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Introduction and results

Let T be a probability preserving transformation on a space X, and let f : X → R. We are interested in this paper in limit theorems for sequences (S n f -A n )/B n , where S n f = n-1 k=0 f • T k and A n , B n are real numbers with B n > 0. If T is a Gibbs-Markov map and f satisfies a very weak regularity assumption, we will give necessary and sufficient conditions for the convergence in distribution of (S n f -A n )/B n to a nondegenerate random variable. Sufficient conditions for this convergence are already known by the work of Aaronson and Denker [START_REF]Local limit theorems for partial sums of stationary sequences generated by Gibbs-Markov maps[END_REF][START_REF]A local limit theorem for stationary processes in the domain of attraction of a normal distribution[END_REF] (under stronger regularity assumptions), and the main point of this article is to show that these conditions are also necessary. We will also considerably weaken the regularity assumptions of Aaronson and Denker, by using weak perturbation theory [START_REF] Keller | Stability of the spectrum for transfer operators[END_REF][START_REF] Hervé | Théorème local pour chaînes de Markov de probabilité de transition quasi-compacte. Applications aux chaînes V -géométriquement ergodiques et aux modèles itératifs[END_REF].

Finding necessary conditions for limit theorems in dynamical systems has already been considered in [START_REF] Sarig | Continuous phase transitions for dynamical systems[END_REF], but here the author considered only random variables in a controlled class of distributions, while our results apply to all random variables. The paper [START_REF] Jakubowski | Minimal conditions in p-stable limit theorems[END_REF] (see also [START_REF] Denker | Stable limit distributions for strongly mixing sequences[END_REF]) gives in a wider setting (the condition (B) in this paper is satisfied for Gibbs-Markov maps) a partial answer to the questions we are considering: if one assumes that A n = 0, then the limiting distribution has to be stable, as in the case of i.i.d. random variables. However, it does not describe for which functions f the convergence S n f /B n → W takes place, nor does it treat the more difficult case A n = 0.

At the heart of our argument lies a very precise control on the leading eigenvalue of perturbed transfer operators: if the function f belongs to L p for p ∈ (1, ∞), we obtain such a control up to an error term O(|t| p+ǫ ) for some ǫ > 0, in Theorem 3.13. This estimate is useful in a lot of different situations: we illustrate it by deriving, in Appendix A, necessary and sufficient conditions for the Berry-Esseen theorem (i.e., estimates on the speed of convergence in the central limit theorem), for L 2 observables satisfying the same weak regularity condition as above.

1.1. The case of i.i.d. random variables. Since our limit theorems will be modeled on corresponding limit theorems for sums of independent identically distributed random variables, let us first describe the classical results in this setting (the statements of this paragraph can be found in [START_REF] Feller | An introduction to probability theory and its applications[END_REF] or [START_REF] Ildar | Independent and stationary sequences of random variables[END_REF]). Definition 1.1. Let X n be a sequence of random variable. This sequence satisfies a nondegenerate limit theorem if there exist A n ∈ R and B n > 0 such that (X n -A n )/B n converges in distribution to a nonconstant random variable.

Definition 1.2. A measurable function L : R * + → R * + is slowly varying if, for any λ > 0, L(λx)/L(x) → 1 when x → +∞.

We define three sets of random variables as follows:

• Let D 1 be the set of nonconstant random variables Z whose square is integrable. • Let D 2 be the set of random variables Z such that the function L(x) := E(Z 2 1 |Z|≤x ) is unbounded and slowly varying (equivalently, P (|Z| > x) = x -2 ℓ(x) for a function ℓ such that L(x) := 2

x 1 ℓ(u)
u du is unbounded and slowly varying, and in this case L and L are equivalent at +∞).

• Finally, let D 3 be the set of random variables Z such that there exist p ∈ (0, 2), a slowly varying function L and c 1 , c 2 ≥ 0 with c 1 + c 2 = 1 such that P (Z > x) = (c 1 + o(1))L(x)x -p and P (Z < -x) = (c 2 + o(1))L(x)x -p when x → +∞.

Let also D = D 1 ∪ D 2 ∪ D 3 . The set D is exactly the set of random variables satisfying nondegenerate limit theorems, we will now describe the norming constants and the limiting distribution in these theorems. Let Z ∈ D, let Z 0 , Z 1 , . . . be i.i.d. random variables with the same distribution as Z. Then

• If Z ∈ D 1 , let B n = √ n and W = N (0, E(Z 2 ) -E(Z) 2 ). • If Z ∈ D 2 , let B n → ∞ satisfy nL(B n ) ∼ B 2
n and let W = N (0, 1). E(e itW ) = e -c|t| p (1-iβ sgn(t)ω(p,t)) .

• If Z ∈ D 3 , let B n → ∞ satisfy nL(B n ) ∼ B p n . Define c = Γ(1 - p) cos pπ
Theorem 1.3. In all three cases, there exists A n such that

(1.2) n-1 k=0 Z k -A n B n → W.
One can take A n = nE(Z) if Z is integrable, and A n = 0 if Z ∈ D 3 with p < 1 (if p = 1 but Z is not integrable, the value of A n is more complicated to express, see [START_REF] Aaronson | Characteristic functions of random variables attracted to 1-stable laws[END_REF]).

Moreover, the random variables in D are the only ones to satisfy such a limit theorem: if a random variable Z is such that the sequence n-1 k=0 Z k satisfies a nondegenerate limit theorem, then Z ∈ D.

The set D can therefore be described as the set of random variables belonging to a domain of attraction. The limit laws in this theorem are the normal law and the so-called stable laws. The two parts of this theorem are quite different: while the direct implication is quite elementary (it boils down to a computation of characteristic functions), the converse implication, showing that a random variable automatically belongs to D if it satisfies a nondegenerate limit theorem, is much more involved, and requires the full strength of Lévy-Khinchine theory.

The direct implication of Theorem 1.3 describes one limit theorem for random variables in D, but does not exclude the possibility of other limit theorems (for different centering and scaling sequences). However, the following convergence of types theorem (see e.g. [Bil95, Theorem 14.2]) ensures that it can only be the case in a trivial way: Theorem 1.4. Let W n be a sequence of random variables converging in distribution to a nondegenerate random variable W . If, for some A n ∈ R and B n > 0, the sequence (W n -A n )/B n also converges in distribution to a nondegenerate random variable W ′ , then the sequences A n and B n converge respectively to real numbers A and B (and

W ′ is equal in distribution to (W -A)/B).
The specific form of the convergence, the norming constants or the limit laws in Theorem 1.3 will not be important to us. Indeed, we will prove in a dynamical setting that Birkhoff sums satisfy a limit theorem if and only if the sums of corresponding i.i.d. random variables also satisfy a limit theorem. Using Theorem 1.3, this will readily imply a complete characterization of functions satisfying a limit theorem -it will not be necessary to look into the details of Theorem 1.3 and the specific form of the domains of attraction, contrary to what is done in [START_REF]Local limit theorems for partial sums of stationary sequences generated by Gibbs-Markov maps[END_REF][START_REF]A local limit theorem for stationary processes in the domain of attraction of a normal distribution[END_REF].

1.2. Limit theorems for Gibbs-Markov maps. Let (X, d) be a bounded metric space endowed with a probability measure m. A probability preserving map T : X → X is Gibbs-Markov if there exists a partition α of X (modulo 0) by sets of positive measure, such that (1) Markov: for all a ∈ α, T (a) is a union (modulo 0) of elements of α and T : a → T (a) is invertible. (2) Big image and preimage property: there exists a subset {a 1 , . . . , a n } of α with the following property: for any a ∈ α, there exist i, j ∈ {1, . . . , n} such that a ⊂ T (a i ) and a j ⊂ T (a) (modulo 0). (3) Expansion: there exists γ < 1 such that for all a ∈ α, for almost all

x, y ∈ a, d(T x, T y) ≥ γ -1 d(x, y). (4) Distortion: for a ∈ α, let g be the inverse of the jacobian of T on a, i.e., g(x) =

dm |a d(m•T |a ) (x) for x ∈ a.
Then there exists C such that, for all a ∈ α, for almost all x, y ∈ a, 1 -g(x) g(y) ≤ Cd(T x, T y). A Gibbs-Markov map is mixing if, for all a, b ∈ α, there exists N such that b ⊂ T n (a) mod 0 for any n > N . Since the general case reduces to the mixing one, we will only consider mixing Gibbs-Markov maps.

For f : X → R and A ⊂ X, let Df (A) denote the best Lipschitz constant of f on A. If f is integrable, we will write f or E(f ) for f dm, the reference measure being always dm. Our main result follows.

Theorem 1.5. Let T : X → X be a mixing probability preserving Gibbs-Markov map, and let f :

X → R satisfy a∈α m(a)Df (a) η < ∞ for some η ∈ (0, 1]. Assume f ∈ L 2 . Then
• Either f is the sum of a measurable coboundary and a constant, i.e., there exist a measurable function u and a real number c such that f = u-u•T +c almost everywhere. Then u is bounded, and S n f -nc converges in distribution to the difference Z -Z ′ where Z and Z ′ are independent random variables with the same distribution as u. • Otherwise, let f = ff dm, and define

σ 2 = f 2 + 2 ∞ k=1 f • f • T k . Then this series converges, σ 2 > 0, and (S n f -n f )/ √ n converges in distribution to N (0, σ 2 ).
Assume that f does not belong to L 2 . Let Z 0 , Z 1 , . . . be i.i.d. random variables with the same distribution as f . Consider sequences A n ∈ R and B n > 0, and a nondegenerate random variable W . Then

(S n f -A n )/B n converges to W if and only if ( n-1 k=0 Z k -A n )/B n converges to W .
In particular, it follows from the classification in the i.i.d. case that the Birkhoff sums of a function f satisfy a nondegenerate limit theorem if and only if the distribution of f belongs to the class D described in Paragraph 1.1.

In the L 2 case, the behavior of Birkhoff sums can be quite different from the i.i.d. case (see the formula for σ 2 , encompassing the interactions between different times). On the other hand, when f ∈ L 2 , the behavior is exactly the same as in the i.i.d. case (the interactions are negligible with respect to the growth of the sums), and the good scaling coefficients can be read directly from the independent case Theorem 1.3.

The "sufficiency" part of the theorem (i.e., the convergence of the Birkhoff sums if f is in the domain of attraction of a gaussian or stable law) is known under stronger regularity assumptions: if the function f is locally Hölder continuous (i.e. sup a∈α Df (a) < ∞), then the result is proved in [START_REF]Local limit theorems for partial sums of stationary sequences generated by Gibbs-Markov maps[END_REF][START_REF]A local limit theorem for stationary processes in the domain of attraction of a normal distribution[END_REF] for f ∈ L 2 , and it follows from the classical Nagaev method (see e.g. [START_REF] Rousseau-Egele | Un théorème de la limite locale pour une classe de transformations dilatantes et monotones par morceaux[END_REF][START_REF] Guivarc | Théorèmes limites pour une classe de chaînes de Markov et applications aux difféomorphismes d'Anosov[END_REF] for subshifts of finite type) when f ∈ L 2 . The article [START_REF] Gouëzel | Central limit theorem and stable laws for intermittent maps[END_REF] proves the same results under the slightly weaker assumption m(a)Df (a) < ∞. However, these methods are not sufficient to deal with the weaker assumption m(a)Df (a) η < ∞, hence new arguments will be required to prove the sufficiency part of Theorem 1.5. The main difficulty is the following: even if f belongs to all L p spaces and m(a)Df (a) η < ∞, it is possible that T f is not locally Hölder continuous, in the sense that there exists a ∈ α with D( T f )(a) = ∞ (here, T denotes the transfer operator associated to T ). 1 However, the main novelty of the previous theorem is the necessity part, showing that no exotic limit theorem can hold for Gibbs-Markov maps, even if one assumes only very weak regularity of the observable.

Remark 1.6. The regularity condition a∈α m(a)Df (a) η < ∞ is weaker than the conditions usually encountered in the literature, but it appears in some natural examples: for instance, if one tries to prove limit theorems for the observable f 0 (x) = x -a under the iteration of x → 2x mod 1, by inducing on [1/2, 1], then the resulting induced observable f satisfies such a condition for some η = η(a) < 1, but not for η = 1.

Remark 1.7. For general transitive Gibbs-Markov maps (without the mixing assumption), it is still possible to prove that, if the Birkhoff sums S n f of a function f (with m(a)Df (a) η < ∞) satisfy a nondegenerate limit theorem, then the distribution of f belongs to the class D: the proof we shall give below also applies to merely transitive maps. However, the converse is not true. More precisely, functions in D which are not the sum of a coboundary and a constant satisfy a limit theorem, just like in the mixing case (this follows readily from the mixing case), but this is not the case in general for coboundaries.

1.3.

A more general setting. Our results on Gibbs-Markov maps will be a consequence of a more general theorem, making it possible to obtain necessary and sufficient conditions for limit theorems of Birkhoff sums whenever one can obtain sufficiently precise information on characteristic functions. Definition 1.8. Let T : X → X be a probability preserving mixing map, and let f : X → R be measurable. The function f admits a characteristic expansion if there exist a neighborhood I of 0 in R, two measurable functions 1 This is for instance the case if T is the full Markov shift on infinitely many symbols a0, a1, . . . with m(ai) = Ce -i 2 /2 , and f vanishes on [ai] but on the set T i-1 n=0 T -n (ai), where it is equal to e i 2 . λ, µ : I → R continuous at 0 with λ(0) = µ(0) = 1, and a sequence ǫ n tending to 0 such that, for any t ∈ I and any n ∈ N,

(1.3) E(e itSnf ) -λ(t) n µ(t) ≤ ǫ n .
This characteristic expansion is accurate if one of the following properties holds:

• Either there exist q ≤ 2 and ǫ > 0 such that f ∈ L q and (1.4)

λ(t) = E(e itf ) + O(|t| q+ǫ ) + O(t 2 ) + o |e itf -1| 2 + O |e itf -1| 2 .
• Or f ∈ L 2 and there exists c ∈ C such that

(1.5) λ(t) = 1 + itE(f ) -ct 2 /2 + o(t 2 ).
When f ∈ L 2 , this definition tells that a characteristic expansion is accurate if λ(t) is close to E(e itf ), up to error terms described by (1.4). It should be noted that these error terms are not always negligible with respect to 1 -E(e itf ), but they are nevertheless sufficiently small (for sufficiently many values of t) to ensure a good behavior, as shown by the following theorem.

Theorem 1.9. Let T : X → X be a probability preserving mixing map, and let f : X → R admit an accurate characteristic expansion.

Assume

that f ∈ L 2 . Let λ(t) = 1 + itE(f ) -ct 2 /2 + o(t 2
) be the characteristic expansion of f . Then σ 2 := c -E(f ) 2 ≥ 0, and (S n f -nE(f ))/

√ n converges in distribution to N (0, σ 2 ). Assume that f ∈ L 2 . Let Z 0 , Z 1 , . . . be i.i.d. random variables with the same distribution as f . Consider sequences A n ∈ R and B n > 0, and a nondegenerate random variable W . Then (S n f -A n )/B n converges to W if and only if ( n-1 k=0 Z k -A n )/B n converges to W . The flavor of this theorem is very similar to Theorem 1.5. The only difference is in the L 2 case, when σ 2 = 0: Theorem 1.9 only says that (S n f -nE(f ))/

√ n converges in distribution to 0 (note that this is a degenerate limit theorem) while Theorem 1.5 gives a more precise conclusion in this case, showing that S n f -nE(f ) converges in distribution to a nontrivial random variable. To get this conclusion, one needs to show that a function f satisfying σ 2 = 0 is a coboundary -this is indeed the case for Gibbs-Markov maps, as we will see in Paragraph 3.6.

To deduce Theorem 1.5 from Theorem 1.9, we should of course check the assumptions of the latter theorem. The following proposition is therefore the core of our argument concerning Gibbs-Markov maps.

Proposition 1.10. Let T be a mixing Gibbs-Markov map, and let f : X → R satisfy a∈α m(a)Df (a) η < ∞ for some η > 0. Then f admits an accurate characteristic expansion.

Remark 1.11. If we strengthened Definition 1.8, by requiring for instance λ(t) = E(e itf )+O(t 2 ) when f ∈ L 2 , then Theorem 1.9 would be much easier to prove. However, we would not be able to prove Proposition 1.10 with this stronger definition. The form of the error term in (1.4) is the result of a tradeoff between what is sufficient to prove Theorem 1.9, and what we can prove for Gibbs-Markov maps.

The rest of the paper is organized as follows: Section 2 is devoted to the proof of Theorem 1.9, using general considerations on characteristic functions, while the results concerning Gibbs-Markov maps (Proposition 1.10 and Theorem 1.5) are proved in Section 3. The required characteristic expansion is obtained in some cases using classical perturbation theory as in [START_REF]Local limit theorems for partial sums of stationary sequences generated by Gibbs-Markov maps[END_REF], but other tools are also required in other cases: weak perturbation theory [KL99, GL06, HP08] and interpolation spaces [START_REF] Bergh | Interpolation spaces. An introduction[END_REF]. Finally, Appendix A describes another application of our techniques, to the speed in the central limit theorem.

Using accurate characteristic expansions

In this section, we prove Theorem 1.9. Let f be a function satisfying an accurate characteristic expansion.

Assume first that f is square integrable. Let t ∈ R. If n is large enough, t/

√ n belongs to the domain of definition of λ, and

λ t √ n n = exp n log 1 + itE(f )/ √ n -ct 2 /(2n) + o(1/n) = exp n itE(f )/ √ n -ct 2 /(2n) + t 2 E(f ) 2 /(2n) + o(1/n) .
Hence, e -it √ nE(f ) λ(t/ √ n) n converges to e -(c-E(f ) 2 )t 2 /2 . By definition of a characteristic expansion, this implies that e -it √ nE(f ) E(e itSnf / √ n ) converges to e -(c-E(f ) 2 )t 2 /2 . Therefore, e -(c-E(f ) 2 )t 2 /2 is the characteristic function of a random variable W and (S n f -nE(f ))/ √ n converges in distribution to W . This yields σ 2 := c -E(f ) 2 ≥ 0, and W = N (0, σ 2 ), as desired. The proof of Theorem 1.9 is complete in this case.

We now turn to the other more interesting case, where f ∈ L 2 . We have apparently two different implications to prove, but we will prove them at the same time, using the following proposition.

Proposition 2.1. Let T : X → X and T : X → X be two probability preserving mixing maps, and let f : X → R and f : X → R be two functions with the same distribution. Assume that both of them admit an accurate characteristic expansion, and do not belong to

L 2 . If ( n-1 k=0 f • T k -A n )/B n converges in distribution to a nondegenerate random variable W , then ( n-1 k=0 f • T k -A n )/B n
also converges to W . Let us show how this proposition implies Theorem 1.9.

Conclusion of the proof of Theorem 1.9, assuming Proposition 2.1. Let f ∈ L 2 admit an accurate characteristic expansion.

Let T be the left shift on the space X = R N , and let f (x 0 , x 1 , . . . ) = x 0 . We endow X with the product measure such that f , f • T , . . . are i.i.d. and distributed as f . Then f admits an accurate characteristic expansion (with μ(t) = 1 and λ(t) = E(e itf )).

Proposition 2.1 shows that the convergence of (

S n f -A n )/B n to W gives the convergence of ( n-1 k=0 f • T k -A n )/B n to W
. This is one of the desired implications in Theorem 1.9. The other implication follows from the same argument, but exchanging the roles of T and T in Proposition 2.1.

The rest of this section is devoted to the proof of Proposition 2.1. We fix once and for all T, T and f, f as in the assumptions of this proposition, and assume that (S n f -A n )/B n converges in distribution to a nondegenerate random variable W . Let us also fix q and ǫ such that f ∈ L q and λ(t), λ(t) satisfy (1.4) (if the values of q and ǫ do not coincide for the expansions of λ(t) and λ(t), just take the minimum of the two).

Let Φ(t) = E(1cos(tf )) ≥ 0, this function will play an essential role in the following arguments.

Lemma 2.2. We have

|e itf -1| 2 = 2Φ(t). Moreover, since f does not belong to L 2 , (2.1) t 2 + |e itf -1| 2 = o(Φ(t)) when t → 0.
Proof. Writing |e itf -1| 2 = (e itf -1)(e -itf -1) and expanding the product, the first assertion of the lemma is trivial.

To prove that

t 2 = o( |e itf -1| 2 ), let us show that (2.2) e itf -1 t 2 dm → +∞ when t → 0.
The integrand converges to |f | 2 , whose integral is infinite. Since a sequence f n of nonnegative functions always satisfies lim inf f n ≤ lim inf f n , by Fatou's Lemma, we get (2.2).

Let us now check that

|e itf -1| 2 = o( |e itf -1| 2 ). Fix a large number

M and partition the space into

A M = {|f | ≤ M } and B M = {|f | > M }. Since (a + b) 2 ≤ 2a 2 + 2b 2 for any a, b ≥ 0, we get |e itf -1| 2 = A M |e itf -1| + B M |e itf -1| 2 ≤ 2 A M |e itf -1| 2 + 2 B M |e itf -1| 2 ≤ 2M 2 t 2 + 2 1 B M 2 L 2 e itf -1 2 L 2 ,
by Cauchy-Schwarz inequality. The term 2M 2 t 2 is negligible with respect to |e itf -1| 2 , by (2.2), while the second term is m(B M ) |e itf -1| 2 . Choosing M large enough, we can ensure that m(B M ) is arbitrarily small, concluding the proof.

Lemma 2.2 shows that (1.4) is equivalent to

(2.3) λ(t) = E(e itf ) + O(|t| q+ǫ ) + o(Φ(t)).
The main difficulty is that, for a general function f not belonging to L q , |t| q+ǫ is not always negligible with respect to Φ(t). This is however true along a subsequence of t's:

Lemma 2.3. Since f does not belong to L q , there exists an infinite set

A ⊂ N such that, for any t ∈ Λ := n∈A [2 -n-1 , 2 -n ],
(2.4)

|t| q+ǫ/2 ≤ Φ(t).
Proof. Assume by contradiction that, for any large enough n, there exists

t n ∈ [2 -n-1 , 2 -n ] with X 1 -cos(t n f ) < |t n | q+ǫ/2 . If x ∈ X is such that |f (x)| ∈ [2 n-1 , 2 n ], then |t n f (x)| ∈ [1/4, 1]. Since 1 -cos(y) is bounded from below by c > 0 on [-1, -1/4] ∪ [1/4, 1], we get m{|f | ∈ [2 n-1 , 2 n ]} ≤ c -1 1 -cos(t n f ) ≤ C|t n | q+ǫ/2 ≤ C2 -n(q+ǫ/2) .
Hence,

2 qn m{|f | ∈ [2 n-1 , 2 n ]} is finite. This implies that f belongs to L q , a contradiction. Lemma 2.4. Along Λ, we have |λ(t)| 2 = 1 -(2 + o(1))Φ(t).
Proof. Along Λ, the previous lemma and (2.3) give λ(t) = E(e itf ) + o(Φ(t)). Hence,

|λ(t)| 2 = |E(e itf )| 2 + o(Φ(t)) = (1 -E(1 -e itf )) • (1 -E(1 -e -itf )) + o(Φ(t)) = 1 -2E(1 -cos(tf )) + |E(1 -e itf )| 2 + o(Φ(t)). Moreover, E(1 -cos(tf )) = Φ(t), and |E(1 -e itf )| 2 ≤ |1 -e itf | 2 , which
is negligible with respect to Φ(t) by Lemma 2.2. This proves the lemma.

Lemma 2.5. The sequence B n tends to infinity.

Proof. Assume by contradiction that B n does not tend to infinity. In this case, there exists a subsequence j(n) such that the distribution of

S j(n) f - A j(n) is tight. Since T is mixing, [AW00, Theorem 2] implies the existence of c ∈ R and of a measurable function u : X → R such that f = u -u • T + c almost everywhere. In particular, S n f -nc converges in distribution, to Z := Z 1 -Z 2
where Z 1 and Z 2 are i.i.d. and distributed as u. Hence, e -itnc E(e itSnf ) converges to E(e itZ ), and therefore

|E(e itSnf )| → |E(e itZ )|. However, E(e itSnf ) = µ(t)λ(t) n + o(1). If |λ(t)| < 1, we obtain E(e itZ ) = 0.
Along Λ, the function Φ is positive (by (2.4)) and |λ(t)| 2 = 1 -(2 + o(1))Φ(t) by the previous lemma. Hence, if t is small enough and belongs to Λ, we have |λ(t)| < 1, and E(e itZ ) = 0. In particular, the function t → E(e itZ ) is not continuous at 0, which is a contradiction since a characteristic function is always continuous.

Lemma 2.6. The sequence B n+1 /B n converges to 1.

Proof. We know that (S

n f -A n )/B n converges in distribution to a nondegen- erate random variable W . Since the measure is invariant, (S n f •T -A n )/B n also converges to W . Since B n → ∞, this implies that (S n+1 f -A n )/B n converges to W . However, (S n+1 f -A n+1 )/B n+1 converges to W . The con- vergence of types theorem (Theorem 1.4) therefore yields B n+1 /B n → 1.
Slowly varying functions have been defined in Definition 1.2.

Lemma 2.7. There exist d ∈ (0, 2] and a slowly varying function L such that

B n ∼ n 1/d L(n). Proof. Since B n → ∞, the convergence (S n f -A n )/B n → W translates into: e -itAn/Bn λ(t/B n ) n → E(e itW ) uniformly on small neighborhoods of 0. Hence, |λ(t/B n )| 2n → |E(e itW )| 2 = E(e itZ ) where Z := W -W ′ is the difference of two independent copies of W . Taking the logarithm, we get (2.5) 2n log |λ(t/B n )| → log E(e itZ ).
Since B n → ∞ and B n+1 /B n → 1, [BGT87, Proposition 1.9.4] implies that, for t > 0, one can write |λ(t)| 2 = exp(-t d L 0 (1/t)) for some slowly varying function L 0 and some real number d. Moreover, E(e itZ ) = e -ct d for some c > 0. Since E(e itZ ) is a characteristic function, this restricts the possible values of d to d ∈ (0, 2]. Let t 0 > 0 be such that E(e it 0 Z ) ∈ (0, 1). The convergence (2.5) for t = t 0 becomes n ∼ CB d n /L 0 (B n ) for some C > 0. Since d > 0, the function x → Cx d /L 0 (x) is asymptotically invertible by [BGT87, Theorem 1.5.12], and admits an inverse of the form x → x 1/d L(x) where L is slowly varying. We get

B n ∼ n 1/d L(n).
Lemma 2.8. The number d given by Lemma 2.7 satisfies d ≤ q + ǫ/2.

Proof. Let t 0 > 0 satisfy E(e it 0 Z ) ∈ (0, 1). The sequence |λ(t 0 /B n )| 2n converges to E(e it 0 Z ). Taking logarithms, we obtain the existence of a > 0 such that

(2.6) -n log λ t 0 B n 2 → a. Since B n+1 /B n → 1, there exists j(n) → ∞ such that t 0 /B j(n) ∈ Λ (where Λ is defined in Lemma 2.3). Along this sequence, we have |λ(t 0 /B j(n) )| 2 = 1 -(2 + o(1))Φ(t 0 /B j(n)
) by Lemma 2.4. Taking the logarithm and using (2.6), we obtain j(n)Φ(t 0 /B j(n) ) → a/2. By (2.4), this yields j(n)/B q+ǫ/2 j(n) = O(1). Moreover, by Lemma 2.7 ,

(2.7) j(n)/B q+ǫ/2 j(n) ∼ j(n) 1-(q+ǫ/2)/d /L(j(n)) q+ǫ/2
. This sequence can be bounded only if 1 -(q + ǫ/2)/d ≤ 0, concluding the proof.

Proof of Proposition 2.1. For small enough t, |λ(t) -1| < 1/2. Hence, it is possible to define log λ(t) by the series log(1

-s) = -s k /k. Since the logarithm is a Lipschitz function, (2.3) gives log λ(t) = log E(e itf ) + O(|t| q+ǫ ) + o(Φ(t)). Moreover, 1 -E(e itf ) = Φ(t) -iE(sin tf ), hence (2.8) -log E(e itf ) = Φ(t) -iE(sin tf ) + o(Φ(t)) + O(|E(sin tf )| 2 ). Moreover, |E(sin(tf ))| = | Im E(e itf -1)| ≤ E|e itf -1|. Using (2.1), we obtain |E(sin(tf ))| 2 = o(Φ(t)). We have proved (2.9) -log λ(t) = Φ(t) -iE(sin tf ) + o(Φ(t)) + O(|t| q+ǫ ). The convergence (S n f -A n )/B n → W also reads e -itAn/Bn λ(t/B n ) n → E(e itW ). By (2.9), the left hand side is exp -itA n /B n -nΦ(t/B n )+niE(sin(tf /B n ))+o(nΦ(t/B n ))+O(n/B q+ǫ n ) .
By Lemma 2.8, n/B q+ǫ n tends to 0 when n → ∞. Hence, the last equation can also be written as

(2.10) exp -itA n /B n -nΦ(t/B n ) + niE(sin(tf /B n )) + o(nΦ(t/B n )) + o(1)) .
To prove the desired convergence of ( Sn f -A n )/B n to W , we should prove that e -itAn/Bn λ(t/B n ) n converges to E(e itW ). The previous arguments also apply to λ, and show that

(2.11) e -itAn/Bn λ t B n n = exp -itA n /B n -nΦ(t/B n ) + niE(sin(tf /B n )) + õ(nΦ(t/B n )) + õ(1)) ,
where we have used the notation õ to emphasize the fact that these negligible terms may be different from those in (2.10).

Let us now conclude the proof by showing that (2.11) converges to E(e itW ), using the fact that (2.10) converges to E(e itW ). The only possible problem comes from the negligible term õ(nΦ(t/B n )) (since the term õ(1) has no influence on the limit).

We treat two cases. Assume first that E(e itW ) = 0. Then the modulus of λ(t/B n ) n converges to a nonzero real number. In particular, nΦ(t/B n ) converges, which implies that õ(nΦ(t/B n )) converges to 0. This concludes the proof in this case.

Assume now that E(e itW ) = 0. This implies that the modulus of λ(t/B n ) n converges to 0. By (2.10), this yields nΦ(t/B n ) → +∞. In this case, we have no control on the argument of e -itAn/Bn λ(t/B n ) n (since the term õ(nΦ(t/B n )) may very well not tend to 0), but its modulus tends to 0. This is sufficient to get again e -itAn/Bn λ(t/B n ) n → 0 = E(e itW ). This concludes the proof of Proposition 2.1.

Characteristic expansions for Gibbs-Markov maps

3.1. The accurate characteristic expansion for non-integrable functions. Let us fix a mixing probability preserving Gibbs-Markov map T : X → X, as well as a measurable function f :

X → R with m(a)Df (a) η < ∞ for some η ∈ (0, 1].
Let T denote the transfer operator associated to T (defined by duality by

u • v • T dm = T u • v dm). It is given explicitly by (3.1) T u(x) = T y=x g(y)u(y),
where g is the inverse of the jacobian of T . We will need the following inequality: there exists a constant C such that

(3.2) C -1 m(a) ≤ g(x) ≤ Cm(a)
for any a ∈ α and x ∈ a. This follows from the assumption of bounded distortion for Gibbs-Markov maps.

Let L be the space of bounded functions u : X → C such that

(3.3) sup a∈α sup x,y∈a |u(x) -u(y)|/d(x, y) η < ∞.
Then T acts continuously on L, has a simple eigenvalue at 1 and the rest of its spectrum is contained in a disk of radius < 1. Moreover, it satisfies an inequality

(3.4) T n u L ≤ Cγ n u L + C u L 1 ,
for some γ < 1. This follows from [AD01b, Proposition 1.4 and Theorem 1.6].

Let us now define a perturbed transfer operator Tt by Tt (u) = T (e itf u). Using the estimate m(a)Df (a) η < ∞, one can check that the operator Tt acts continuously on L, and

(3.5) Tt -T L→L = O(|t| η + E|e itf -1|).
This follows from Lemma 3.5 and the proof of Corollary 3.6 in [START_REF] Gouëzel | Central limit theorem and stable laws for intermittent maps[END_REF].

The estimate (3.5) is a strong continuity estimate. We can therefore apply the following classical perturbation theorem (which follows for instance from [Kat66, Sections III.6.4 and IV.3.3]).

Theorem 3.1. Let A be a continuous operator on a Banach space B, for which 1 is a simple eigenvalue, and the rest of its spectrum is contained in a disk of radius < 1. Let A t (for small enough t) be a family of continuous operators on B, such that A t -A B→B → 0 when t → 0.

Then, for any small enough t, there exists a decomposition E t ⊕ F t of B into a one-dimensional subspace and a closed hyperplane, such that E t and F t are invariant under A t . Moreover, A t is the multiplication by a scalar λ(t) on E t , while

(A t ) n |Ft B→B ≤ Cγ n for some γ < 1 and C > 0.
The eigenvalue λ(t) and the projection P t on E t with kernel F t satisfy

(3.6) |λ(t) -1| ≤ C A t -A B→B and (3.7) P t -P 0 B→B ≤ C A t -A B→B .
This theorem yields an eigenvalue λ(t) of Tt for small t, and an eigenfunction ξ t = P t 1/ P t 1 such that ξ t = 1 and

(3.8) ξ t -1 L = O(|t| η + E|e itf -1|), by (3.7).
We have

(3.9) E(e itSnf ) = T n t (1) = λ(t) n P t 1 + O(γ n ) = µ(t)λ(t) n + O(γ n ),
for µ(t) = P t 1. This proves that f admits a characteristic expansion. To prove Proposition 1.10, we have to show that this expansion is accurate, i.e., to get precise estimates on λ(t). We have

(3.10) λ(t) = λ(t)ξ t = Tt ξ t = Tt 1 + ( Tt -T )(ξ t -1), hence (3.11) λ(t) = E(e itf ) + (e itf -1)(ξ t -1).
When η = 1 (i.e., m(a)Df (a) < ∞) and f ∈ L 2 , (3.11) together with the estimate (3.8) readily imply that the characteristic expansion of f is accurate, concluding the proof of Proposition 1.10 in this case. The general case requires more work.

We first deal with the case f ∈ L 1+η/2 . In this case, we already have enough information to conclude:

Lemma 3.2. If f ∈ L 1+η/2
, then f admits an accurate characteristic expansion.

Proof. The equation (3.11) together with (3.8) yield (3.12)

λ(t) = E(e itf ) + O |t| η • |e itf -1| + O |e itf -1| 2 .
Let p ∈ [0, 1] be such that f ∈ L p and f ∈ L p+η/2 (we use the convention that every measurable function belongs to L 0 ). For any x ∈ R, |e ix -1| ≤ 2|x| p . Then (3.13)

|t| η |e itf -1| ≤ 2|t| η |t| p |f | p ≤ C|t| p+η .
This yields the accurate characteristic expansion (1.4) as desired, for q = p + η/2 and ǫ = η/2.

The case where f ∈ L 1+η/2 is a lot trickier. It requires a more general spectral perturbation theorem, essentially due to Keller and Liverani. Unfortunately, this theorem is sufficient only when there exists q < 2 such that f ∈ L q , while the remaining case can only be treated using a generalization of this theorem, involving several successive derivatives of the operators, that we will describe in the next paragraph.

3.2.

A general spectral theorem. In this paragraph, we describe a general spectral theorem extending the results of [START_REF] Keller | Stability of the spectrum for transfer operators[END_REF] to the case of several derivatives. A very similar result has been proved in [START_REF] Gouëzel | Banach spaces adapted to Anosov systems[END_REF], but with slightly stronger assumptions that will not be satisfied in the forthcoming application to Gibbs-Markov maps (in particular, [START_REF] Gouëzel | Banach spaces adapted to Anosov systems[END_REF] requires (3.16) below to hold for 0 ≤ i < j ≤ N , instead of 1 ≤ i < j ≤ N ). Let us also mention [START_REF] Hervé | Nagaev method via Keller-Liverani theorem[END_REF] for related results.

Let 

B 0 ⊃ B 1 ⊃ • • • ⊃ B N , N ∈ N * ,
i = 1 for i ≥ 1). Let b(i, j) = j-1 k=i b k for 0 ≤ i ≤ j ≤ N . Assume that (3.14) ∃M > 0, ∀ t ∈ I, A n t f B 0 ≤ CM n f B 0 and (3.15) ∃ γ < M, ∀ t ∈ I, A n t f B 1 ≤ Cγ n f B 1 + CM n f B 0 .
Assume also that there exist operators Q 1 , . . . , Q N -1 satisfying the following properties:

(3.16) ∀ 1 ≤ i < j ≤ N, Q j-i B j →B i ≤ C
and, setting ∆ 0 (t) := A t and ∆ j (t) :

= A t -A 0 -j-1 k=1 t k Q k for j ≥ 1, (3.17) ∀ t ∈ I, ∀0 ≤ i ≤ j ≤ N, ∆ j-i (t) B j →B i ≤ C|t| b(i,j) .
These assumptions mean that t → A t is continuous at t = 0 as a function from B i to B i-1 , and that t → A t even has a Taylor expansion of order N -1, but the differentials take their values in weaker spaces.

For ̺ > γ and δ > 0, denote by V δ,̺ the set of complex numbers z such that |z| ≥ ̺ and, for all 1 ≤ k ≤ N , the distance from z to the spectrum of A 0 acting on B k is ≥ δ.

Theorem 3.3. Given a family of operators {A t } t∈I satisfying conditions (3.14), (3.15), (3.16) and (3.17) and setting

R N (t) := N -1 k=0 t k ℓ 1 +•••+ℓ j =k (z-A 0 ) -1 Q ℓ 1 (z-A 0 ) -1 . . . (z-A 0 ) -1 Q ℓ j (z-A 0 ) -1 ,
for all z ∈ V δ,̺ and t small enough, we have (1,N ) where κ = log(̺/γ) log(M/γ) .

(z -A t ) -1 -R N (t) B N →B 0 ≤ C|t| κb 0 +b
Hence, the resolvent (z -A t ) -1 depends on t in a C κb 0 +b(1,N ) way at t = 0, when viewed as an operator from B N to B 0 .

Notice that one of the results of [START_REF] Keller | Stability of the spectrum for transfer operators[END_REF] in the present setting reads

(3.18) (z -A t ) -1 -(z -A 0 ) -1 B 1 →B 0 ≤ C|t| κb 0 .
Accordingly, one has Theorem 3.3 in the case N = 1 where no assumption is made on the existence of the operators Q j .

We will use the following estimate of [KL99]:

Lemma 3.4. For any small enough τ and any z ∈ V δ,̺ , we have

(3.19) (z -A 0 ) -1 u B 0 ≤ Cτ κ u B 1 + Cτ κ-1 u B 0 .
Proof. This is essentially (11) in [START_REF] Keller | Stability of the spectrum for transfer operators[END_REF]. Let us recall the proof for the convenience of the reader. We have

(3.20) (z -A 0 ) -1 = z -n (z -A 0 ) -1 A n 0 + 1 z n-1 j=0 (z -1 A 0 ) j .
(this can be obtained for large enough z by taking the series expansion of (z -A 0 ) -1 and isolating the first terms). Hence,

(z -A 0 ) -1 u B 0 ≤ C|z| -n (z -A 0 ) -1 B 1 →B 1 γ n u B 1 + M n u B 0 + 1 |z| n-1 j=0 |z| -j A j 0 B 0 →B 0 u B 0 ≤ C(γ/̺) n u B 1 + C(M/̺) n u B 0 .
Let us choose n so that (γ/̺) n = τ κ , i.e., n = | log τ |/ log(M/γ). Then

(3.21) (M/̺) n = exp | log τ | • log(M/̺) log(M/γ) = τ κ-1 .
Proof of Theorem 3.3. We have

(3.22) (z -A t ) -1 = (z -A 0 ) -1 + (z -A t ) -1 (A t -A 0 )(z -A 0 ) -1 .
If we want an expansion of (z -A t ) -1 up to order |t| κb 0 +b 1 , this equation is sufficient: we can replace on the right (z -A t ) -1 with (z -A 0 ) -1 up to a small error |t| κb 0 (by (3.18)), and use the Taylor expansion of

A t -A 0 to conclude (since A t -A 0 = O B 2 →B 1 (|t| b 1 )
, the global error is of order |t| κb 0 +b 1 ). If we want a better precision |t| κb 0 +b(1,N ) , we should iterate the previous equation, so that in the end (z -A t ) -1 is multiplied by a term of order |t| b (1,N ) . This is done as follows. Let A(z, t) := (A t -A 0 )(z -A 0 ) -1 . Iterating the previous equation N -1 times, it follows that

(z -A t ) -1 = N -2 j=0 (z -A 0 ) -1 A(z, t) j + (z -A t ) -1 A(z, t) N -1 = N -1 j=0 (z -A 0 ) -1 A(z, t) j + (z -A t ) -1 -(z -A 0 ) -1 A(z, t) N -1 .
(3.23) For each j, we then need to expand A(z, t) j to isolate the good Taylor expansion, and negligible terms. The computation is quite straightforward, but the notations are awful. To simplify them, let us denote by ℓ a tuple (ℓ 1 , . . . , ℓ k ) of positive integers. Write also l(ℓ

) = k and |ℓ| = ℓ 1 + • • • + ℓ k and Qℓ = Q ℓ 1 (z -A 0 ) -1 . . . Q ℓ k (z -A 0 ) -1 , and ∆i (t) = ∆ i (t)(z -A 0 ) -1 .
Let us prove that, for any j < N , (3.24) A(z, t) j = l(ℓ)<j, j-l(ℓ)<N -|ℓ|

t |ℓ| A(z, t) j-l(ℓ)-1 ∆N-|ℓ|-(j-l(ℓ)-1) (t) Qℓ + l(ℓ)=j, 0<N -|ℓ| t |ℓ| Qℓ .
We start from the following equality, valid for each j ∈ N and a ≤ N , which is a direct consequence of the definition of ∆ a (t):

(3.25) A(z, t) j = A(z, t) j-1 ∆a (t) + a-1 ℓ=1 t ℓ A(z, t) j-1
Qℓ .

We can again iterate this equation. We will adjust the parameter a we will use during this iteration, as follows: we claim that, for all 1 ≤ m ≤ j,

(3.26) A(z, t) j = l(ℓ)<m, j-l(ℓ)<N -|ℓ| t |ℓ| A(z, t) j-l(ℓ)-1 ∆N-|ℓ|-(j-l(ℓ)-1) (t) Qℓ + l(ℓ)=m, j-l(ℓ)<N -|ℓ| t |ℓ| A(z, t) j-m Qℓ .
In fact, for m = 1 the above formula is just (3.25) for a = Nj + 1. Next, suppose (3.26) true for some m < j, then the formula for m + 1 follows by substituting the last terms A(z, t) j-m using (3.25) for a = N -|ℓ| -(jl(ℓ) -1). This proves (3.26) for any m ≤ j. In particular, for m = j, we obtain (3.24).

The equations (3.23) and (3.24) sum up to

(3.27) (z -A t ) -1 = R N (t) + (z -A t ) -1 -(z -A 0 ) -1 A(z, t) N -1 + N -1 j=0 l(ℓ)<j, j-l(ℓ)<N -|ℓ| t |ℓ| (z -A 0 ) -1 A(z, t) j-l(ℓ)-1
∆N-|ℓ|-(j-l(ℓ)-1) (t) Qℓ .

We will show that all the error terms are O B N →B 0 (|t| κb 0 +b(1,N ) ). Fix j and ℓ with l(ℓ) < j, jl(ℓ) < N -|ℓ|. Let (3.28)

F (t) = t |ℓ| A(z, t) j-l(ℓ)-1 ∆N-|ℓ|-(j-l(ℓ)-1) (t) Qℓ ,
we want to show that

(3.29) (z -A 0 ) -1 F (t) B N →B 0 ≤ C|t| κb 0 +b(1,N ) .
We have

|t| |ℓ| Qℓ B N →B N-|ℓ| ≤ C|t| |ℓ| ≤ C|t| b(N -|ℓ|,N ) by (3.16), while (3.30) ∆N-|ℓ|-(j-l(ℓ)-1) (t) B N-|ℓ| →B j-l(ℓ)-1 ≤ C|t| b(j-l(ℓ)-1,N -|ℓ|)
by (3.17), and A(z, t) j-l(ℓ)-1 B j-l(ℓ)-1 →B 0 ≤ C|t| b(0,j-l(ℓ)-1) again by (3.17) applied jl(ℓ) -1 times, since A(z, t) = ∆1 (t). Multiplying these estimates gives

(3.31) F (t) B N →B 0 ≤ C|t| b(0,N ) .
Moreover, since ∆k = ∆k-1t k Qk , the norm of ∆k from B j to B j-k+1 is bounded by C|t| b(j-k+1,j) . In particular, the norm of ∆N-|ℓ|-(j-l(ℓ)-1) (t) from B N -|ℓ| to B j-l(ℓ) is bounded by C|t| b(j-l(ℓ),N -|ℓ|) . Together with the same arguments as above, we obtain (3.32)

F (t) B N →B 1 ≤ C|t| b(1,N ) .
The estimate (3.29) now follows from (3.31) and (3.32), as well as Lemma 3.4 for τ = |t| b 0 . We now turn to the term

(3.33) (z -A t ) -1 -(z -A 0 ) -1 A(z, t) N -1 of (3.27). As A(z, t) B i →B i-1 = O(|t| b i-1 ), we have A(z, t) N -1 B N →B 1 = O(|t| b(1,N ) ). With (3.18), this shows that (3.33) is O B N →B 0 (|t| κb 0 +b(1,N ) ), concluding the proof.
We will use the previous theorem in the following form: Corollary 3.5. Under the assumptions of the previous theorem, assume also that M = 1 and that A 0 acting on each space B j has a simple isolated eigenvalue at 1, with corresponding eigenfunction ξ 0 . Then, for small enough t, A t has a unique simple isolated eigenvalue λ(t) close to 1.

Let ν be a continuous linear form on B 0 with ν(ξ 0 ) = 1. For small enough t, ν does not vanish on the eigenfunction of A t for the eigenvalue λ(t).

It is therefore possible to define a normalized eigenfunction ξ t satisfying ν(ξ t ) = 1.

Finally, there exist u 1 ∈ B N -1 , . . . , u N -1 ∈ B 1 such that, for any ǫ > 0,

(3.34) ξ t -ξ 0 - N -1 k=1 t k u k B 0 = O(|t| b(0,N )-ǫ ).
Proof. Let c > 0 be small, and define an operator P t = 1 2iπ |z-1|=c (z -A t ) -1 dz. The operator P 0 is the spectral projection corresponding to the eigenvalue 1 of P 0 . By Theorem 3.3, P t -P 0 B N →B 0 converges to 0 when t → 0. Therefore, the operator P t is also a rank one projection for small enough t, corresponding to an eigenvalue λ(t) of A t . Let ξt = P t (u) for some fixed u ∈ B N with P 0 (u) = 0, ξt is an eigenfunction of A t for the eigenvalue λ(t). Since ξt -ξ0 B 0 → 0, this eigenfunction satisfies ν( ξt ) = 0 for small enough t, and we can define a normalized eigenfunction ξ t = ξt /ν( ξt ). For 1

≤ k ≤ N -1, let ũk = ℓ 1 +•••+ℓ j =k 1 2iπ |z-1|=c (z -A 0 ) -1 Q ℓ 1 . . . (z -A 0 ) -1 Q ℓ j (z -A 0 ) -1 u dz.
It belongs to B N -k by (3.16). Moreover, Theorem 3.3 yields

(3.35) ξt -ξ0 - N -1 k=1 t k ũk B 0 ≤ C|t| κb 0 +b(1,N ) ,
for κ = log((1c)/γ)/ log(1/γ). Applying ν to this equation, we obtain that ν( ξt ) admits an expansion ν( ξt ) = N -1 k=0 t k ν k +O(|t| κb 0 +b(1,N ) ). Hence, ξ t = ξt /ν( ξt ) also admits an expansion similar to (3.35). This is almost the conclusion of the proof, we only have to see that the error term O(|t| κb 0 +b(1,N ) ) can be modified to be of the form O(|t| b(0,N )-ǫ ) for any ǫ > 0. This follows from the fact that c can be chosen arbitrarily small (by holomorphy, this does not change the projection P t for small enough t, hence ũk and u k are also not modified).

Remark 3.6. Corollary 3.5 states that the normalized eigenfunction ξ t has a Taylor expansion of order b(0, N )ǫ at 0. Under similar assumptions at every point of a neighborhood I of 0, we obtain that ξ t has a Taylor expansion at every point of I. By a lemma of Campanato [START_REF] Campanato | Proprietà di una famiglia di spazi funzionali[END_REF], this implies that ξ t is C b(0,N )-ǫ on I, a result analogous to [START_REF] Hervé | Nagaev method via Keller-Liverani theorem[END_REF].

3.3. Definition of good Banach spaces. We now turn back to the dynamical setting: T : X → X is a mixing Gibbs-Markov map, and f : X → R is a function satisfying m(a)Df (a) η < ∞, for which we want to prove an accurate characteristic expansion. To do that, we wish to apply Corollary 3.5 to a carefully chosen sequence of Banach space. We have currently at our disposal the spaces L p (but the spectral properties of the transfer operator on these spaces are not good), and the space L (which is only a space, not a sequence of spaces). Our goal in this paragraph is to define a family of intermediate spaces between L p and L, which will be more suitable to apply Corollary 3.5.

For 1 ≤ p ≤ ∞ and s > 0, let us define a Banach space L p,s as follows: it is the space of measurable functions u such that, for any k ∈ N, there exists a decomposition u = v + w with v L ≤ Ce k and w L p ≤ Ce -sk . The best such C is by definition the norm of u in L p,s . This Banach space is an interpolation space between L and L p (see [START_REF] Bergh | Interpolation spaces. An introduction[END_REF]).

Of course, L p,s is included in L p (simply use the decomposition for k = 0), and L p,s is contained in L p ′ ,s ′ when p ′ ≤ p and s ′ ≤ s.

Let us check that the operators T and Tt enjoy good spectral properties when acting on L p,s . This will be a consequence of the fact that they have good properties when acting on L, and are contractions when acting on L p . Lemma 3.7. Let 1 ≤ p ≤ ∞ and let s > 0. The operator T acts continuously on the space L p,s . Moreover, there exist γ < 1 and C > 0 such that

(3.36) T n u L p,s ≤ Cγ n u L p,s + C u L 1 . Proof. Let γ 0 < 1 be such that T n u L ≤ Cγ n 0 u L + C u L 1 .
For n ∈ N, let A be the integer part of ǫn, for some ǫ > 0 with γ 0 e -ǫ < 1. Let u ∈ L p,s , there exists a decomposition u = v + w with v L ≤ e k+A u L p,s and w L p ≤ e -s(k+A) u L p,s . Then

T n v L ≤ Cγ n 0 e k+A u L p,s + C v L 1 ≤ C(γ n 0 e A )e k u L p,s + C w L 1 + C u L 1 ≤ C(γ n 0 e A + e -s(k+A) )e k u L p,s + C u L 1 ≤ e k (Cγ n u L p,s + C u L 1 ), for some γ < 1. Moreover T n w L p ≤ w L p ≤ Ce -sA e -sk u L p,s ≤ e -sk (Cγ n u L p,s ) ≤ e -sk (Cγ n u L p,s + C u L 1 )
for some γ < 1. Therefore, the decomposition of T n u as T n v + T n w shows that T n u belongs to L p,s , and has a norm bounded by Cγ n u L p,s + C u L 1 .

Lemma 3.8. For any p ≥ 1 and s > 0, the inclusion of L p,s in L 1 is compact.

Proof. Let u n be a sequence bounded by 1 in L p,s . Fix k ∈ N, and let us decompose u n as v n + w n with v n L ≤ e k and w n L p ≤ e -sk . Since the inclusion of L in L 1 is compact, there exists a subsequence j(n) such that v j(n) converges in L 1 . Therefore, lim sup n,m→∞ u j(n)u j(m) L 1 ≤ 2e -sk . With a diagonal argument over k, we finally obtain a convergent subsequence of u n .

Corollary 3.9. The transfer operator T acting on L p,s has a simple eigenvalue at 1, and the rest of its spectrum is contained in a disk of radius < 1.

Proof. Together with Hennion's Theorem [START_REF] Hennion | Sur un théorème spectral et son application aux noyaux lipchitziens[END_REF], the two previous lemmas ensure that the essential spectral radius of T acting on L p,s is ≤ γ < 1, i.e., the elements of the spectrum of T with modulus > γ are isolated eigenvalues of finite multiplicity.

If u is an eigenfunction of T for an eigenvalue of modulus 1, then u belongs to L 1 . Since T satisfies a Lasota-Yorke inequality (3.4) on the space L, the theorem of Ionescu-Tulcea and Marinescu [START_REF] Cassius | Théorie ergodique pour des classes d'opérations non complètement continues[END_REF] implies that u belongs to L. However, we know that T acting on L has a simple eigenvalue at 1, and no other eigenvalue of modulus 1.

Lemma 3.10. For any p ≥ 1 and s > 0, the operator Tt acts continuously on L p,s for small enough t. Moreover, Tt -T L p,s →L p,s converges to 0 when t → 0. Finally, if t is small enough, Tt satisfies a Lasota-Yorke type inequality

(3.37) T n t u L p,s ≤ Cγ n u L p,s + C u L 1
, where C > 0 and γ < 1 are independent of t.

Proof. For any operator M sending L to L and L p to L p , then M sends L p,s to L p,s and, for any integer A ≥ 0, 

C > 0 such that T N u L p,s ≤ σ u L p,s + C u L 1 . Let σ 1 ∈ (σ, 1
). Since Tt -T L p,s →L p,s tends to 0 when t → 0, the previous equation gives, for small enough t,

(3.39) T N t u L p,s ≤ σ 1 u L p,s + C u L 1
Iterating this equation, we get by induction over k

(3.40) T kN t u L p,s ≤ σ k 1 u L p,s + C k-1 j=0 σ k-1-j 1 T jN t u L 1 .
Since Tt is a contraction on L 1 , we obtain

T kN t u L p,s ≤ σ k 1 u L p,s + C ′ u L 1 , for C ′ = C ∞ j=0 σ j .
This proves (3.37) for n of the form kN , and the general case follows.

3.4. Gaining δ in the integrability exponent. We wish to apply Corollary 3.5 to obtain the accurate characteristic expansion. This theorem involves an (arbitrarily) small loss of ǫ, that we will have to compensate at some point. In this paragraph, we show how a regularity assumption of the form m(a)Df (a) η < ∞ makes it possible to obtain a definite gain in the integrability exponent of some functions, which ultimately will compensate the aforementioned loss. 

(3.41) Du(a) ≤ Df (a) if c ≤ 1, Df (a) 1 a f c-1 L ∞ if c > 1.
Let q, r be positive numbers (possibly q = ∞) such that 1/r = 1/(p/c) + 1/q, and r ≥ 1 + β. Then the operator v → T (uv) maps L q to L r+δ (and its norm is bounded only in terms of f and β).

Since u ∈ L p/c , the Hölder inequality shows that the operator v → T (uv) maps L q to L r . The lemma asserts that there is in fact a small gain of δ in the integrability exponent, due to the regularity property m(a)Df (a) β < ∞. Moreover, the gain is uniform over the parameters if r stays away from 1.

Proof. We will show that, under the assumptions of the lemma, the operator v → T (uv) maps L q to L r, for r = pq/c-β 2 q p/c+q-β 2 q . Since rr is uniformly bounded from below when the parameters vary according to the conditions of the lemma, this will conclude the proof. 2 Let us first show that

(3.44) a∈α m(a) f 1 a β L ∞ < ∞. 2 Indeed, (3.42) r -r = β 2 q (pq/c -p/c -q) (p/c + q)(p/c + q -β 2 q) .
Since r ≥ 1 + β, we have pq/c ≥ (1 + β)(p/c + q). Therefore, the second term of the numerator of (3.42) is at least β(p/c + q). Simplifying with the denominator, we get

(3.43) r -r ≥ β 3 p/qc + 1 -β 2 ≥ β 3 β -2 + 1 -β 2 . For x, y ∈ a, we have |f (x)| ≤ |f (y)| + Df (a). Integrating over y, we get |f (x)| ≤ 1 m(a) a |f | + Df (a)
. Together with the inequality (t ′ + t) β ≤ 1 + t ′ + t β , valid for any t ′ , t ≥ 0, we obtain

a∈α m(a) f 1 a β L ∞ ≤ a∈α m(a) 1 + 1 m(a) a |f | + a∈α m(a)Df (a) β .
These sums are finite, concluding the proof of (3.44). Let β = β 2 , we will now show that

(3.45) a∈α m(a) u1 a β L ∞ < ∞.
By the previous argument, it is sufficient to show that a∈α m(a)Du(a)

β is finite. If c ≤ 1, Du(a) β ≤ Df (a) β ≤ max(1, Df (a) β
), and the result follows. Let us now estimate T (uv) for v ∈ L q . Let ρ = r/(r -1), so that 1/ρ + 1/r = 1. We have

If c > 1, Du(a) β ≤ Df (a) β 1 a f (c-1) β L ∞ ≤ max(Df (a), 1 a f L ∞ ) c β ≤ Df (a) c β + 1 a f c β L ∞ . Since c β ≤ β, (3.44) shows that m(a)Du(a) β < ∞,
(3.46) T (|uv|) = T (|u| β/ρ |u| 1-β/ρ |v|) ≤ T (|u| β ) 1/ρ T (|u| r(1-β/ρ) |v| r) 1/r . Since T (|u| β ) is bounded, we obtain T (uv) L r ≤ C T (|u| r(1-β/ρ) |v| r ) 1/r = C |u| r(1-β/ρ) |v| r 1/r .
Let s and t be such that 1/s + 1/t = 1 and tr = q, i.e., t = q/r and s = q/(qr). The Hölder inequality gives

(3.47) |u| r(1-β/ρ) |v| r ≤ |u| r(1-β/ρ)s 1/s |v| rt 1/t .
The choice of r above ensures that r(1 -β/ρ)s = p/c. Hence, the integral involving u is finite, since u ∈ L p/c . We obtain T (uv)

L r ≤ C v L q , as required.
Lemma 3.12. For any β ∈ (0, 1], there exists δ > 0 with the following property. Let f ∈ L p (for some p ∈

[1, 1/β]) satisfy m(a)Df (a) β < ∞. Let c ∈ [β, p],
and consider a function u such that |u| ≤ |f | c , and, for all a ∈ α,

(3.48) Du(a) ≤ Df (a) if c ≤ 1, Df (a) 1 a f c-1 L ∞ if c > 1.
Let q, r be positive numbers (possibly q = ∞) such that 1/r = 1/(p/c) + 1/q, and r ≥ 1 + β. Then, for any s > 0, there exists s ′ = s ′ (f, β, s) such that the operator v → T (uv) maps L q,s to L r+δ,s ′ (and its norm is bounded only in terms of f, β, s).

Proof. Let δ 0 be the value of δ given by Lemma 3.11 for β/2 instead of β. We will prove that the lemma holds for δ = δ 0 /2.

For K ≥ 1, denote by A(K) the union of the elements a ∈ α such that Df (a) + 1 a f L ∞ ≤ K, and let B(K) be its complement. The finiteness of the sum a∈α m(a)(Df (a) β + 1 a f β L ∞ ) (which has been proved in (3.44)) implies that there exists C such that

(3.49) m(B(K)) ≤ CK -β .
Moreover, let d = max(c, 1), then u is bounded by K d on A(K), and its Lipschitz constant is also bounded by K d . Therefore,

(3.50) 1 A(K) u L ≤ CK d .
Take v ∈ L q,s bounded by 1, and k ∈ N. By definition of L q,s , we can write v = w + w ′ with w L ≤ e k and w ′ L q ≤ e -sk . For any K ≥ 1, we obtain a decomposition of T (uv) as the sum of T (1 A(K) uw) and T (1 B(K) uw + uw ′ ). We claim that

(3.51) T (1 A(K) uw) L ≤ CK d e k
and, for some ǫ > 0,

(3.52) T (1 B(K) uw + uw ′ ) L r+δ 0 /2 ≤ Ce -sk + Ce k K -ǫ .
This concludes the proof of the lemma, for δ = δ 0 /2 and s ′ = s/(1 + d(1 + s)/ǫ). Indeed, for K = exp((1+s)k/ǫ), the bound in (3.51) becomes Ce sk/s ′ , and the bound in (3.52) becomes Ce -sk . Taking k ′ close to sk/s ′ , we have obtained a decomposition of T (uv) as a sum w + w′ with w L ≤ Ce k ′ and w′ L r+δ 0 /2 ≤ Ce -s ′ k ′ , as desired. It remains to prove (3.51) and (3.52). The former follows from the inequality zz ′ L ≤ C z L z ′ L , applied to the functions z = 1 A(K) u (whose norm is bounded by (3.50)), and z ′ = w (whose norm is at most e k ).

We turn to (3.52). First, by Lemma 3.11,

(3.53) T (uw ′ ) L r+δ 0 /2 ≤ T (uw ′ ) L r+δ 0 ≤ C w ′ L q ,
which is at most e -sk . Let then Q be large enough, and let r ′ be such that 1/r ′ = 1/(p/c) + 1/Q. Then

(3.54) r -r ′ = rr ′ 1 r ′ - 1 r = rr ′ 1 Q - 1 q ≤ rr ′ Q .
Moreover, 1/r ≥ 1/(p/c) ≥ β 2 , and 1/r ′ ≥ β 2 as well. Hence, rr ′ ≤ β -4 /Q. Choosing Q large enough, we can ensure rr ′ ≤ δ 0 /2. Therefore,

T (1 B(K) uw) L r+δ 0 /2 ≤ w L ∞ T (1 B(K) |u|) L r+δ 0 /2 ≤ w L ∞ T (1 B(K) |u|) L r ′ +δ 0 . Since 1/(p/c) ≤ 1/r ≤ 1/(1 + β), we have 1/r ′ ≤ 1/(1 + β) + 1/Q, which is at most 1/(1 + β/2) if Q is large enough.
Thanks to the definition of δ 0 above, we can therefore apply Lemma 3.11 to the function v = 1 B(K) and the parameters r ′ , Q, β/2, to obtain

(3.55) T (1 B(K) |u|) L r ′ +δ 0 ≤ C 1 B(K) L Q . Since w L ∞ ≤ e k and 1 B(K) L Q ≤ CK -β/Q by (3.49), this proves (3.52) for ǫ = β/Q.

Accurate characteristic expansions for integrable functions.

We will now prove that a function f satisfying m(a)Df (a) η < ∞ admits an admissible characteristic expansion. By Lemma 3.2, it is sufficient to treat the case f ∈ L 1+η/2 . We will give very precise asymptotics of the eigenvalue λ(t) of the transfer operator, yielding also other limit theorems in the L 2 case. Theorem 3.13. Let η ∈ (0, 1]. There exists a function ǫ : (1, ∞) → R * + , bounded away from zero on compact subsets of (1, ∞), with the following property.

Let f satisfy m(a)Df (a) η < ∞, and f ∈ L p for some p > 1. Then there exist complex numbers c i (for

1 ≤ i < p + ǫ(p)) such that (3.56) λ(t) = E(e itf ) + 2≤i<p+ǫ(p) c i t i + O(|t| p+ǫ(p) ).
This theorem contains the characteristic expansion of f ∈ L p for p > 1:

Corollary 3.14. Let f ∈ L 1+η/2 , then f admits an accurate characteristic expansion.

Proof.

If f ∈ L 2 , then (3.56) for p = 2 becomes λ(t) = 1 + itE(f ) -ct 2 /2 + o(t 2
), for some c ∈ C. This is the desired characteristic expansion. Assume now f ∈ L 2 . Let ǫ > 0 be the infimum of ǫ(p) for p ∈ [1 + η/2, 2]. Let p ≥ 1 + η/2 be such that f ∈ L p and f ∈ L p+ǫ/2 . Then (3.56) gives λ(t) = E(e itf ) + ct 2 + O(|t| p+ǫ ), which is accurate.

Together with Lemma 3.2, this concludes the proof of Proposition 1.10. Theorem 3.13 also contains much more information, in particular in the L 2 case. We will describe in Appendix A another consequence of this very precise expansion of the eigenvalue λ(t), on the speed of convergence in the central limit theorem. What is remarkable in that theorem is that the regularity assumption on the function need not be increased to get finer results, m(a)Df (a) η < ∞ is always sufficient: the only additional conditions are moment conditions. Remark 3.15. For p < 2, Theorem 3.13 can be proved using only the theorem of Keller and Liverani in [START_REF] Keller | Stability of the spectrum for transfer operators[END_REF], instead of its extension to several derivatives given in Paragraph 3.2 (but the resulting bound ǫ tends to 0 when p tends to 2): in the forthcoming proof, there is no derivative involved for p < 2. This gives a more elementary proof of the accurate characteristic expansion for functions f not belonging to L q for some q < 2, but the general case (functions in L p for every p < 2) requires the full power of Theorem 3.3.

We will need the following elementary lemma. Lemma 3.16. For j ≥ 1, define a function F j : R → C by

(3.57) F j (x) = e ix - j-1 k=0 (ix) k /k!.
Let also b ∈ (0, 1]. For j ≥ 1 and x ∈ R, |F j (x)| ≤ 2|x| j-1+b . Moreover, for j ≥ 2 and x, y ∈ R, |F j (x) -F j (y)| ≤ 2|x -y| • max(|x|, |y|) j-2+b .

Proof. Let (A j ) denote the property "for all x ∈ R, |F j (x)| ≤ 2|x| j-1+b " and (B j ) the property "for all x, y, |F j (x)-F j (y)| ≤ 2|x-y|•max(|x|, |y|) j-2+b ". We claim that (A j ) holds for j ≥ 1, and (B j ) holds for j ≥ 2. First, (A 1 ) holds trivially. Moreover, if (B j ) holds, then (A j ) holds by taking y = 0. Hence, it is sufficient to prove that (A j ) implies (B j+1 ) to conclude by induction. Assume (A j ). Since F ′ j+1 = iF j , we have

|F j+1 (x) -F j+1 (y)| ≤ |x -y| sup z∈[x,y] |F ′ j+1 (z)| ≤ |x -y| sup z∈[x,y] 2|z| j-1+b ≤ 2|x -y| max(|x|, |y|) j-1+b .
This proves (B j+1 ), as desired. 

+ δ p ) > N -1, write p/(1 + δ p ) = N -1 + b 0 for some b 0 ∈ [δ, 1 -δ]. Let b 1 = • • • = b N -1 = 1.
Define numbers p 0 , . . . , p N in [1 + δ p , ∞] by p 0 = 1 + δ p and, for i ≥ 1, p i = p/(Ni). Define also operators Q j by Q j (v) = i j j! T (f j v), and let ∆ j (t) = Tt -Tj-1 k=1 t k Q k . Let Bj = L p j . We claim that the assumptions (3.16) and (3.17) are satisfied for the spaces Bj . Indeed, the choices of b 0 and the p i s ensure that, for 0 ≤ i < j ≤ N , (3.58)

1 p i = 1 p j + b(i, j) p .
Therefore, if u ∈ L p/b(i,j) and v ∈ L p j , then uv ∈ L p i . Since f j-i ∈ L p/(j-i) , this shows that Q j-i sends Bj to Bi if i > 0. By Lemma 3.16, for any n ≥ 1 and b > 0, j) , this shows thanks to (3.58) that ∆ j-i (t) sends Bj to Bi with a norm at most C|t| b(i,j) . This is (3.17).

|e ix -n-1 k=0 i k k! x k | ≤ 2|x| n-1+b . Therefore, |∆ j-i (t)v| ≤ 2 T (|tf | j-i-1+b |v|). Taking b = b i , we obtain (3.59) |∆ j-i (t)v| ≤ 2|t| b(i,j) T (|f | b(i,j) |v|). Since |f | b(i,j) belongs to L p/b(i,
Unfortunately, the spaces L p j do not satisfy a Lasota-Yorke type inequality (3.15). Moreover, we would like to gain a little bit on the integrability exponent. Therefore, we will rather use spaces L q,s instead of spaces L q . To check the assumptions (3.16) and (3.17), we will apply Lemma 3.12 for some small enough β ∈ (0, η] depending only on A.

The assumptions of this lemma are satisfied for the operator Q j-i (1 ≤ i < j ≤ N ), with q = p j , r = p i and c = b(i, j) (since f j-i is indeed bounded by |f | j-i , and D(f j-i )(a) ≤ CDf (a) 1 a f j-i-1 L ∞ ). We now turn, for 0 ≤ i < j ≤ N , to the operators ∆ j-i (t). Once again, we take q = p j , r = p i and c = b(i, j). Let us show that the assumptions of Lemma 3.12 are satisfied. First, if β is small enough, then r = p i is larger than 1 + β (since we have chosen p 0 = 1 + δ p with δ p ≥ 1/5A), and c = b(i, j) is larger than β (since b 0 ≥ δ by the good choice of δ p ). Let us define a function f j-i (t) = e itfj-i-1 k=0 (itf ) k k! , so that ∆ j-i (t)v = T (f j-i (t)v). The following lemma shows that f j-i (t) is well behaved, which is the last assumption of Lemma 3.12 we have to check.

Lemma 3.17. For any 0 < b ≤ 1 and j ≥ 1, the function u j (t) = f j (t)/(2|t| j-1+b ) satisfies |u j | ≤ |f | j-1+b and, for all a ∈ α,

(3.60) Du j (t)(a) ≤ Df (a) if j -1 + b ≤ 1, Df (a) 1 a f j-2+b L ∞ if j -1 + b > 1.
Proof. We have f j (t) = F j (tf ), where F j is defined in Lemma 3.16. Therefore, this lemma yields |f j (t)| ≤ 2|tf | j-1+b as desired. If j = 1, f j (t) = e itf -1, hence (3.60) follows easily. Assume now j ≥ 2. For any points x, y in the same element a of the partition α,

|f j (t)(x) -f j (t)(y)| = |F j (tf (x)) -F j (tf (y))| ≤ 2|tf (x) -tf (y)| max(|tf (x)|, |tf (y)|) j-2+b ≤ 2|t| j-1+b Df (a)d(x, y) 1 a f j-2+b L ∞ .
This proves (3.60) in this case.

Let δ > 0 be given by Lemma 3.12 for the value of β we constructed above. Decreasing δ if necessary, we can assume δ ≤ 1/2A. Let also s N = 1. Lemma 3.12 (applied to the operators Q 1 and ∆ 1 (t), on the space L p N ,s N ) provides us with s N -1 = s ′ such that Q 1 L p N ,s N →L p N-1 +δ,s N-1 is finite, and

(3.61) ∆ 1 (t) L p N ,s N →L p N-1 +δ,s N-1 = O(|t| b(N -1,N ) ).
Continuing inductively this process, we obtain a sequence s N , s N -1 , . . . , s 0 such that, for any 1 ≤ i < j ≤ N , the operator Q j-i maps continuously L p j ,s j to L p i +δ,s i , and such that, for any 0 ≤ i < j ≤ N , the operator ∆ j-i (t) maps continuously L p j ,s j to L p i +δ,s i , with a norm at most C|t| b(i,j) .

Define a space B i = L p i +δ,s i . Since B i is continuously contained in L p i ,s i , we have just proved that the assumptions (3.16) and (3.17) of Theorem 3.3 are satisfied. Moreover, (3.14) and (3.15) for M = 1 follow from Lemmas 3.7 and 3.10. Therefore, Corollary 3.5 applies. Since B i is included in L p i +δ , we obtain in particular the following: there exist u 1 ∈ L p N-1 +δ , . . . , u N -1 ∈ L p 1 +δ such that the normalized eigenfunction ξ t of Tt satisfies

(3.62) ξ t -1 - N -1 k=1 t k u k L p 0 +δ = O(|t| b(0,N )-ǫ ),
for any ǫ > 0.

Let us now estimate the eigenvalue λ(t) of Tt using this estimate. Let us write ξ t -1 = N -1 k=1 t k u k + r t , where r t is an error term controlled by (3.62). By (3.11),

λ(t) = E(e itf ) + (e itf -1)(ξ t -1) = E(e itf ) + N -1 k=1 t k (e itf -1)u k + (e itf -1)r t . (3.63)
Let us first estimate (e itf -1)r t . We have p 0 = 1 + δ p and b(0, N ) = p/(1+δ p ). Let q be such that 1/(p 0 +δ)+1/q = 1, i.e., q = (1+δ p +δ)/(δ p +δ). Since δ ≤ 1/2A and δ p ≤ 1/2A, we obtain q ≥ A. In particular, q ≥ p. Therefore, |e ix -1| ≤ 2|x| p/q for any real x. This yields

(3.64) e itf -1 L q ≤ |e itf -1| q 1/q ≤ C|t| p/q .
Hence, (3.65) (e itf -1)r t ≤ e itf -1 L q r t L p 0 +δ ≤ C|t| p/q+p/(1+δp)-ǫ . Moreover, (3.66)

p q + p 1 + δ p -ǫ = p 1 - 1 1 + δ p + δ + 1 1 + δ p -ǫ.
Since δ is positive, this quantity is larger than p if ǫ is small enough. Hence, (3.65) is of the form O(|t| p+ǫ ′ ) for some ǫ ′ > 0. This is compatible with (3.56).

We now turn to the terms t k (e itf -1)u k in (3.63), for 0 ≤ k ≤ N -1. The function u k belongs to L p/k+δ . Let q be such that 1/q + 1/(p/k + δ) = 1. Let also c > 0 satisfy qc = p. Then e itf = 0≤j<c (itf ) j /j! + r c,t , where |r c,t | ≤ 2|t| c |f | c by Lemma 3.16. To conclude the proof, it is sufficient to show that t k r c,t u k = O(|t| p+ǫ ′ ) for some ǫ ′ > 0, since the terms coming from the integrals t k (itf ) j /j! • u k will contribute to the polynomial in (3.56). We have

t k r c,t u k ≤ |t| k r c,t L q u k L p/k+δ ≤ C|t| k |r c,t | q 1/q ≤ C|t| k+c |f | p 1/q . Finally, k + c = k + p -k/(1 + kδ/p
) is strictly larger than p, since δ > 0.

Remark 3.18. When f ∈ L p , p > 1, the function µ(t) = P t 1 appearing in the characteristic expansion (3.9) of f also satisfies an expansion

(3.67) µ(t) = 1 + 1≤i<p d i t i + O(|t| p-ǫ ),
for any ǫ > 0. This follows from a similar (but easier) argument, where one does not need to use the gain in the exponent from Lemma 3.12. This expansion is not as strong as the expansion of λ(t) (it does not reach the precision O(|t| p ), while Theorem 3.13 gets beyond it). The reason for this difference is that µ(t) is only expressed in spectral terms (and Theorem 3.3 therefore gives a small loss in the exponent), while for λ(t) one can take advantage of the formula (3.11).

3.6. Last details in the L 2 case. In this paragraph, we conclude the proof of Theorem 1.5. By Proposition 1.10 and Theorem 1.9, we only have to identify the variance σ 2 when f ∈ L 2 , and to strengthen the conclusion of Theorem 1.9 in the σ 2 = 0 case.

Lemma 3.19. Assume f ∈ L 2 , and write f = ff . Then the asymptotic expansion of λ(t) given by Theorem 3.13 is

(3.68) λ(t) = 1 + itE(f ) -(σ 2 + E(f ) 2 )t 2 /2 + o(t 2 ),
where

σ 2 = f 2 + 2 ∞ k=1 f • f • T k (

the series converges exponentially fast).

Proof. In the expansion (3.56) of λ(t), the term for i = 2 comes only, in the proof, from the integral itf u 1 , where (3.69)

u 1 = 1 2iπ |z-1|=c (z -T ) -1 Q 1 (z -T ) -1 1 dz,
where Q 1 (v) = T (if v) (and the integral is converging in a space L 2+δ,s for some δ > 0 and s > 0). Let us identify u 1 . We have (z -T ) -1 1 = 1/(z -1). Moreover, if E is the space of constant functions and F the space of functions with vanishing integral, then (z -T ) -1 is the multiplication by 1/(z -1) on E, while (z -T )

-1 v = ∞ k=0 z -k-1 T k v for v ∈ F (the series converging exponentially fast in L 2+δ,s , and in particular in L 2 ). Writing T f as ( f ) + T f ∈ E ⊕ F , we obtain (3.70) u 1 = 1 2iπ |z-1|=c i f (z -1) 2 dz + ∞ k=0 1 2iπ |z-1|=c z -k-1 z -1 i T k+1 f dz.
Since 1/(z -1) 2 has a vanishing residue at z = 1, while z -k-1 /(z -1) has a residue equal to 1, this gives

(3.71) u 1 = i ∞ k=0 T k+1 f .
We obtain from (3.56)

λ(t) = E(e itf ) -t 2 ∞ k=1 f T k f + O(|t| 2+ǫ ) = 1 + itE(f ) -t 2 f 2 /2 -t 2 ∞ k=1 f • f • T k + o(t 2 ) = 1 + itE(f ) -(σ 2 + E(f ) 2 )t 2 /2 + o(t 2 ).
To conclude, it is sufficient to prove that, if σ 2 vanishes, then f is a bounded coboundary. A similar result is proved in [AD01b, Corollary 2.3], and we will essentially reproduce the same argument for completeness. Lemma 3.20. Assume f ∈ L 2 is such that σ 2 (given by Lemma 3.19) vanishes. Then there exist a bounded function u and a real c such that

f = u -u • T + c.
Proof. Replacing f with f = ff , we can assume without loss of generality that f = 0.

The exponential convergence of f

• f • T k to 0 ensures that (S n f ) 2 = nσ 2 + O(1). Therefore, if σ 2 = 0, then S n f is bounded in L 2 . By Leonov's Moreover, ∆ n = O(n -1/2 ) if and only if E(f 2 1 |f |>x ) = O(x -1 ) when x → ∞, and E(f 3 1 |f |<x ) is uniformly bounded.
When one considers i.i.d. random variables instead of Birkhoff sums, this theorem for δ < 1 is proved in [IL71, Theorem 3.4.1], and the proof for δ = 1 is given in [START_REF] Ildar | On the accuracy of approximation by the normal distribution of distribution functions of sums of independent random variables[END_REF]. For the proof in the dynamical setting, we will essentially follow the same strategy as in the i.i.d. case, the additional crucial ingredient being the estimate on λ(t) provided by Theorem 3.13. We will only give the proof for δ < 1, since the proof for δ = 1 is very similar following the arguments of [START_REF] Ildar | On the accuracy of approximation by the normal distribution of distribution functions of sums of independent random variables[END_REF].

Proof of the necessity in Theorem A.1. Assuming ∆ n = O(n -δ/2 ), we will prove E(f 2 1 |f |>x ) = O(x -δ ). This is trivial if f ∈ L 3 , so we can assume this is not the case. In this proof, ǫ will denote the minimum of ǫ(p) given by Theorem 3.13 for p ∈ [2, 3]. Consider p ∈ [2, 3] such that f ∈ L p and f ∈ L p+ǫ/2 , and let q = min(p + ǫ, 3). Hence, λ(t) = E(e itf ) + ct 2 + O(|t| q ) for some c ∈ R. It will be more convenient to write this estimate as follows:

(A.2) λ(t) = E(e itf )e ct 2 +t 2 φ(t) with φ(t) = O(|t| q-2 ).

Let W be the symmetrization of f , i.e., the difference of two independent copies of f . Its characteristic function is E(e itW ) = |E(e itf )| 2 . Let us write E(e itW ) = e -σ 2 0 t 2 +t 2 γ 0 (t) where σ 2 0 = E(f 2 ) and γ 0 is a real function defined on a neighborhood of 0. To conclude, it is therefore sufficient to estimate t 2 |γ 0 (t)|.

Let H denote the distribution function of N (0, 2σ 2 ), and F n the distribution function of the difference of two independent copies of S n f / √ n. From the assumption ∆ n = O(n -δ/2 ), it follows that sup x∈R |H(x) -F n (x)| ≤ Cn -δ/2 . Let h(t) and f n (t) be the characteristic functions of H and F n , i.e., h(t) = e -σ 2 t 2 and f n (t) = |E(e = e -σ 2 t 2 +t 2 γ 0 (t/ √ n)+2t 2 Re φ(t/ √ n) .

Let h n (t) = e -σ 2 t 2 +t 2 γ 0 (t/ √ n) . Since φ(t) = O(|t| q-2 ) by (A.2), we have |t|≤log n (g n (t)h n (t))e -t 2 /2 dt = O(n -(q-2)/2 ). Hence, (A.8)

|t|≤log n (h n (t)h(t))e -t 2 /2 dt = O(n -δ/2 ) + O(n -(q-2)/2 ).

Since h n (t)h(t) = e -σ 2 t 2 (e t 2 γ 0 (t/ √ n) -1), we can now conclude as in [IL71,

Page 106] to get (A.9)

x 0 t 2 |γ 0 (t)| = O(x 3+δ ) + O(x q+1 ).

By (A.3), this proves that E(f 2 1 |f |>x ) = O(x -δ ) for δ = min(δ, q -2). If q -2 < δ (in particular, q = 3, so q = p + ǫ), we have δ = q -2, hence f belongs to L q ′ for any q ′ < q. In particular, f ∈ L q-ǫ/2 = L p+ǫ/2 . This is not compatible with the choice of p. Hence, q -2 ≥ δ, whence δ = δ, and

E(f 2 1 |f |>x ) = O(x -δ ).
Proof of the sufficiency in Theorem A.1. Assuming E(f 2 1 |f |>x ) = O(x -δ ), we will prove ∆ n = O(n -δ/2 ). We essentially follow the arguments of the proof of the necessity, in the reverse direction, the main difference being that we do not need any more to work with the symmetrization of the random variables.

Let us write E(e itf ) = e -σ 2 0 t 2 /2+t 2 γ(t) . [IL71, Page 111] proves that, under the assumption E(f 2 1 |f |>x ) = O(x -δ ), the function γ satisfies x 0 t 2 |γ(t)| dt = O(x 3+δ ). Moreover, f belongs to L p for any p < 2 + δ. Let q = min(2 + δ + ǫ/2, 3) > 2 + δ. Taking p = 2 + δǫ/2, Theorem 3.13 shows that λ(t) = E(e itf ) + ct 2 + O(|t| q ), which we may rewrite as λ(t) = E(e itf )e ct 2 +t 2 φ(t) where φ(t) = O(|t| q-2 ). Together with the expansion of E(e itf ), we obtain (A.10) λ(t) = e -σ 2 t 2 /2+t 2 ψ(t) with 
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  if p = 1 and c = π/2 if p = 1, andβ = c 1c 2 . Let ω(p, t) = tan(pπ/2) if p = 1 and ω(1, t) = -2 π log |t|.Let W be the random variable with characteristic function(1.1) 

  be a finite family of Banach spaces, let I ⊂ R be a fixed open interval containing 0, and let {A t } t∈I be a family of operators acting on each of the above Banach spaces. Let also b 0 , b 1 , . . . , b N -1 ∈ (0, 1] (usually, b

  (3.38) M L p,s →L p,s ≤ max(e A M L→L , e -sA M L p →L p ). This follows using the decomposition of u ∈ L p,s as v + w with v L ≤ e k+A u L p,s and w L p ≤ e -sk-sA u L p,s . By (3.5), Tt -T L→L tends to 0, while Tt -T L p →L p is uniformly bounded. Applying (3.38) to M = Tt -T and e A close to Tt -T -1/2 L→L , we obtain that Tt -T L p,s →L p,s tends to zero. By (3.36), we can fix N > 0, σ < 1 and

Lemma 3. 11 .

 11 For any β ∈ (0, 1], there exists δ > 0 with the following property. Let f ∈ L p (for some p ∈ [1, 1/β]) satisfy m(a)Df (a) β < ∞. Let c ∈ [β, p], and consider a function u such that |u| ≤ |f | c , and, for all a ∈ α,

  concluding the proof of (3.45). By (3.1) and (3.2), T (|u| β ) is bounded by a∈α m(a) u1 a β L ∞ , which is finite. Hence, T (|u| β ) is a bounded function.

  Proof of Theorem 3.13. Fix once and for all η ∈ (0, 1]. Let us fix A > 1, we will prove the theorem for p ∈ [1 + 1/A, A]. In this proof, δ will denote a positive quantity that may only depend on A, and can change from one occurrence to the other.The quantity p 1+1/5A -p 1+1/2A is bounded from below, uniformly for p ∈ [1+1/A, A]. Therefore, there exists δ p ∈ [1/5A, 1/2A] such that the distance from p/(1 + δ p ) to the integers is ≥ δ, for some δ > 0. Let us fix such a δ p . Let N ≥ 2 be the integer such that N > p/(1

  [START_REF] Ildar | Independent and stationary sequences of random variables[END_REF] Paragraph III.4] proves the following fact:(A.3) If x 0 t 2 |γ 0 (t)| = O(x 3+ δ ), 0 < δ < 1, when x → 0, then E(f 2 1 |f |>x ) = O(x -δ ) when x → +∞.

x 0 t

 0 2 |ψ(t)| dt = O(x 3+δ ). Let f n denote the characteristic function of S n f / √ n. The classical Berry-Esseen estimate [IL71, Theorem 1.5.2] shows that, for any T > 0, n (t)e -σ 2 t 2 /2 | dt + C/T. Let us choose T = ρ √ n with ρ small enough. The second term in this estimate is then O(n -1/2 ) = O(n -δ

  itSnf / √ n )| 2 .Integrating by parts the equalityf n (t)h(t) = e itx d(F n (x) -H(x)), we obtain (A.4) f n (t)h(t) it = e itx (F n (x) -H(x)) dx.This shows that the L 2 functions (f n (t)h(t))/it and F n -H are Fourier transforms of one another. The functions te -t 2 /2 and -ixe -x 2 /2 / √ 2π are also Fourier transforms of one another. Hence, Parseval's theorem gives(A.5) f n (t)h(t) t •te -t 2 /2 dt = C (F n (x)-H(x))xe -x 2 /2 = O(n -δ/2 ).Since |t|≥log n e -t 2 /2 dt = O(n -δ/2 ), this yields(A.6) |t|≤log n (f n (t)h(t))e -t 2 /2 dt = O(n -δ/2). (t) tends exponentially fast to 0 (by Theorem 3.1), and the functionµ satisfies µ(t) = 1 + O(t) (by Remark 3.18). Let g n (t) = λ t (f n (t)g n (t))e -t 2 /2 dt = O(n -1/2). Therefore, (A.6) gives (A.7) |t|≤log n (g n (t)h(t))e -t 2 /2 dt = O(n -δ/2 ). Moreover, by (A.2) g n (t) = |E(e itf / √ n )| 2n e 2ct 2 +2t 2 Re φ(t/

	The characteristic expansion of f gives					
	f n (t) = |E(e itSnf / √ n )| 2 = λ	t √ n	2n	µ	t √ n	2	+ ǫ n (t),
	where ǫ n √ n	2n	, then
	|t|≤log n √ n)		

= e -σ 2 0 t 2 +t 2 γ 0 (t/ √ n)+2ct 2 +2t 2 Re φ(t/ √ n)

  ). For the first term, we split the integral in two parts, corresponding to |t| ≤ 1/n and |t| > 1/n. In the first part, we have(A.12) |f n (t) -1| = E(e itSnf / √ n -1) ≤ |t|E|S n f |/ (t)e -σ 2 t 2 /2 | dt + O(n -1/2 ) -σ 2 t 2 /2 |e t 2 ψ(t/ √ n) -1| dt + O(n -1/2 ). |ψ(t)| dt = O(x 3+δ), this last integral is bounded by O(n -δ/2 ) (see e.g. [IL71, bottom of Page 107]). This concludes the proof.

			√	n ≤	√ n|t|.
	The resulting integral is bounded by	
	(A.13)		
		|t|≤1/n	
	Hence,		
	(A.14)	∆ n ≤ C |f 1/n≤|t|≤ρ 1/n≤|t|≤ρ √ n 1 |t| √ n 1 |t| |f n (t) -g n (t)| ≤ C/ √	n.
	With (A.10), we obtain	
	∆ n ≤ C |g n = C 1/n≤|t|≤ρ √ n 1 |t| 1/n≤|t|≤ρ √ n 1 |t| e Since x 0 t 2	

√ n + |t| -1 |1e -σ 2 t 2 /2 | dt = O(n -1/2 ). n (t)e -σ 2 t 2 /2 | dt + O(n -1/2 ).

We have

f n (t) = λ(t/ √ n) n µ(t/ √ n) + ǫ n (t

), where ǫ n (t) tends exponentially fast to 0, while µ(t) = 1 + O(t). Let g n (t) = λ(t/ √ n) n . By (A.10), if ρ is small enough, we have |λ(t)| ≤ e -σ 2 t 2 /4 for |t| ≤ ρ. This yields |λ(t/ √ n)| n ≤ e -σ 2 t 2 /4 for |t| ≤ ρ √ n. Hence, (A.15)

Theorem (see e.g. [START_REF] Aaronson | Remarks on the tightness of cocycles[END_REF]), this implies that f is an L 2 coboundary: there exists u ∈ L 2 such that f = uu • T almost everywhere. Then (3.72)

Tt (e -itu ) = T (e itf e -itu ) = T (e -itu•T ) = e -itu .

By [START_REF] Cassius | Théorie ergodique pour des classes d'opérations non complètement continues[END_REF], this yields e -itu ∈ L. In particular, the function e -itu is continuous for any small enough t. Lemma 3.21 shows that u itself is continuous.

In particular, there exists a cylinder [b 0 , . . . , b k ] on which u is bounded. Since f is bounded on each element of the partition α, the equation f = uu • T implies that u is bounded on b k . Together with the topological transitivity of T , we obtain that u is bounded on each a ∈ α.

Let {a 1 , . . . , a n } be a finite subset of α such that each element of α contains the image of one of the a i s (it exists by the big preimage property). Let a ∈ α, choose i such that a ⊂ T (a i ), then the equation

This shows that u is uniformly bounded, as desired.

In fact, a slightly refined version of the same argument also shows that u is Hölder continuous.

Lemma 3.21. Let u be a real function on a metric space X, and assume that e itu is continuous for t ∈ [a, b] a nontrivial interval of R. Then u is continuous.

Proof. We will show that, if v n is a real sequence such that e itvn converges to 0 for any t ∈ [a, b], then v n → 0. Applying this result to v n = u(x n )u(x) when x n → x, this gives the required continuity of u at x ∈ X, for any x. Let δ ∈ (0, 1). Then ∆ n = O(n -δ/2 ) if and only if E(f 2 1 |f |>x ) = O(x -δ ) when x → ∞.