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Abstract. Using the RESCO 50 MHz backscatter radar
(2.33◦ S, 44.2◦ W, DIP: –0.5), at S̃ao Lúıs, Brazil, we ob-
tained Range Time Intensity (RTI) maps covering the equa-
torial electrojet heights during daytime and evening. These
maps revealed a scattering region at an altitude of about
108 km during the sunset period. The type of 3-m irregularity
region we present here has not been reported before in the lit-
erature, to our knowledge. It was mainly observed around the
Southern Hemisphere summer-solstice period, under quiet
magnetic activity condition. The occurrence of this echo re-
gion coincides in local time with the maximum intensity of
an evening pre-reversal eastward electric field of the iono-
sphericF -region. A tentative explanation is proposed here in
terms of the theory of the divergence of the equatorial elec-
trojet (EEJ) current in the evening ionosphere presented by
Haerendel and Eccles (1992), to explain the partial contribu-
tion of the divergence to the development of the pre-reversal
electric field. The theory predicts an enhanced zonal elec-
tric field and hence a vertical electric field below 300 km as
a consequence of the EEJ divergence in the evening. The
experimental results of the enhanced echoes from the higher
heights of the EEJ region seem to provide evidence that the
divergence of the EEJ current can indeed be the driver of the
observed scattering region.

Keywords. Ionosphere (Equatorial ionosphere; Ionospheric
irregularities) – Radio science (Ionospheric physics)

1 Introduction

The interaction of the neutral atmosphere, ionosphere, and
nearly horizontal magnetic field provides one of the most
remarkable phenomena of the equatorial ionosphere: the
plasma irregularities/structuring of the equatorialE- and
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F -region, widely known as the equatorial electrojet (EEJ)
irregularities and the equatorial spread-F (ESF). These ir-
regularities have been studied extensively, both experimen-
tally and theoretically in the last decades. Abdu (2001) has
pointed out that the evening pre-reversal electric field en-
hancement plays an important role in the ESF development.
The pre-reversal enhancement (PRE) in the zonal electric
field is a manifestation of the coupling between theE- and
F -region in the evening ionosphere, which has been investi-
gated by several authors in recent years (Çakir et al., 1992;
Abdu, 1999; Abdu et al., 2003). The average structure of
the equatorial electric fields, regarding their roles on theE-
andF -region irregularity developments, has been well doc-
umented through many experimental and statistical studies
(see, for example, Fejer, 1981). However, the current-electric
field relationship is not yet completely understood. Haeren-
del and Eccles (1992) assert that the equatorialE region
plays an important role in determining the electric field in the
equatorial ionosphere for several hundred kilometers above it
during the evening hours. In this work, we will present evi-
dence on the consistent presence of a scattering region at the
E-region height during quiet time, which occurs very close
to the time of the maximum intensity of the PRE at theF -
region.

We have analyzed the observational data of the coherent
backscatter echoes from the EEJ region obtained from a 50-
MHz radar during 2002. A comparison of the results for a
group of quiet days with those of a group of disturbed days
shows that the occurrence of the scatter region is disturbance
dependent. We also deduced the EEJ intensity in terms of
the H component variations at ground magnetometers, in or-
der to check for any possible signature in the H variation at
the time of the occurrence of the scattering region. A tenta-
tive explanation for this observational result is presented in
terms of an electro-dynamic connection between theE- and
F -region, in line with the theory proposed by Haerendel and
Eccles (1992).

Published by Copernicus GmbH on behalf of the European Geosciences Union.



1618 C. M. Denardini et al.: VHF radar observations ofE-region during sunset

Table 1. Data classification according to the magnetic activity
around the South Hemisphere summer solstice in 2002.

Magnetic Months Days
Activity

Quiet January 21, 22, 23, 28, 29, 30
November 14, 15, 16, 18, 19, 26, 28, 29
December 2, 3, 5, 6, 9, 10, 11, 12

Disturbed January None
November 13, 17, 20, 22, 23, 24, 25, 27, 30
December 1, 4, 7, 8

2 Data and method of analysis

The RESCO (which is an acronym forRadar de ESpa-
lhamento COerente, in English Coherent Scatter Radar)
50-MHz coherent backscatter radar is sensitive to field-
aligned plasma irregularities of a 3-m scale size. It is located
at S̃ao Lúıs – SLZ (2.3◦ S, 44.2◦ W, DIP: –0.5), very close to
the dip equator in Brazil. It is operated with the beam tilted
30◦ westward from vertical, in the E-W plane. The estimated
theoretical beam width is 7.4◦. The height range used for the
EEJ observations is from about 80 to 120 km. The radar was
operated at a peak power of 40 kW, with the pulse width set
to 20µs and the interpulse period of 1 ms to avoid ambiguity
in the echo detection. The backscattered signals are sampled
at 20µs, which corresponds to range sampling at 3 km in the
oblique direction which corresponds to∼2.6 km in terms of
height. Each echo is divided into 16 sampling gates, which
correspond to 16 height samples. For more detailed infor-
mation about this radar system see, for example, Abdu et
al. (2002) and Denardini et al. (2004).

The radar data analysis produces one spectrogram per
sampled height, which consists of a contour map of Doppler
frequency versus local time, with a color-coding used to indi-
cate the spectral power. Integration in the Doppler frequency
for each spectrogram results in time variations of the total
echo power for a specific range gate. Arranging all resulting
echo power time variation in a graph of height (gate) versus
time produces a daily Range-Time-Intensity (RTI) map. Av-
eraging the RTI maps as a function of local time for all the
days in a period of study produces a mean RTI map repre-
senting the selected days.

Diurnal variations of the EEJ strength were monitored
using the difference of the H component variations (1H
variation), measured by magnetometers at São Lúıs (2.3◦ S,
44.2◦ W, DIP: –0.5) and Euśebio (3.89◦ S, 38.44◦ W, DIP: –
12.5) stations. Averaging the1H variations for all the days
indicates the mean EEJ intensity variation induced at the
ground level for the selected group of days.

TheKp index was used as an indicator of the magnetic ac-
tivity. If the index reached values above 3+ at any time dur-

ing a day, the corresponding day was classified as disturbed.
Following the above criteria, we have selected some days in
January, November and December 2002, around the summer
solstice for the Southern Hemisphere. Table 1 presents the
data classification of the selected days.

3 Results and discussion

The upper panel of Fig. 1 shows the resulting mean RTI
map for the group of days selected in the summer solstice
(see Table 1) under quiet magnetic activity (Kp≤ 3+). The
bottom panel of Fig. 1 shows the1H variation (indicating
the EEJ variation), as obtained from the magnetometers in
São Lúıs and Euśebio (as explained above), averaged for the
same period of radar observation. The errors bars represent
the standard deviation, which is an indication of the day-to-
day variability of the EEJ strength. The vertical dashed lines
show, respectively, the sunset time and end of the twilight at
theE-region altitudes. Thus, Fig. 1 provides a comprehen-
sive diagnostic of theE-region dynamics around the 100 km
height and the associated1H variations due to the EEJ. Fig-
ure 2 is similar to Fig. 1, but represents disturbed magnetic
condition (that isKp>3+) during summer solstice.

An examination of the RTI maps of both figures reveals
the regular rise in the EEJ scattering region during the post-
noon hours, independent of the geomagnetic condition. Such
behavior was first reported for São Lúıs by Abdu et al. (2002)
based on the RESCO data, and more recently, based on
the 30-MHz backscatter radar data by de Paula and Hysell
(2004). An explanation for this rise has been discussed by
Denardini et al. (2005) in terms of the solar zenith angle
dependent variation of the peak-production height of anα-
Chapman layer. This will not be discussed further in this
paper.

Another interesting aspect observed in the RTI maps, the
focus of the present paper, is the reappearance of a scatter-
ing region between about 18:00 LT and 19:30 LT. The time
of occurrence of this scatter region matches exactly the time
period between sunset and the end of the twilight at about
the 108-km height. This region is clearly observed during
the magnetically quiet period (Fig. 1), but we note its total
absence during the disturbed period (Fig. 2). It is the first
time we have observed such scatter regions after sunset in the
E-region heights, using 50-MHz coherent backscatter radars.

In order to provide information on the type of echoes that
dominated the process we have plotted in Fig. 3 a typical RTI
map for the quiet period of observation within some corre-
sponding spectrograms covering the height range around the
peak power of the RTI. The RTI map from 29 January 2002
is shown in the upper panel with its corresponding spectro-
grams for the center heights 96.0, 98.6, 101.2, 103.8, 106.4
and 109.0 km. The RTI map covers the range height from
78 to 117 km, while each spectrogram refers to the central
height indicated on top of it and corresponds to a height range

Ann. Geophys., 24, 1617–1623, 2006 www.ann-geophys.net/24/1617/2006/



C. M. Denardini et al.: VHF radar observations ofE-region during sunset 1619

 

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
-30
-20
-10

0
10
20
30
40
50
60
70
80

93
96
99

102
105
108
111
114

 

São Luís
Jan, Nov, Dec, 2002
(quiet days only)

 

H
ei

g
h

t 
(k

m
)

35
38
41
44
47

(dBm)

Local Time (44° W)

(∆H
SLZ

- ∆H
EUS

)

Jan, Nov, Dec, 2002
(quiet days only)  

 

E
E

J 
E

ff
ec

t 
(n

T
)

 

 

Figure 1. Upper panel: mean RTI map obtained for the quiet period (Kp ≤ 3+) using the 

RESCO radar during southern hemisphere summer solstice. The colour scale gives 

the signal power. Bottom panel: Mean diurnal variation of the ∆H = ∆HSLZ - ∆HEUS 

for the same period of upper mean RTI map, representing the EEJ ground effect 

(strength), deduced from variations of the H component of the Earth magnetic field 

measured by magnetometers in São Luís and Eusébio, respectively. 

Fig. 1. Upper panel: mean RTI map obtained for the quiet period (Kp≤3+) using the RESCO radar during the Southern Hemisphere summer
solstice. The colour scale gives the signal power. Bottom panel: Mean diurnal variation of the1H=1HSLZ–1HEUS for the same period
of upper mean RTI map, representing the EEJ ground effect (strength), deduced from variations of the H component of the Earth’s magnetic
field measured by magnetometers in São Lúıs and Euśebio, respectively.
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Figure 2. Same as figure 1 but for the disturbed period (Kp > 3+). 

Fig. 2. Same as figure 1 but for the disturbed period (Kp>3+).

of about 2.6 km, as mentioned before. The Doppler velocity
on the ordinate of each spectrogram is the radial Doppler ve-
locity of the 3-m irregularities observed by the RESCO.

The spectrograms show the presence of Type I echo and
a westward drift velocity (at∼360 m/s), close to local mid-
day, mostly observed above∼101.2 km. They also show
Type II echos with westward drift velocity (<360 m/s) dur-
ing almost the whole day at all heights. After about 18:00 LT,
the Type II waves seem to dominate the spectra. The Type II
echoes are attributed to the plasma irregularities generated
through the gradient-drift instability mechanism. They can
be excited in the non-homogeneousE-region plasma, if an
ambient electric field has a large enough component parallel
to the background density gradient. In this ambient, electric
field, density enhancement regions, as well as the density
rarefaction regions are associated with electric field pertur-

bationsδE, oppositely directed in the density enhancement
and rarefaction regions. By the actionδE×B, (whereB is
the Earth’s magnetic field horizontal component) the density
enhancements are carried in the direction of decreasing back-
ground density, while density rarefaction is carried to regions
of higher electron density, leading to instability growth if the
process occurs faster than plasma diffusion (see Fig. 3.6 on
page 31 in Kudeki, 1983).

Figure 4 shows an ionogram from 29 January 2002 ob-
tained at 18:00 LT (21:00 UT) at the radar location. The
electron density profile obtained by editing the ionogram, us-
ing the SAO-Explorer software of the digisonde (Reinisch et
al., 2004 and references therein), is also shown in the figure
(blue line). A transparent sporadicE-layer trace can be seen
in the height region just above 100 km, which is supposed to
be the source region for the Type II echoes. An examination
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Figure 3. Upper panel: RTI map from January 29, 2002 with its corresponding spectrograms 

(from bottom to top) for the center heights 96.0, 98.6, 101.2, 103.8, 106.4 and 109.0 

km. The color scale beside each map gives the corresponding signal power in dB. 

Fig. 3. Upper panel: RTI map from 29 January 2002 with its corresponding spectrograms (from bottom to top) for the center heights 96.0,
98.6, 101.2, 103.8, 106.4 and 109.0 km. The color scale beside each map gives the corresponding signal power in dB.

of the electron density profiles vis-à-vis the irregularity trace
leads us to infer that the Type II irregularities observed by
RESCO must indeed have been generated at the positive (up-
ward) density gradient region just below theE-layer elec-
tron density peak. The subsequent ionograms (not shown
here) indicate an ascent of theF -layer trace until close to
19:00 LT, when spread-F started to be observed and impairs
the ionogram reading.

Based on the drift velocity direction in the spectrogram
and on the consideration that the electron density profile of

Fig. 4 is a true representation of theE-region after about
18:00 LT we may conclude that these irregularities are gen-
erated through the gradient-drift mechanism, which requires
the electric density gradient to be parallel to the electric field
(both being upward in this case). The generation of the post
18:00 LT, scattering region (for the Type II irregularities) re-
quires an intensification of theE-region vertical (upward)
electric fieldEL that should originate from a correspondingly
enhanced eastward electric fieldEϕ .
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Figure 4. Ionogram from January 29, 2002 obtained at 18 LT (21 UT) at São Luís, Brazil, 

superimposed by its corresponding electron density profile. The black curve was 

obtained by the SAO-Explorer Automatic Ionogram Scaling Program while the blues 

curve was obtained after reprocessing the ionogram. 

Fig. 4. Ionogram from 29 January 2002 obtained at 18:00 LT (21:00 UT) at São Lúıs, Brazil, superimposed by its corresponding electron
density profile. The black curve was obtained by the SAO-Explorer Automatic Ionogram Scaling Program while the blue curve was obtained
after reprocessing the ionogram.

Haerendel and Eccles (1992) investigated the role of EEJ
current divergence at sunset in producing the post-sunset en-
hancement in theE-region eastward electric field, as well
as its impact on the PRE of theF -region. They examined
the evening EEJ current system using a flux tube integrated
model described by Haerendel et al. (1992), who pointed out
that theF -region dynamo drives a net vertical current, which
has to be supplied from below by a divergence of the hori-
zontal currentJϕ in the equatorialE-region. This is achieved
by appropriate vertical polarization fields which acts as en-
hancers to compensate for the decrease in the neutral winds
dynamo below theF2 region.

Equations (1) give the integrated (a) vertical currentJL

and (b) horizontal currentJϕ at F region heights (Haeren-
del et al., 1992), whereUP,H

ϕ is eastward neutral windUϕ

weighted by the Pedersen and Hall conductivities,6P,H are
the field line integrated Pedersen and Hall conductivities,
B(L) is the magnetic field intensity as a function of the geo-
centric distance measured in Earth radii,Eϕ,L are the east-
ward and transverse toB electric fields,e is the electron
charge,� is the ion gyrofrequency,NF is the electron den-
sity, andg is the gravitational acceleration. The tilde over
some quantities indicate that they have different weighting
functions in their respective integral (Haerendel and Eccles,
1992):

JL = 6P

[
EL + B(L)UP

ϕ

]
− 6H Eϕ (1a)

Jϕ = 6̃P Eϕ + 6H

[
EL + B(L)UH

ϕ

]
+

eg(L)

�(L)
ÑF . (1b)

According to model prediction, neutral winds are small at
theE-region height. Therefore, for the present case we as-
sume that the neutral wind weighted by the Hall conductiv-
ities is most likely small in the eveningE-region. In addi-
tion, the gravitational dynamo can be ignored, so that the
integrated vertical currentJL and horizontal currentJϕ atE-
region heights become:

JL = 6P EL − 6H Eϕ and (2a)

Jϕ = 6̃P Eϕ + 6H EL . (2b)

Solving Eq. (2a) forEL will result in:

EL =
6H

6P

Eϕ +
1

6P

JL . (3)

Inserting Eq. (3) into Eq. (2b) will lead to:

Jϕ =

(
6̃P +

62
H

6P

)
Eϕ +

6H

6P

JL , (4)

which differs from the classical EEJ current formulated by
Baker and Martyn (1953) by considering a non zero verti-
cal current (the second term in the right-hand side of Eq. 4).
Using the current continuity equation, assuming the vertical
current to be zero below 75 km and considering the horizon-
tal electric field to be independent of height, Haerendel and
Eccles (1992) have observed that the total vertical current
into or out of the top of theE-region in a given time inter-
val is equal to the difference in value of the total horizontal
current for the same interval. They state that theF -region
dynamo demands an upward current after sunset, which is
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fed from below the nighttimeF -region. The upward cur-
rent JL in the valley region between theF -region and the
EEJ requires a positive (upward close to the dip equator)EL

(Eq. 2a). At this time, the conductivity at theE-region drops
rapidly due to both recombination and vertical plasma mo-
tion, causing an enhancement of the horizontal electric field
necessary to maintain the EEJ horizontal current. With in-
creasingEϕ there is a corresponding increase inEL within
EEJ altitudes (Eq. 3). It is relevant to point out here that
our previous results from the RESCO radar (Abdu et al.,
2002) have identified a region of enhanced drift velocity af-
ter 18:00 LT in the height region of 108–110 km that indi-
cated a significant enhancement of the eastward electric field
around this local time. In summary, according to Haerendel
and Eccles (1992), theF -region dynamo drives a net vertical
current in the evening hours, and then, according to Eq. (3),
there will be an increase in the equatorialE-region vertical
electric fieldEL, which is parallel to the upward density gra-
dient (see Fig. 4) necessary to develop a gradient-drift type
instability.

The RTI map shown in the Fig. 1 presents the appearance
of a scatter region of field-aligned 3-m plasma irregularities
just after sunset at about 108 km, when the EEJ polarization
electric field was believed to have low values. Therefore,
the observation of this region would be an indication that the
mechanism proposed by Haerendel and Eccles (1992) could
be taking place (see Fig. 10 on page 1191 in Haerendel and
Eccles, 1992). If so, the development ofE-region plasma
instabilities at this time and height could provide an exper-
imental verification for their theoretical predictions for the
evening ionosphere.

The effect of the EEJ strength at ground level
(1H=1HSLZ−1HEUS), shown in the bottom panel of
Fig. 1, does not indicate any increase in the EEJ horizon-
tal current, however. This is mainly due to low conductivity,
which we note drops rapidly at this time. Despite the very
low values, it is still possible to identify that the EEJ ground
strength remains positive during the twilight period, indicat-
ing normal EEJ conditions. The error bars in these graphs
are the standard deviations of EEJ ground effects related to
the averaged values and represent the day-to-day variability
of the EEJ itself.

During the selected disturbed period (Kp>3+), the EEJ
strength shown in the bottom panel of Fig. 2 indicates that
the radar is observing diurnal EEJ irregularities as well.
There is no negative excursion of the EEJ induced ground
strength after around 18:00 LT. This condition remains un-
til about 20:00 LT, several minutes after the termination of
the echoes from the EEJ region. The diurnal variations of
the EEJ strength for both the disturbed and quiet periods are
very similar. In both cases, the EEJ strength increases in the
morning to reach maximum values after the local midday,
around 13:00 LT during disturbed days and around 14:00 LT
during quiet days. The larger amplitudes of the EEJ day-
to-day variability are observed to be in the morning hours,

as indicated by the higher standard deviations, which ap-
pears to be independent of the disturbance condition for the
present analysis. The maximum mean values reached in both
cases are only 5 nT apart, and error bars are of the order of
±20 nT at these times. During the selected quiet period, the
EEJ ground strength reached 60 nT around 14:00 LT, while
it reached about 55 nT around 13:00 LT, during magnetically
disturbed conditions. Despite these several similarities noted
in the EEJ strength, the scattering region that was observed
after about 18:00 LT during the quiet period was not ob-
served during the disturbed period, however. This disappear-
ance/inhibition is an indication that the vertical electric field
at this time and height did not have a large enough compo-
nent parallel to the density gradient to trigger the gradient-
drift-instability and/or the density gradient itself was not suf-
ficient for the instability growth (Fejer and Kelley, 1980).

During storm time period the magnetospheric energy input
into the auroral region causes heating and expansion of the
high-latitude ionospheric-thermospheric system. The accel-
eration of neutrals through drag force from rapid ion convec-
tion under strong electric fields is subsequently responsible
for setting off disturbance winds as part of global scale dis-
turbances in the thermospheric general circulation, which in
turn, leads to the generation of longer lasting electric fields
by wind dynamo, known as Disturbance Dynamo (DD) elec-
tric fields. The DD electric fields occur over the middle- and
low-latitude regions after some time delay with respect to the
initial prompt penetration electric fields (Abdu et al., 2006).
Fejer et al. (1999) showed that the evening Jicamarca verti-
cal drifts exhibit the largest downward perturbations due to
disturbance dynamo electric fields during equinox solar max-
imum conditions. Such downward perturbations are caused
by disturbance westward electric field (see also Richmond et
al., 2003; Abdu et al., 2006). The inclusion of a westward
electric field in Eq. (3) causes a decrease in the vertical elec-
tric field, or an inversion of the electric field to downward,
which could lead to a stableE-layer bottom-side density gra-
dient and hence in the disappearance of the scattering region.

Further, if the DD electric fields play an important role
in theF -layer dynamics, as stated by many authors, it is to
be expected that the mechanisms proposed by Haerendel and
Eccles (1992), based on a upward currentJL in the evening
ionosphere, could also be affected in such a way as to de-
crease the contribution fromJL, thereby contributing addi-
tionally to the disappearance of the scattering region under
disturbed conditions, as is observed. Thus, the model pro-
posed by Haerendel and Eccles (1992) seems to explain the
dynamics of theE-region post-sunset scattering region quite
reasonably.

4 Conclusions

The present study has shown the following results: the ob-
servation of a scattering region in the eveningE-region; a
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good correlation between the time of occurrence of the scat-
tering region and the pre-reversal enhancement; and the de-
pendence of the plasma irregularities’ development with the
magnetic disturbance condition. TheE-region scatter event
presented in this study is being reported in the literature for
the first time, as far as the authors are aware. It is sug-
gested here that such phenomenon may be associated with
increased post-sunset vertical electric fields in the equato-
rial ionosphere and the consequent generation ofE-region
plasma instabilities (Haerendel and Eccles, 1992). Fur-
ther, we showed experimental evidences of the development
plasma irregularities, with the magnetic disturbance condi-
tion. The expectations based on the theory of Haerendel and
Eccles (1992) seems to explain reasonably well the occur-
rence of the scattering region during magnetically quiet con-
ditions and its disappearance under disturbed conditions. An
extended study is in progress to verify the seasonal occur-
rence and dependence of 3-meter plasma instabilities after
sunset in the Brazilian sector. It is also intended to deter-
mine the relative dominance of the Type I and Type II echoes
coming from the scattering region by extending the period of
analysis.
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