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Abstract. The scintillation data (S4-index) at the L-band
frequency of 1.575 GHz, recorded from a total of 18 GPS
receivers installed at different locations in India under the
GAGAN project, have provided us with a unique opportu-
nity, for the first time in the Indian region, to make a simulta-
neous study of spatio-temporal and intensity characteristics
of the trans-ionospheric scintillations during the 18-month,
low sunspot activity (LSSA) period from January 2004 to
July 2005. During this period, the occurrence of scintilla-
tions is found to be maximum around the pre-midnight hours
of equinox months, with very little activity during the post-
midnight hours. No significant scintillation activity is ob-
served during the summer and winter months of the period
of observation. The intensity (S4 index) of the scintillation
activity is stronger around the equatorial ionization anomaly
(EIA) region in the geographic latitude range of 15◦ to 25◦ N
in the Indian region. These scintillations are often accom-
panied by the TEC depletions with durations ranging from 5
to 25 min and magnitudes from 5 to 15 TEC units which af-
fect the positional accuracy of the GPS by 1 to 3 m. Further,
during the intense scintillation events (S4>0.45≈10 dB), the
GPS receiver is found to lose its lock for a short duration
of 1 to 4 min, increasing the error bounds effecting the in-
tegrity of the SBAS operation. During the present period of
study, a total of 395 loss of lock events are observed in the In-
dian EIA region; this number is likely to increase during the
high sunspot activity (HSSA) period, creating more adverse
conditions for the trans-ionospheric communications and the
GPS-based navigation systems.
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1 Introduction

The Global Positioning System (GPS) is a satellite-based
navigation system, which provides good positional accuracy
of the user at any point of the globe, and at any given time
using the L-band frequencies of L1 (1575.42 MHz) and L2
(1227.60 MHz). The GPS positioning accuracies are sub-
jected to various effects, like clock biases of the satellites and
receivers, ionospheric and tropospheric delays, and receiver
noise. Among these, the effects of accuracy degradation, due
to group delay introduced by ionospheric total electron con-
tent (TEC) and ionospheric scintillations caused by small-
scale density irregularities, are the most significant. There-
fore, the standalone GPS is not suitable for certain navigation
applications, like aircraft landing using a Category-I (CAT-I)
precision approach. In the Indian region the augmenting of
GPS is planned through a regional Satellite Based Augmen-
tation System (SBAS), called GPS Aided Geo Augmented
Navigation (GAGAN) from the Indian Space Research Or-
ganisation (ISRO) and Airport Authority of India (AAI).

Most of the Indian region encompasses the equatorial and
low-latitude ionospheres. The morphology of the equatorial
ionosphere is quite different from that of other latitudes be-
cause the magnetic field (B) at the equatorial region is nearly
parallel to the Earth’s surface. During daytime, the E-region
dynamo electric field (E) is eastward. This field in the E-
region and at off-equatorial latitudes maps along the mag-
netic field to F-region altitudes above the magnetic equator,
resulting inE×B drift, which transports F-region plasma up-
ward over the magnetic equator. The uplifted plasma over the
equator then moves along magnetic field lines in response to
gravity, diffusion, and pressure-gradient forces. As a result,
the equatorial ionization anomaly is formed with reduced
F-region ionization density at the magnetic equator and in-
creased ionization at the two anomaly crests around±15◦

in magnetic latitude to the north and south of the magnetic
equator.
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Fig. 1. Location of the GPS receiver installations in the Indian region.

It is known that near sunset, the dynamics of the equatorial
ionosphere are dominated by the pre-reversal enhancement
(PRE) (Woodman, 1976) of the vertical drift at the equator.
During sunset, plasma densities and dynamo electric fields
in the E-region decrease, and the anomaly begins to fade,
and at this local time a dynamo electric field develops in
the F-region. Polarization charges, set up by the conductiv-
ity gradients at the terminator, enhance the eastward electric
field for about an hour after sunset. With the decreased ion-
ization density in the E-region after sunset, vertical plasma
density gradients form in the bottom side of the F-layer, re-
sulting in the upward density gradients opposite in direction
to the gravitational force. This configuration is Rayleigh-
Taylor (RT) unstable and allows plasma density irregulari-
ties to generate (Kelley et al., 1981, 1986; Huang and Kelley
1996; Hysell, 2000). The eastward post-sunset electric fields
enhance the R-T instability, while westward fields quench
it. These irregularities can grow to become large ionospheric
depletions, often called equatorial plasma bubbles, which are
elongated along the magnetic flux tubes. The variability in
the PRE may dictate the onset or inhibition of these instabil-
ities (Basu et al., 1996; Hysell and Burcham, 1998; Fejer et
al., 1999). The Indian region covers latitudes ranging from
the magnetic equator to the northern anomaly crest and be-
yond, up to 27◦ N geomagnetic latitudes, and it is also known
that scintillations are most severe at the locations around the
anomaly crest where the electron density gradients are high
(Aarons et al., 1981; Basu et al., 1988).

Small-scale irregularities in the electron content of the
ionosphere, with spatial extents from a few metres to a few
kilometres, can produce both refraction and diffraction ef-
fects on received GPS signals. The refraction changes the
direction and speed of the propagation of an electromagnetic
wave, and the diffraction gives rise to spatial fluctuations in
the amplitude and phase of the received signal. The move-
ment of the ionospheric irregularities relative to the signal
path converts these spatial fluctuations, due to diffraction ef-
fects, into temporal fluctuations, which, due to the diffraction
effects, are observed as scintillations in the GPS received sig-
nal (Wanninger, 1993). It was observed that during strong
scintillation, deep amplitude fades or large phase fluctuations
may cause signal disruptions in the receiver- satellite link
(Skone et al., 2000; Kintner et al., 2001). Amplitude scintil-
lations can be monitored by the time series of C/N0 (signal-
to-noise ratio) provided by the GPS output, and phase scin-
tillations result from sudden changes in ionospheric refrac-
tion or from diffraction effects. The strong amplitude scin-
tillation may cause the received signal power to drop below
the receiver’s threshold limit, and then a loss of lock is ob-
served. The strong phase scintillation may cause s Doppler
shift in frequency in the received signal carrier, exceeding
the receiver’s phase-lock-loop (PLL) bandwidth, resulting
in a loss of phase lock of the receiver. It was observed
that phase scintillations are always accompanied by at least
moderate levels of amplitude scintillations (Doherty et al.,
2004). Both the amplitude and phase scintillations increase
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the root-mean-square (RMS) phase-tracking error in the out-
put of the PLL; when the RMS jitter exceeds a threshold, loss
of lock may occur even if the signal is above the threshold of
the receiver (Knight and Finn, 1988; Conker et al., 2003). A
decrease in the number of GPS signals locked by a user re-
ceiver can result in poor navigation accuracy. Moreover, loss
of signal lock at SBAS monitoring stations can degrade the
broadcast correction information.

This paper, for the first time, reports on scintillation char-
acteristics observed at the L-band frequency of 1.575 GHz
over the entire Indian region using eighteen-month data for
the period from January 2004 to July 2005 from a network
of eighteen GPS receiver stations in India. We present here
the results on the spatio-temporal and intensity characteris-
tics of the L-band scintillations (S4 index), simultaneously
measured by these receivers in the Indian region and the pos-
sible effects on GPS navigation.

2 Data and method of analysis

In the present study the amplitude scintillation (S4 index)
data at 1.575 Hz, recorded by the dual frequency GPS re-
ceivers installed at the 18 different locations in the Indian
region under the Indian GAGAN programme during the
eighteen-month period from January 2004 to July 2005, are
used. The chain of receivers are installed such that they cover
the Indian region from the magnetic equator to the equatorial
anomaly crest and beyond, at a grid spacing of about 5◦

×5◦

in latitude and longitude, as depicted in Fig. 1. Here the lon-
gitudinal coverage of these stations vary from 72◦ E to 92◦ E,
and the geographic latitudes vary from 8◦ to 32◦ N, covering
a range of 1◦ S to 23◦ N magnetic latitudes.

The GSV 4004 Ionospheric Scintillation Monitor receivers
(ISMs) are used to collect the TEC and scintillation data (Van
Dierendonck et al., 1996). Each ISM can track up to 11 GPS
C/A-code signals at the L1-frequency of 1.575 GHz. The
data is collected at one-minute intervals, which do not in-
clude the 50-Hz sampled raw data, but did include statisti-
cal data for all satellites being tracked. The statistical data
include parameters, like signal-to-noise ratio (C/N0), stan-
dard deviation parameters of amplitude and phase, receiver
lock time, and such other information for each satellite. The
ISM calculates the standard deviation of the phase fluctuation
(phase-sigma) and that of the signal intensity fluctuation nor-
malized by its mean (S4) from raw data sampled at a 50-Hz
rate. The S4 index is calculated from the normalized standard
deviation of raw signal intensity (S4T ) and that of ambient
noise (S4,NO) by the formula S4=Sqrt( (S4T )2–(S4,NO)2 ). It
was specified that the phase parameters should be discarded
for any lock time less than 240 s, to allow the detrending fil-
ter to resettle, as it should be reinitialized whenever the lock
is lost.

The scintillation index (S4) and TEC data thus recorded,
using the GPS receivers, are processed for each of the satel-

lite passes with an elevation mask angle greater than 40◦, so
that the effects of low elevation angles, such as tropospheric,
water vapour scattering and multipath effects, are avoided.
At low elevation angles high S4 index values are observed
(even during daytime hours), because the amplitude scintil-
lation depends on the electron density deviations and on the
thickness of the irregularity layer, both of which increase ap-
parently at low elevation angles, causing stronger scintilla-
tions, and high S4 index values due to multipath effects. The
40◦ mask angle may reduce the number of satellites available
for the actual Satellite Based Augmentation System (SBAS)
operation, but allows one to study the effects of ionospheric
irregularities alone on the GPS navigation, limiting the tro-
pospheric and multipath effects at the low elevation angles.

3 Results

3.1 L-band scintillations in the Indian region

In the recent years, with the increasing demand for the trans-
ionospheric communications in the navigation of space-
borne vehicles, such as satellites, aircrafts and surface trans-
portation systems, the study of ionospheric scintillations,
particularly at the L-band frequencies (which is commonly
used in these systems), has gained importance. It is well
known that the scintillations are severe at the low-latitude
and equatorial regions during the equinox months and during
high sunspot activity (HSSA) periods (Aarons, 1982; Basu
et al., 1988; Aarons, 1993). The Indian region includes the
magnetic equator, the northern anomaly crest region and be-
yond up to 27◦ N geomagnetic latitudes. Therefore, the scin-
tillation activity is severe for more than half of the area (equa-
torial ionization anomaly region) in the Indian Flight Infor-
mation Region (FIR), as may be seen from Fig. 1.

Therefore, with a view to examine the nature of the oc-
currence of scintillations over the entire Indian region at
any give point in time, plots of the S4 index, as a func-
tion of local time (from 18:00 to 06:00 LT), are made for
all 18 stations for each day from all the available satellite
passes. In Fig. 2, the day-to-day occurrence of scintilla-
tions during the month of March 2004 is presented for four
typical stations, namely, Trivandrum (8.4◦ N geographic lat-
itude, 0.47◦ S geomagnetic latitude), Waltair (17.7◦ N G.,
8.22◦ N G.M), Raipur (21.1◦ N G., 12.78◦ N G.M) and Jodh-
pur (26.2◦ N G., 17.6◦ N G.M), representing the four differ-
ent latitude zones in the Indian sector. Trivandrum is an
equatorial station, Waltair is a sub-tropical station situated
at the inner edge of the equatorial ionization anomaly (EIA),
Raipur is a station situated in the crest region of the anomaly,
whereas Jodhpur is situated beyond the anomaly crest region.
The power levels of the scintillation recorded (S4 index) pre-
sented in Fig. 2 are divided into three categories, namely
weak (3 to 6 dB, i.e., S4=0.17 to 0.3), moderate (6 to 10 dB,
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(a) (b)

(c) (d)

Fig. 2. Day-to-day occurrence of scintillations at different power levels during the month of March 2004 at four typical Indian latitudes
representing an(a) equatorial station (Trivandrum),(b) low-latitude station (Waltair),(c) anomaly crest station (Raipur),(d) station beyond
the anomaly crest (Jodhpur).

i.e., S4=0.3 to 0.45) and strong (S4>10 dB) scintillations, re-
spectively.

It may be seen from Fig. 2a, which shows the scintillation
occurrence at the equatorial station, Trivandrum, that the oc-
currence of weak scintillations (3 to 6 dB) are greater, with
practically no occurrence of strong (>10 dB) scintillations.
At Waltair, a station situated at the inner edge of the equato-
rial anomaly crest (Fig. 2b), the occurrence of scintillations
at all three power levels is high. At Raipur (Fig. 2c), a sta-
tion situated at the crest of the anomaly, the occurrence of
a strong scintillation is highest. At Jodhpur (Fig. 2d), a sta-
tion situated beyond the anomaly crest region, the scintilla-
tion activity has considerably decreased to a minimum. The
set of these four figures clearly indicates that strong (>10 dB)
scintillations occur at and around the EIA region, owing to
the presence of short scale length (∼ few hundred metres)
irregularities and high ambient electron densities accompa-
nied by large electron density gradients, even during the low
sunspot activity (LSSA) period of March 2004. On the other

hand, it may be noticed that for the occurrence of weak scin-
tillations over the magnetic equator, Trivandrum is maximum
compared to the occurrence of weak scintillations at the crest
region. Here it may be mentioned that due to the geographic
shape of India, the number of GPS receiver stations are less,
limiting the spatial coverage (added to that lack of data from
13 to 17 March 2004), around the equatorial region com-
pared to the crest region. Hence, the weak scintillation activ-
ity is not prominently visible to the extent expected in Fig. 2a.
The occurrence of weak scintillations is due to the presence
of large-scale size irregularities, low ambient electron densi-
ties and low electron density gradients at the equator during
the LSSA periods. At the anomaly crest regions, the accu-
mulated F-region ionization, transported from the equator, is
high, resulting in high electron density gradients and small-
scale irregularities, giving rise to the generation of strong
scintillations at the L-band frequency of 1.5 GHz.

In Figs. 3a–c the percentage occurrence of scintillations
as contour diagrams is presented at the three different power
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ranges, over the entire country, with a view to study the lati-
tudinal variation as a function of local time for the equinox-
ial month of March 2004. It may be seen from Fig. 3a that
the percentage occurrence of weak (3 to 6 dB) scintillations
is maximum (58%), with peak occurrence around 21:00 LT
at 17◦ N geographic latitude. The percentage occurrence of
moderate (6 to 10 dB) scintillations (Fig. 3b) is relatively low,
with peak occurrence (44%) confined to 21:00 LT at latitudes
of 15◦ to 20◦ N. Strong (>10 dB) scintillations are presented
in Fig. 3c, where the percentage occurrence is lowest (37%)
compared to weak and moderate scintillations. The peak oc-
currence of strong scintillations during this month (March
2004) is confined to 17◦ N geographic latitude and to the lo-
cal time of 21:00. From Figs. 2 and 3 it may be noticed
that most of the L-band scintillations in the Indian region oc-
cur during the pre-midnight period of 19:00–24:00 LT with a
scanty occurrence during the post-midnight hours.

The constellation of orbiting GPS satellites radiating sig-
nals at the L-band frequency of 1.575 GHz has given a unique
opportunity to measure the S4-index simultaneously and
continuously over the entire Indian region using the GPS net-
work of receivers installed, almost evenly, at different places
in India. The data of the S4 index thus collected has been cat-
egorized into three different power levels, namely all those
scintillations greater than 3 dB (S4=0.17), those greater than
6 dB (S4=0.3) and all those greater than 10 dB (S4=0.45).
The monthly mean percentage occurrences of these scintil-
lations for the 18-month period (January 2004 to July 2005)
are computed, and their temporal (month to month) and spa-
tial (latitudinal) variations are presented in Figs. 4a–c, re-
spectively, representing the three different power levels. It
is striking to observe from this figure that the occurrence of
scintillations is maximum during the equinox months. From
Fig. 4a, which corresponds to the occurrence of scintilla-
tions with all power levels>3 dB, it may be noticed that the
maximum percentage occurrence is seen around the vernal
equinox months of March and April of 2004, and February
and March of 2005, at all latitudes up to 20◦ N. The next
maximum with reduced intensity occurs around the autumn
equinox months of September and October 2004. There
is practically no scintillation activity during the winter and
summer months of the low sunspot years of 2004 and 2005 at
the L-band frequency of 1.575 GHz. The equinoxial maxima
are explained on the basis of the alignment of the solar ter-
minator with the magnetic meridian in both the hemispheres
(Tsunoda, 1985). Over the sunlit hemisphere, the E-region
ionization short circuits the polarization electric fields, devel-
oped in the F-region during the evolution phase of the ESF
irregularities. During the equinox, the solar terminator aligns
closely with the magnetic meridian, thereby simultaneously
decreasing the conductivity of the E-regions that are magnet-
ically conjugate to the F-layer, through which currents flow-
ing along the geomagnetic field lines connect the F-region
to the E-regions on either side of the equator (which acts as
a short circuit over the sunlit hemisphere). This alignment

(a)

(b)

(c)

Fig. 3. Temporal and spatial variation of the percentage occurrence
of scintillation activity as a function of their intensity over all the
Indian stations as observed from GPS S4 index data for the equinox
month of March 2004 at power levels of(a) 3 to 6 dB,(b) 6 to 10 dB
and(c) >10 dB.

causes the decrease in E-region conductivity, which opens
or releases the F-region dynamo electric field, which, in turn,
produces theE×B upward drift of the equatorial F-layer, cre-
ating favorable conditions for the generation of plasma irreg-
ularities during the equinox months, as seen above.

www.ann-geophys.net/24/1567/2006/ Ann. Geophys., 24, 1567–1580, 2006
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(a)

(b)

(c)

Fig. 4. Temporal and spatial variations in the occurrence of scintillations during the low sunspot activity years of 2004 and 2005 at different
power levels of(a) >3 dB, (b) >6 dB, (c) >10 dB.
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Fig. 5. Some examples of scintillations (S4 index) associated with TEC depletions observed in the GPS data at four typical Indian stations.

Further, it is interesting to note from Fig. 4a that, even
though the monthly mean sunspot number of the equinox
month of March 2005 (Rz=24.8) is lower than that of the
winter month of November 2004 (Rz=43.7), the scintilla-
tion activity is much higher (45%) in March 2005 than in
November 2004, where there is practically no scintillation
occurrence, clearly suggesting that the seasonal dependence
of scintillation occurrence dominates over the sunspot num-
ber dependency during the descending phase of the sunspot
number.

It is known that the occurrence of scintillations in the equa-
torial regions increases with the increase of sunspot activity,
with maximization during the HSSA period. Also, the oc-
currence of scintillations is modulated by the seasonal ef-
fect, with maximum occurrences during the equinox months
followed by winter and a minimum occurrence during sum-
mer months. During the moderate to high sunspot activity
periods, the seasonal modulation in the occurrence pattern
of scintillations is significant (DasGupta et al., 1983; Rama
Rao et al., 2006). However, during relatively low sunspot
number periods, such as 2004–2005, and during the descend-
ing phase of the sunspot number, the seasonal control on the
scintillation activity is predominantly perceptible over the
sunspot number dependence, as may be seen from Fig. 4a.
Further, the occurrence of scintillations greater than 6 dB
(Fig. 4b) also shows similar features, but with a reduced per-

centage of occurrences and with the peak occurrences limited
to reduced latitudinal width. When we look at the percent-
age occurrence of scintillations greater than 10 dB (Fig. 4c),
which are of serious concern in transionospheric communi-
cation at the L-band frequencies, it may be seen that the oc-
currences are relatively reduced and are mostly confined to a
lesser latitudinal belt around 20◦ N during the vernal equinox
and to 18◦ N in the autumn equinox. Thus, it may be con-
cluded that strong (>10 dB) scintillations do occur, particu-
larly during the equinox months in the low-latitude sectors,
such as in India, even during the LSSA period.

3.2 Characteristics of TEC depletions/bubbles

The ordinary source of equatorial electrodynamics is the
thermospheric dynamo that powers the equatorial electro-
jet (Haerendel and Eccles, 1992; Eccles, 1998). During the
daytime, at ionospheric F-region altitudes, the vertical polar-
ization electric fields, setup by the dynamo currents that are
created by thermospheric winds, are short circuited through
the conducting sunlit E-layer to the north and south of the
magnetic equator. However, after sunset, the eastward elec-
tric field attributed to the F-region dynamo is enhanced fol-
lowing the decrease in the E-region conductivity; this field
induces the upwardE×B drift. This pre-reversal enhance-
ment of the eastward electric field raises the F-layer at the

www.ann-geophys.net/24/1567/2006/ Ann. Geophys., 24, 1567–1580, 2006
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(a) (b)

Fig. 6. Occurrence of L-band scintillations associated with TEC depletions (bubbles) and loss of lock events during the month of March
2004: (a) bubbles (blue circles) and loss of locks of the GPS receivers (red circles) and(b) the scintillations at three different power ranges
of 3 to 6 dB (Green), 6 to 10 dB (Blue) and>10 dB (Red).

Fig. 7. Histograms showing the duration(a) and intensity(b) of the
TEC depletions observed over the Indian region for the month of
March 2004.

magnetic equator to high altitudes, where the recombination
rates are low and the conditions are favorable for generation
of instabilities on the bottomside of the F-layer. Also, sharp
upward density gradients are developed after sunset due to
the rapid recombination of electrons and ions. The nonlinear
development of these instabilities leads to the formation of
the plasma depleted bubbles (Woodman and La Hoz, 1976;
Kelley, 1989). The polarization electric field within the bub-
bles is higher and as a result, the bubbles rise to the topside
at a velocity higher than the ambient plasma drift (Anderson
and Haerendal, 1979). The steep gradients on the edges of
the depletions generate the small-scale irregularities as the

bubbles rise to great heights (Costa and Kelley, 1978); these
are widely recognized as plumes on radar backscatter maps
(Woodman and La Hoz, 1976), extending along the mag-
netic field line to the anomaly crests of about±15◦ magnetic
latitudes. In the present study, the scintillations observed
with the GPS L-band frequency of 1.575 GHz, around the
anomaly crest regions, are often found to be associated with
the plasma bubbles, which are detected as TEC depletions in
the GPS TEC data.

It is known that the occurrence characteristics of the
plasma depletions depend strongly on season and longitude
(Aarons, 1993; Huang et al., 2001). When the depleted iono-
spheric plasma comes into the line-of-sight between the GPS
satellite and the receiver, the TEC decreases and is observed
as a depletion in the diurnal variation of TEC. It is also
found that the presence of TEC depletions are often accom-
panied by an amplitude scintillation of high intensity and fad-
ing rates, particularly, during the pre-midnight period, where
there may be a series of bubbles occurring within a single
scintillation patch. Similar features in the occurrence of bub-
bles and scintillations are also reported by Yeh et al. (1979),
DasGupta et al. (1983).

Plasma depletions are of particular importance when they
extend to the latitudes of the anomaly crest region; where
these bubbles intersect the highest levels of electron density,
so that transionospheric radio frequency propagation through
this intersection undergoes the highest disruptive levels of
scintillation, both in amplitude and in phase levels, which are
the highest during solar maximum (Klobuchar et al., 1991).
In the present study, several depletions in TEC are detected
which are often accompanied by the presence of intense scin-
tillations, as seen from the increase in the S4 index mea-
sured by the GPS L1 signal. This can be seen from the typ-
ical examples of depletions in TEC, shown in Fig. 5. It is
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Table 1. Number of depletions observed from each station (latitudes of each station tabulated) for every month during the period from
January 2004 to February 2005. The monthly mean sunspot numbers are also shown under each of the months.Table 1 

 
Number of depletions observed for the months during Jan 2004 to Jul 2005 

 
 
 
 
 
 

 
Station 
Geographic 
Latitude 

            Months 
      with Rz 

Jan 
37.3 

Feb 
45.8 

Mar 
49.1 

Apr 
39.3 

May 
41.5 

Jun 
43.2

Jul 
51.1

Aug
40.9

Sep
27.7

Oct 
48.0

Nov
43.5

Dec
17.9

Jan 
31.3

Feb 
29.2 

Mar 
24.5 

Apr 
24.4 

May
42.6

Jun 
39.6

Jul 
39.9 

8.47 -- 0 1 10 0 0 0 0 5 2 0 0 0 3 0 0 0 0 0 

10.83 -- -- -- -- -- -- -- -- 10 4 1 0 0 8 14 0 0 0 0 
11.67 -- -- 10 17 0 0 -- 2 3 -- -- -- -- -- 6 3 1 0 0 

12.95 0 1 8 21 0 0 0 0 29 19 0 1 0 15 8 2 0 0 0 

17.44 -- -- 32 9 0 0 0 0 37 35 0 0 0 28 15 2 0 0 0 

17.72 -- -- 55 15 0 0 0 3 20 20 0 2 0 30 8 0 0 0 0 

19.09 -- -- 43 6 0 0 0 0 22 17 0 0 2 23 7 1 2 0 0 

21.18 -- -- 39 5 0 0 1 0 16 16 0 0 0 21 7 0 0 0 0 

22.64 0 2 45 4 0 0 0 0 23 2 0 0 0 11 3 0 0 0 0 

23.06 -- 0 10 0 0 0 0 0 0 7 0 0 0 8 1 0 0 0 0 

23.28 0 1 12 0 0 0 0 0 7 5 0 0 0 2 1 0 0 0 0 

23.83 -- 3 31 2 0 0 4 1 4 2 0 0 0 12 2 0 0 0 0 

26.12 0 0 5 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 

26.26 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

26.68 -- 0 5 0 0 0 3 0 1 0 0 0 0 0 0 0 0 0 0 

26.76 -- -- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

28.58 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

31.09 -- -- -- -- -- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Total no of 
depletions 

2 9 297 89 0 0 8 6 177 129 1 3 2 164 72 8 3 0 0 

Table 1. Number of depletions observed from each station (latitudes of each station
tabulated) for every month during the period from January 2004 to February 2005. The
monthly mean sunspot numbers are also shown under each of the months. 

observed that when the plasma depletion is detected in the
vertical TEC data derived from the satellite pass, the spa-
tial gradients of TEC (1TEC/1Latitude, ratio of change in
TEC to the change in latitude) at the edge of the bubbles are
found to vary from 10 to 40. These density gradients give
rise to favorable conditions for the generation of small-scale
irregularities that effect the L-band frequencies. However,
in the present study, strong scintillations (S4≥0.45≈10 dB)
are found to occur at and around the equatorial ionization
anomaly region, if the gradients are greater than 15. Further,
these gradients are found to vary from 15 to 40 closer (±5◦)
to the anomaly crest region. As the plasma depletions extend
in latitude to the crest regions, the strong scintillations, which
are associated with small-scale irregularities, contribute to
the degradation of the positional accuracies in the satellite
navigational systems, such as GPS. In Figs. 6a and b, a typ-
ical example is shown in the nocturnal occurrence pattern of
depletions and associated scintillations (S4 index), respec-
tively, as a function of latitude in the Indian region, for the
month of March 2004. The S4 index and the TEC depletions
detected from the GPS signals are plotted in these figures
spatially, where the blue circles in Fig. 6a indicate the plasma
depletions, and the red circles show loss of lock events in the
phase channel of the GPS receiver, which will be discussed
in a later section of this paper.

It may be seen from Fig. 6a that most of the depletions
seen are confined to the anomaly crest region of geomag-
netic latitudes ranging from 5◦ to 15◦ N (i.e. 15◦ to 25◦ N
geographic latitudes). The same belt of latitudes also shows
the presence of intense (S4 index>0.45) scintillation activity,
as may be seen from Fig. 6b. The scintillations are moder-
ate to weak at latitudes closer to the equator, because of the
presence of low electron density and the absence of the short-
scale length irregularities, which do not significantly affect
the radio signals at L-band frequencies. At the anomaly crest
region, because of increased electron densities and the pres-
ence of large gradients, the generation of small-scale irregu-
larities is relatively high, which contributes to the occurrence
of strong scintillations that severely effect the L-band signals.

It is also interesting to note that the TEC depletions and
the strong scintillation events are aligned more to the geo-
magnetic latitudes, showing that the geomagnetic field con-
trol exists on these events. The population of scintillation
events with a high S4 index is more in the inner edge of the
anomaly crest compared to that at the outer edge, where the
TEC falls more sharply towards the mid latitudes than to-
wards the equator.

The length of the durations of the plasma depletions and
the depth of their amplitudes determine the effect on the
GPS-based navigation systems. In the equinox month of
March 2004 alone, a maximum number (297) of depletions
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Fig. 8. Typical examples of scintillation activity showing the values of the S4 index exceeding 0.45, causing a loss of lock in the GPS
receivers.

are detected from all the Indian stations. The TEC deple-
tions observed during this month are categorized into dif-
ferent ranges of durations and amplitudes in TEC units, and
presented as histograms in Figs. 7a and b, respectively. It is
observed from these histograms that the most probable bub-
ble durations vary from 5 to 25 min (Fig. 7a) and the most
probable depth of depletions vary from 5 to 15 TEC units
(Fig. 7b). It is known that the ionosphere causes a group de-
lay of 0.162 m per one TEC unit (1016 ele/m2) at the GPS L1
frequency of 1.575 GHz (Warnant, 1997; Klobuchar et al.,
1993), and thus in the present case, the depletion amplitudes
of 5 to 15 TEC units introduce range errors of the order of 1
to 3 m.

In Table 1 the number of depletion events observed from
all 18 Indian stations is listed by month during the 18-month
period from January 2004 to July 2005. It can be seen from
the table that a total number of 971 depletion events are de-
tected over the entire Indian region during the 18-month pe-
riod. Further, it may also be seen that a maximum number
of depletions occur in the equinox months of March, April,
September and October of 2004, and February and March
of 2005, and at stations in the geographic latitude range of
13◦ to 24◦ N. Also, it is seen from the table that the latitude
range in the occurrence of depletions is slightly higher in the
vernal equinox months of March and April, compared to the

autumnal equinox months of September and October 2004.
Further, the occurrence of depletions during February and
March of 2005 is smaller compared to those during the cor-
responding months of the year 2004, owing to the decrease in
the monthly average sunspot number (Rz) from 49 in March
2004 to 25 in March 2005.

Further, at the anomaly crest region, during the post-
sunset hours, when strong scintillation (S4>0.45) activity
is present, the TEC has shown the presence of strong de-
pletions, with amplitudes varying from 10 to 30 TEC units,
which correspond to a range error of 1.62 to 4.87 m in the
GPS positional accuracies. Hence, the duration of the deple-
tion and depth of amplitude in TEC play an important role
in introducing errors in the range correction from the SBAS
signals derived from the reference stations. Therefore, the
region with a geographic latitude range of 15◦ to 25◦ N in
the Indian sector, which is almost 50% of the SBAS area in
India, is expected to be frequently affected by strong scintil-
lations and depletions, particularly during equinox months,
even during the LSSA periods (2004–2005). The range of
latitudes or the FIR region which is likely to be affected by
the scintillations could be expected to increase significantly
with the increase in solar activity.
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Table 2. Number of loss of lock events observed from each station (latitudes of each station tabulated) for every month during the period
from January 2004 to February 2005. The monthly mean sunspot numbers are also shown under each of the months.

 
Table 2 

 
Number of Loss of locks observed for the months during Jan 2004 to Jul 2005 

 
 
 
 
 
 
 
 

 
Station 
Geographic 
Latitude 

            Months 
      with Rz 

Jan 
37.3 

Feb 
45.8 

Mar 
49.1 

Apr 
39.3 

May 
41.5 

Jun 
43.2

Jul 
51.1

Aug
40.9

Sep
27.7

Oct 
48.0

Nov
43.5

Dec
17.9

Jan 
31.3

Feb 
29.2 

Mar 
24.5 

Apr 
24.4 

May
42.6

Jun 
39.6

Jul 
39.9 

8.47 0 0 1 10 0 0 0 0 5 2 0 0 0 3 0 0 0 0 0 

10.83 -- -- -- -- -- -- -- -- 10 4 0 0 0 8 14 0 0 0 0 
11.67 -- -- 10 17 0 0 0 2 3 -- -- -- -- -- 6 0 0 0 0 

12.95 0 0 8 21 0 0 0 0 29 19 0 0 0 15 8 0 0 0 0 

17.44 -- -- 32 9 0 0 0 0 37 35 0 0 0 28 15 0 0 0 0 

17.72 -- -- 55 15 0 0 0 3 22 20 0 0 0 30 8 0 0 0 0 

19.09 -- -- 43 6 0 0 0 0 20 17 0 0 0 23 7 0 0 0 0 

21.18 -- -- 39 5 0 0 1 0 16 16 0 0 0 21 7 0 0 0 0 

22.64 0 1 45 4 0 0 0 0 23 2 0 0 0 11 3 0 0 0 0 

23.06 -- 0 10 0 0 0 0 0 0 7 0 0 0 8 1 0 0 0 0 

23.28 0 1 12 0 0 0 0 0 7 5 0 0 0 2 1 0 0 0 0 

23.83 -- 2 31 2 0 0 0 1 4 2 0 0 0 12 2 0 0 0 0 

26.12 0 1 5 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 

26.26 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

26.68 -- 0 5 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

26.76 -- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

28.58 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

31.09 -- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Total loss of 

locks 1 6 195 30 0 0 1 0 65 39 0 0 0 36 22 0 0 0 0 

Table 2. Number of loss of lock events observed from each station (latitudes of each
station tabulated) for every month during the period from January 2004 to February
2005. The monthly mean sunspot numbers are also shown under each of the months. 

3.3 Loss of lock of the GPS receivers

GPS receiver tracking performance becomes degraded in the
presence of scintillation effects. Rapid phase variations cause
a doppler shift in the GPS signal, which may exceed the
bandwidth of the phase lock loop (PLL), resulting in a loss
of phase lock (Leick, 1995). Additionally, amplitude fades
can cause the signal-to-noise-ratio (SNR) to drop below the
receiver threshold level, resulting in loss of code lock. These
effects have a larger impact on tracking loops employing
codeless and semicodeless technologies, versus full code cor-
relation. In particular, codeless and semicodeless tracking
loops experience losses of 27–30 dB and 14–17 dB, respec-
tively, with respect to full code correlation, and are there-
fore more susceptible to the effects of amplitude fading (Le-
ick, 1995). The L2 phase locked loop (PLL) also employs
a narrower bandwidth (≈1 Hz, compared to≈15 Hz for L1)
to eliminate excess noise, and is more susceptible to loss of
lock due to phase scintillations. These effects, therefore, are
of significant concern for users who require dual frequency
data for estimation of ionospheric effects, or resolution of
widelane ambiguities. Investigations of GPS receiver perfor-
mance recently conducted by Knight et al. (1999), using an
array of eight GPS receivers in the equatorial region, have
shown that on some occasions L2 phase observations were
corrupted up to 27% of the time, and a loss of L2 code lock

was often observed. L1 tracking performance was degraded
to a lesser extent. The results of such studies depend not only
on the magnitude of scintillation activity, but also on the re-
ceiver tracking capabilities which can vary widely between
different manufacturers and models.

In Fig. 8 some typical samples of loss of locks detected in
the GPS receiver TEC data are shown during times of severe
scintillations. It can be noticed from this figure that loss of
locks are observed whenever the S4 index exceeds a 10 dB
(S4>0.45) power level. The receiver PLL recovers from the
loss of lock within a short duration of about 1 to 4 min. It
was also observed that the receiver looses its lock more than
once when the scintillation activity is severe, particularly at
the anomaly crest regions, and also if the satellite is at a low
elevation angle.

It may be recalled that in Fig. 6a, the spatial distribution
in the occurrence of depletions/bubbles can be seen, where
the loss of lock events (red circles) of the receivers are also
plotted, in order to examine the spatial distribution of these
events during the typical month of March 2004. It may also
be seen from this figure that the loss of locks occur in the
same geographic latitude range of 15◦ to 25◦ N, similar to
those of bubbles and strong scintillations. In Fig. 6b, the cor-
responding S4 index data for the month of March 2004 is
shown as colour coded dots (red) for S4 index>0.45, where
it is observed that there is a good correspondence between
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the occurrence of an S4 index greater than 0.45 and the loss
of lock events. From a close examination of the GPS data
with the help of an in-house developed software, it is noticed
that whenever the L-band scintillation activity (S4) exceeds
0.45 or a 10 dB power level, the receiver looses its lock for
a duration of about 1 to 4 min. The GPS receiver loss of
locks thus detected from all the Indian stations during the
18 months of data are listed as a function of latitude in Ta-
ble 2. From this table it is seen that the GPS receivers are sub-
jected to a loss of locks mostly during the equinox months of
March, April, September and October of 2004, and February
and March of 2005, where the S4 index often exceeded 0.45
(10 dB). Further, it may also be seen that these loss of locks
occur in the regions of strong scintillation (10 dB and above)
occurrences, as may be seen from Fig. 4c. During this pe-
riod, a maximum number of loss of lock events are observed
only during equinox months. As many as 247 loss of lock
events are observed during the month of March 2004 (Fig. 7)
alone, from all the GPS receivers located in the Indian region.
The geographic latitude zone of 15◦ to 25◦ N is identified to
be the most affected region in the equinox months during
this period. There are practically no loss of lock events in
the post-midnight hours and during the summer and winter
months. The latitude range, as well as the number of loss of
lock events, may increase significantly during the ascending
phase of the sunspot activity.

The plasma depletions that might have been detected si-
multaneously by two or three GPS satellite signals which
have the line of sight through the same depletion region are
not separately accounted for in this preliminary study, as the
emphasis is on the number of available satellite PRNs whick
are effected by these plasma depletions for the SBAS opera-
tion. Therefore, the number of TEC depletions detected here
may give rise to a larger number than the actual number of
plasma bubbles which existed in that region at that point of
time, and each of the detected bubbles may have a differ-
ent duration and magnitude depending on their intersection
direction and duration with that particular plasma depletion.
This may be one of the reasons why the number of TEC de-
pletions observed is much greater (971) than the number of
loss of lock events (345) detected. Further, all the plasma
depletions may not intersect high density TEC regions in or-
der to have enough gradients on the edges of the depleted
regions which can generate the small-scale length irregular-
ities to produce intense scintillations (>10 dB), which could
lower the GPS signal power below the threshold level (due
to strong amplitude scintillation) or could cause rapid phase
changes in the received signal which results in a loss of lock
of the receiver. In addition, no loss of lock events are de-
tected without the presence of a TEC depletion and intense
scintillation activity (S4>0.45).

3.4 Summary of results and discussion

The scintillation index (S4) data at the L-band frequency of
1.575 GHz, recorded simultaneously from the GPS receivers
installed at 18 different locations (nearly at a spacing of
5◦

×5◦ grid) under the ISRO-GAGAN programme in the
Indian region, has given us a unique opportunity, for the first
time, to study the spatio-temporal and intensity character-
istics of the ionospheric scintillations during the 18-month
period from January 2004 to July 2005. The results of
the study reveal the following characteristic features in
the occurrence of the L-band scintillations in the Indian
equatorial and low-latitude region.

3.4.1 L-band scintillation characteristics

1. The percentage occurrence of L-band scintillations is
maximum during the post-sunset to midnight hours,
with very little activity during the post-midnight hours
in the current LSSA period of 2004–2005.

2. The percentage occurrence of weak (3 to 6 dB) scintil-
lations is maximum at the equatorial region, owing to
the presence of low ambient electron densities and low
gradients accompanied by the presence of large-scale
length irregularities at the equator during the LSSA con-
ditions in the years 2004 and 2005.

3. The intensity of scintillation (S4 index) is maximum
(>10 dB) around the anomaly crest region because of
the presence of high electron densities and large gradi-
ents accompanied by the presence of small-scale irreg-
ularities at the anomaly crest regions.

4. Scintillations are found to occur mostly during the
equinox months, with practically no activity during the
summer and winter months of the LSSA period of
2004–2005.

5. The occurrence of strong scintillations is mostly con-
fined to 15◦ to 25◦ N geographic latitudes i.e. 5◦ to
15◦ N geomagnetic latitudes in the Indian region.

6. It is found that the equinoxial feature dominates in the
occurrence of scintillations, giving rise to higher occur-
rences in the equinox months of March, April of 2004
and 2005, with practically no activity during winter and
summer months.

3.4.2 Characteristics of electron density depletions/bubbles
observed in the GPS TEC data

1. A significant number of TEC depletions are found to oc-
cur during the post-sunset hours, often accompanied by
the occurrence of scintillations at the L-band frequency
of 1.575 GHz of the GPS L1 signal.
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2. The occurrence of these bubbles is also found to be
maximum during the equinox months, peaking around
the equatorial ionization anomaly crest region of 15◦ to
25◦ geographic latitudes.

3. The most probable bubble durations vary from 5 to 25
minutes and their amplitudes vary from 5 to 15 TEC
units which correspond to a range error of about 1 to
3 m in the GPS navigation.

3.4.3 Loss of lock of GPS receivers

1. During the equinox months when the occurrence of a
strong scintillation is maximum (i.e. S4>0.45) around
the EIA crest region, it is often found that the GPS re-
ceiver looses its lock for a short duration of 1 to 4 min
in the phase channel (L1).

2. A multiple number of loss of locks is also observed dur-
ing some strong scintillation events.

3. During the entire of 18 months period of data consid-
ered in the present study, a total of 395 loss of lock
events are detected in the Indian sector which are of se-
rious concern for the GPS navigation.

4. The bubble events, as well as the loss of lock events are
likely to increase significantly during the high sunspot
activity periods, resulting in severe degradation in the
trans-ionospheric communications and GPS navigation
systems.
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