1 =(`+ 1)
θ2
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− 1. (7)

Employing distributions (1) and (4), the dispersion relation
for the parallel propagating R-mode can be written as (Sum-
mers and Thorne, 1995; Mace, 1998)

c2k2

ω2
= 1 +

∑
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Summation over speciesσ involved in Eq. (8) is carried out
on cold and hot components of electrons and protons. For

the cold componentκ→∞, Aσ→AM
σ , Zκ−1→Z

(
ω+εσ�σ
ka||σ

)
and θ||,⊥σ→a||,⊥σ , where ω is the complex wave fre-
quency(ω=ωr+iγ ), k=|k|||, ωpσ is the plasma frequency,

ω2
pσ=

4πn0σ q2
σ

mσ
, the cyclotron frequency�σ is given by

�σ=
|qσ |B0
mσ c , the charge sign isεσ=

qσ
|qσ |

, κ is the spectral in-
dex,` is the loss-cone index. qσ , mσ and nσ are, respectively,
particle charge, mass and number density of speciesσ . c is
the speed of light. B0 is the ambient magnetic field. The
function Zκ , appearing in Eq. (8), is the modified plasma
dispersion function of Summers and Thorne (1991) and Z
is the plasma dispersion function (Fried and Conte, 1961).
Equation (8) is broken into real and imaginary parts and a
numerical technique is used to find the real and imaginary
components ofω.

3 Plasma parameters within Saturn’s magnetosphere

A survey of the low-energy plasma electron environment
during the Voyager encounters with Saturn has been given
by Sittler et al. (1983). Three fundamentally different
plasma regimes have been identified: (1) The hot outer mag-
netosphere (R=15∼22RS), (2) the extended plasma sheet
(R=7∼15RS), (3) the inner plasma torus (R<7RS , where
R is the radial distance). Electron densities are∼10 cm−3

in the inner torus and decrease to about∼3.0 cm−3 in the
extended plasma sheet and about∼ 0.04 cm−3 in the outer
magnetosphere. The hot (suprathermal) component relative

Ann. Geophys., 24, 1705–1712, 2006 www.ann-geophys.net/24/1705/2006/
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Table 2. Cassini observational data.

Distance nc (cm−3) nh (cm−3) Tc (eV) Th (eV) B0 (nT)

R∼ 5.5RS 14 0.1 20 2000 100

R∼ 3.9RS 30 0.1 20 2000 300

R∼ 2.2RS 100 0.1 20 2000 1400
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Fig. 1. Normalized temporal growth ratēγ (=γ /�e) versus nor-
malized real frequencȳωr (=ωr/�e) atR ∼ 6RS . Other plasma
parameters are given in Table 1 (Voyager data). Hot (suprathermal)
electron density nh is marked.

to the cold (thermal) component increases from about 0.1
in the inner torus to about 0.4 in the outer magnetosphere.
The cold electron temperature changes from about 10 eV to
40 eV and the hot electron temperature varies from about
400 eV to 600 eV as the radial distance changes from 6RS
to 18RS . The measurements made with the Cassini plasma
spectrometer in Saturn’s magnetosphere have been reported
by Young et al. (2005) and from the Cassini radio and plasma
wave instruments by Gurnett et al. (2005). In the inner mag-
netosphere (R=2 ∼7RS) electron densities range between
100∼4 cm−3, respectively. The cold electron temperature is
about 10∼20 eV and the hot electron temperature is nearly
1000∼2000 eV. The hot (suprathermal) electron density is
about 0.1 cm−3. Temporal growth rate calculations for the
whistler mode instability have been performed at three ra-
dial distances:R∼6RS , 12RS and 18RS using the plasma
parameters from the Voyager 1 data given in Table 1.

Subscripts c and h refer to cold (thermal) and hot
(suprathermal) electrons. Calculations have been performed
by changing the hot electron number density (nh) and tem-
perature (Th). Another set of calculations has been per-
formed at three radial distances:R∼5.5RS , R ∼3.9RS and
R ∼2.2RS , using the data set from Cassini given in Table 2.
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Fig. 2. Same as in Fig. 1 atR ∼6RS . Hot (suprathermal) electron
temperatureTh is marked. Other plasma parameters are same as in
Fig. 1.

Cold electrons are assumed isotropic and for hot elec-
trons temperature anisotropyAh=T⊥h/T||h− 1=0.1 is used. A
value ofκ=2 is also used. Calculations have been performed
by changingAh andκ. Protons with a constant hot compo-
nent temperature 104 eV have been included. Other protons
parameters are same as for electrons.

4 Temporal growth rates

4.1 Calculation results

In Fig. 1, we show the calculated normalized temporal
growth rates(γ̄=γ /�e) at radial distance 6RS . The effect
of the changing hot electron number density is shown. At
large nh∼ 2 cm−3 the whistler mode emission covers a broad
band of frequencies, especially towards lower frequencies,
although reducing nh does not show a systematic trend. In
Fig. 2 the effect of hot electron temperature (Th) is shown. In
this case the band width increases towards lower frequencies
asTh is increased from 200 eV to 800 eV. This is in accord
with Voyager observations (Sittler et al., 1983). However,
it may be noted that for lower values of both parameters,
nh (∼0.5 cm−3) andTh (200 eV), the calculations produce
no whistler mode emissions. In Figs. 3 and 4 we show the

www.ann-geophys.net/24/1705/2006/ Ann. Geophys., 24, 1705–1712, 2006
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Fig. 3. Same as in Fig. 1 but forR ∼12RS .
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Fig. 4. Same as in Fig. 2 but forR ∼12RS .

effects of changingnh andTh, respectively at radial distance
12RS . Here the band width also increases with the increase
in Th but the effect is small in comparison with the case for
radial distance 6RS . In Figs. 5 and 6 the effect of changing
nh or Th, respectively, on the temporal growth rate is shown
for radial distance 18RS . The change in bandwidth with
changingnh does not show any systematic trend. However,
the effect of increasingTh does result in somewhat larger
bandwidth towards lower frequencies.

In Fig. 7 the effect of changing the parameterκ is shown
at radial distance 5.5RS . The growth rate decreases with in-
creasingκ, as is expected, since for higherκ, there are a
lower number of resonant electrons in the high energy tail of
the distribution function. Also, the bandwidth of the whistler
mode emissions increases towards lower frequencies asκ is
decreased.

In Fig. 8 the effect of hot electron anisotropyAh on the
growth rate is shown (R=5.5RS). As the anisotropy is in-
creased the growth rate increases considerably and the band-
width also increases towards higher frequencies.
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Fig. 5. Same as in Fig. 1 but forR ∼18RS .
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Fig. 6. Same as in Fig. 2 but forR ∼18RS .

Finally, in Fig. 9, the results of the growth rate calculation
for radial distance 3.9RS are shown. It is found that for
nh<0.5 cm−3, no whistler mode emissions are possible.
Also, the bandwidth of whistler mode emissions increases
towards lower frequencies asnh is increased to 1 cm−3. Fur-
thermore, for radial distance 2.2RS calculations produce no
whistler mode emissions.

4.2 Comparisons with Cassini and Voyager observations

Next we compare our calculated values of the whistler mode
emission frequencyω̄r(=ωr/�e) with the observed values
from Cassini (Gurnett et al., 2005). From Fig. 3 of their
work we note that whistler mode emissions were observed
inside 6RS at ω̄r∼ 0.15 at (R ∼5.5RS), 0.05 (R∼3.9RS)
and 0.01 (R∼2.2RS). From Fig. 8 (R∼5.5RS) we ob-
serve that whistler mode emissions at this location can be
reconciled with a temperature anisotropy Ah>0.15. From
Fig. 9 (R∼3.9RS) it is noted that the whistler mode emis-
sion observed by Cassini require a hot electron number den-
sity of nh>0.5 cm3. However, the whistler mode emission
observed by Cassini at radial distance 2.2RS cannot be pro-
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Fig. 7. Same as in Fig. 1 using plasma parameters forR ∼5.5RS
given in Table 2 (Cassini data). Parameterκ is marked.
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Fig. 8. Same as in Fig. 7. Hot (suprathermal) electron temperature
anisotropyAh is marked.

duced by our calculations as these will require energetic
electron component with a much larger resonant energy of
Er=B2

0/8πne.
Comparing our calculations with whistler mode wave ob-

servations by Voyager 1 (Fig. 3 of Gurnett et al., 1981),
the broad-band emissions near ring plane crossing at 04:14
SCET (Space event time) on day 318 can be reproduced well
by our calculations, as shown in Figs. 1 and 2. In this case the
resonant energy of suprathermal electrons is small∼1 keV.
However, the observed whistler mode emissions on day 317
cannot be reproduced in our calculations, since a large reso-
nant energy is required in this case. For the same reasons we
also cannot reproduce whistler mode emissions observed by
Voyager 2.

The present calculations do not reproduce the whistler
mode emissions observed by Cassini at radial distance 2.2RS
and by Voyager 1 on day 317 and by Voyager 2. The reason
for this may be two-fold. Firstly, the present calculations
use a linear theory which may not be applicable. Second,
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Fig. 9. Same as in Fig. 7 but forR ∼3.9RS . Hot (suprathermal)
electron densitynh is marked.
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Fig. 10. Normalized electron diffusion coefficients versus pitch
angle using temporal growth rate profile forR ∼12RS (Fig. 3,
nh=0.06 cm−3).

a more likely reason may be the fact that the whistler mode
emissions observed in these cases may have been produced
at more favourable (lowerEr) locations and then propagated
to the location where these have been observed.

5 Electron diffusion coefficients

A whistler mode emission can cause pitch angle and energy
diffusion of magnetospheric electrons and scatter them into
the planet’s atmosphere, thereby producing auroral emis-
sions. On Saturn, aurora has been observed at high magnetic
latitudes (Sandel and Broadfoot, 1981), suggesting a source
of particles in the outer magnetosphere. It has been noted
by Barbosa (1990) that keV electrons are most likely the pri-
mary precipitation energy source for the aurora. We have
therefore calculated the pitch angle and energy diffusion co-
efficients, using two representative temporal growth rate pro-
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Fig. 11. Same as in Fig. 10 but forR ∼18RS (using temporal
growth rate profile from Fig. 5,nh=0.028 cm−3).

files; (1) at radial distance 12RS (Fig. 3,nh=0.06 cm−3) and
(2) at radial distance 18RS (Fig. 5,nh=0.028 cm−3).

In Figs. 10 and 11 we show the normalized pitch an-
gle and energy diffusion coefficients for electron interac-
tions with whistler mode waves. Calculations have been per-
formed using the diffusion coefficient expressions given by
Lyons (1974). For the sake of completeness we give the de-
tails of these expressions and calculations in the Appendix.
The electron energies for̄Ke=10 and 30 at radial distance
12Rs(Fig. 10) are∼9 keV and 27 keV, respectively. The av-
erage pitch-angle diffusion coefficients〈Dαα〉 at these ener-
gies are 0.9 and 1.1, respectively. At radial distance 18Rs
(Fig. 11) the electron energies are 7 keV and 21 keV and
average〈Dαα〉 values are 1.1 and 0.9, respectively. From
Figs. 10 and 11 it is noted that the energy diffusion coeffi-
cientsDαν andDvv are several orders of magnitude smaller
thanDαα × v2/〈Dαα〉 (cf. Eq. A1) gives the time scale for
pitch-angle diffusionταα. For a wave magnetic field inten-
sityBwave=10−3 nT values ofταα atR=12Rs are 7.7×104 s
and 6.3×104 s for electron energies 9 keV and 27 keV, re-
spectively. AtR=18Rs these are 2.3×104 s and 2.8×104 s
for electron energies 7 keV and 21 keV respectively. It is
useful to compareταα with the ”strong” pitch-angle diffu-
sion time constantτSD. In the strong diffusion regime, parti-
cles diffuse across the loss cone in less than a quarter-bounce
period, with the result that the precipitation mechanism sat-
urates and the particle flux is driven isotropic. The particle
precipitation rate is then independent of the amplitude of the
scattering waves, and depends only on the particle bounce
time and the geometric size of the loss cone.τSD is given
approximately by Thorne (1983)

τSD = 3.6RsL
4/v, (9)

whereL is the magnetic shell parameter. Values ofτSD at
L=12 are 8×104 s and 4.6×104 s for 9 keV and 27 keV, re-

spectively. AtL=18 these are 4.6×105 s and 2.7×105 s for
7 keV and 21 keV, respectively. Thus, to set tens of keV
electrons on strong diffusion (ταα≈τSD) the wave amplitude
must be about 10−3 nT atR=12Rs and about 2−3×10−4 nT
atR=18Rs .

Electric fields of the whistler mode waves measured
by Voyager 1 (Gurnett et al., 1981) are of the order of
10−6 V/m. Calculated group velocitiesvg=(dω/dk) are∼

6×106 m/s atR=12Rs and∼4×106 m/s atR=12Rs . These
give the magnetic field intensities of the waves(B=E/vg)

as 1.6×10−4 nT and 2.5×10−4 nT atR=12Rs and 18Rs ,
respectively. It may therefore be concluded that the whistler
mode wave amplitudes may be sufficient to drive resonant
electrons (tens of keV) onto strong diffusion atR=18Rs ,
leading to intense precipitation into the atmosphere. At
R=12Rs , the wave intensity is insufficient to set keV elec-
trons on strong diffusion.

6 Discussion and conclusion

We have applied the dispersion relation for parallel propagat-
ing whistler mode waves to the magnetosphere of Saturn and
have made comparisons with the observations from Voyager
and Cassini. Whistler mode emission observed by Voyager 1
near the ring plane crossing can be accounted for by our cal-
culations. It is found that for a higher hot electron number
density and/or temperature, the whistler mode emission cov-
ers a broadband of frequencies, especially toward lower fre-
quencies. When the hot electrons are of low density or lower
temperature, the emission is confined to a narrower range of
frequencies. These findings are in very good agreement with
the observations (Sittler et al., 1983). However, for hot elec-
tron density less than 0.5 cm−3 and a hot electron tempera-
ture<200 eV at radial distance 6RS no whistler mode emis-
sions are obtained. The whistler mode emissions observed
by Cassini at radial distance 5.5RS and 3.9RS can be repro-
duced well. However, at radial distance 3.9RS , a somewhat
larger hot electron density than observed is needed.

Barbosa and Kurth (1993) have also analysed the whistler
mode emissions in the inner magnetosphere of Saturn, us-
ing a power-law electron distribution function having pitch-
angle anisotropy. These authors conclude that the suprather-
mal electron flux with pitch angle anisotropy M=1/2 can pro-
duce whistler-mode waves belowω/�e≈1/3 in the vicinity
of the magnetic equator. This is in agreement with the re-
sults of our calculations. Leubner (1982) has studied the
whistler mode emissions on Jupiter, using an approximate
expression for wave growth for a plasma consisting of ther-
mal and suprathermal components described by Maxwellian
and by a kappa distribution function, respectively. It is found
in his work that the structure of the whistler mode hiss and
chorus can be explained by the superposition of thermal and
suprathermal components. In the present work we obtain a
broad distribution of wave growth which does not resolve
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into hiss and chorus (cf. Figs. 1–9). The difference between
the wave growth results of the present calculations and that
by Leubner (1982) may lie in the use of different expressions
for dispersion relations used in the two works and the differ-
ent manners in which the cold and hot electron components
have been treated in the two calculations.

We have also calculated the pitch angle and energy diffu-
sion coefficients at two radial distancesR=12Rs and 18Rs ,
using the diffusion coefficient expression given by Lyons
(1974). The details of the expressions and calculations are
given in the Appendix. The time constants (ταα) for pitch-
angle diffusion for the assumed wave magnetic field inten-
sity Bwave=10−3 nT are 7×104 s atR=12Rs and 2.5×104 s
atR=18Rs . Comparing these time constants with the strong
diffusion time constantτSD we conclude that the observed
amplitudes of whistler mode emissions may be sufficient to
drive tens of keV resonant electrons onto strong diffusion
at R=18Rs , leading to intense precipitation into the atmo-
sphere. AtR=12Rs the observed wave intensity is, however,
insufficient.

Appendix A

Expressions for electron diffusion coefficients

Following Lyons (1974), the normalized diffusion matrixD
is defined as

D = D

[
�e
B2

wave

B2
0

v2

]−1

, (A1)

wherev is electron speed,D is the diffusion matrix andBwave
is the wave magnetic field. Each element of the matrix is
written as a sum over all resonancesn and an integral overx

D =

∞∑
n=−∞

xmax∫
0

xdxDnx , (A2)

wherex=tan θ and θ is the wave normal angle (the angle
betweenB0 andk). Dnx is given by

Dnxαα =
πcos5θ�e(− sin2 α − n�e/ωk)

2
· |8n,k|

2

2C1ψ3/2|1 + n�e/ωk|3 · I (ωk)
×

f (ω)gω(x) ·

(
1 −

1

V||

∂ωk

∂k||

∣∣∣∣
x

)∣∣∣∣( ωk
�e

)
=

(
ωk
�e

)
res

, (A3)

wheref (ω) is the wave spectral density andgω(x) gives the
wave normal distribution. Forgω(x) we use

gω(x) ∝ exp(−x2) for x ≤ 1

0 for x ≥ 1 . (A4)

The wave spectral density is assumed to be proportional to
the temporal growth rate. The constants of proportionality do

not appear in the calculation of normalized diffusion coeffi-
cients. We have therefore used forf (ω) the temporal growth
rates. In Eq. (A3),C1=

∫
f (ω)dω, α is the pitch-angle and(

1 −
1

V||

∂ωk

∂k||

∣∣∣∣
x

)
=

1−2ψ

{
[1+n�e/ωk] ×

[
2ψ + 2

ω2

�p�e
−
ω2

�2
p

(1 −M)2×

{
(1 + x2)

(
ψ − 1 +

ω2

�p�e

)
+
x2

2

}−1


−1

, (A5)

|8n,k|
2
=

( D

µ2−S

)2
(
µ2 sin2 θ−P

µ2

)2

+

(
P cosθ

µ2

)2
−1

×

[
µ2 sin2 θ − P

2µ2

(
1 +

D

µ2 − S

)
Jn+1 +

µ2 sin2 θ − P

2µ2

×

(
1 −

D

µ2 − S

)
Jn−1 + cotα sinθ cosθJn

]2

, (A6)

I (ω) =

∞∫
0

gω(x)x{(1 + x2)ψ}
−3/2

×

{
1 +

1

ψ

[
ω2

�p�e
−

{
1

2

ω2

�2
p

(1 −M)2

}
×

{
(1 + x2)

(
ψ − 1 +

ω2

�p�e

)
+
x2

2

}−1
 dx; (A7)

Argument of Bessel functionJn=Jn
(
x tanα

(
−
ωk
�e

− n
))

.

µ2
=
ω2
pe

�2
e

1 +M

M
ψ−1, (A8)

M = me/mp, (A9)

ψ=1−
ω2
k

�p�e
−

sin2 θ

2
+[

sin4 θ

4
+

(
ωk

�p

)2

(1−M)2 cos2θ

]1/2

, (A10)

P = −
ω2
pe

�2
e

�2
e

ω2
k

(1 +M), (A11)

S =
1

2
(R + L), (A12)

D =
1

2
(R − L), (A13)
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R

L

}
= ±

ω2
pe

�2
e

�e

ωk

[
1 +M

1 −M ∓ (ωk/�e − �p/ωk)

]
, (A14)

Dnxαv = Dnxvα

= Dnxαα
[

sinα cosα

− sin2 α − n �e/ωk

]
∣∣ (ωk/�e) = (ωk/�e)res

,(A15)

Dnxvv =Dnxαα
[

sinα cosα

− sin2 α − n �e/ωk

]2

∣∣(ωk/�e) = (ωk/�e)res

. (A16)

In Eqs. (A3), (A15) and (A16) the resonance frequency
(ωk/�e)res is obtained as a function ofx from

K̄e
||,res =

me

mp

(1 + n�e/ωk)
2ψ

cos2 θ(1 +M) ,
(A17)

whereK̄e
||,res is the normalized resonant parallel energy (par-

allel to the ambient magnetic field) given by

K̄e
||

=
Ke

||

B2
0/8π ne

(A18)

whereKe
||

is the parallel energy of the electron.
Calculations are performed for a given resonance

energyK̄e
res , pitch angleα and for a given wave spectral den-

sity (temporal growth rate)f (ω). Using Eq. (A17), the res-
onance frequencies are obtained as a function ofx. The cal-
culation of normalized diffusion coefficientsD is then per-
formed using the algebraic expressions as given above. The
summation overn in Eq. (A2) is performed for|n|≤5. Fi-
nally, the pitch-angle diffusion coefficientDαα is averaged
over pitch angleα

〈Dαα〉 =
1

αmax

αmax∫
0

Dααdα. (A19)
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