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AN INTERVAL MAP WITH A SPECTRAL GAP ON LIPSCHITZ FUNCTIONS, BUT NOT ON BOUNDED VARIATION FUNCTIONS

We construct a uniformly expanding map of the interval, preserving Lebesgue measure, such that the corresponding transfer operator admits a spectral gap on the space of Lipschitz functions, but does not act continuously on the space of bounded variation functions.

To study the statistical properties of uniformly expanding maps, a very successful strategy is to find a Banach space on which the transfer operator of the map admits a spectral gap (see e.g. [START_REF] Baladi | Positive transfer operators and decay of correlations[END_REF] and references therein). In dimension d ≥ 2, several Banach spaces have been considered, suited to different situations. However, in one dimension, it is commonly acknowledged that the space BV of bounded variation functions is the best space to work with (see nevertheless [START_REF] Keller | Generalized bounded variation and applications to piecewise monotonic transformations[END_REF] for examples of suitable function spaces when the derivative is only Hölder continuous).

The purpose of this note is to exhibit a very specific example showing that, quite surprisingly, the behavior on Lip can be better than the behavior on BV: we will construct a uniformly expanding map T of the interval I = [0, 1), preserving Lebesgue measure, such that the transfer operator L associated to T (defined by duality by f • g • T dLeb = L f • g dLeb) admits a spectral gap on the space Lip of Lipschitz functions, while it does not act continuously on BV.

The main motivation for this short note is the articles [START_REF] Dehling | New techniques for empirical process of dependent data[END_REF] and [START_REF] Durieu | A fourth moment inequality for functionals of stationary processes[END_REF], in which the authors prove results on empirical processes assuming that the transfer operator admits a spectral gap on Lip. Since similar results were already known when the transfer operator admits a spectral gap on BV, our example shows that these articles really have new applications.

Our example is a Markov map of the interval, with (infinitely many) full branches. The difficulty in constructing such an example is that the usual mechanisms that imply continuity on Lip also imply continuity on BV: if L v denotes the part of the transfer operator corresponding to an inverse branch v of T (so that L = v L v ), one has L v BV→BV ≤ C L v Lip→Lip , for some universal constant C. To take this fact into account, our example will therefore involve pairs of branches v and w such that L v and L w behave badly on Lip, while the sum L v + L w behaves nicely, thanks to nontrivial compensations.
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If f is a function defined on [0, 1), we will write

f Lip = sup |f | + Lip(f ), where Lip(f ) = sup |f (x) -f (y)|/|x -y|.
Let us fix a sequence (a n ) n∈N * of positive real numbers, with a n < 1/4, as well as an integer N > 0. Our construction will depend on them, and we will show that a good choice of these parameters gives the required properties.

Let

I n = [4 n-1 k=1 a k , 4 n k=1 a k ).
We decompose this interval (of length 4a n ) into two subintervals of length 2a n that we denote respectively by I

(1) n and I

(2) n . We have

1 0 a n (1 + 2 cos 2 (2πn 4 x)) dx = 1 0 a n (1 + 2 sin 2 (2πn 4 x)) dx = 2a n .
We can therefore define two maps v n and w n on [0, 1), with respective images I

(1)

n and I (2) n , such that v ′ n (x) = a n (1 + 2 cos 2 (2πn 4 x)) and w ′ n (x) = a n (1 + 2 sin 2 (2πn 4 x))
. We define T on I n by imposing that v n and w n are two inverse branches of T . It remains to define T on J := [4 ∞ n=1 a n , 1). We cut this interval into N subintervals of equal length, and let T send each of these intervals affinely onto [0, 1).

Main theorem. If a n = 1/(100n 3 ) and N = 4, then the map T preserves Lebesgue measure and the associated transfer operator has a spectral gap on the space of Lipschitz functions, with a simple eigenvalue at 1 and no other eigenvalue of modulus 1. On the other hand, the transfer operator does not act continuously on the space of bounded variation functions.

For the proof, we will work with general values of a n and N , and specialize them only at the end of the argument.

Lemma 1. The map T preserves Lebesgue measure.

Proof. At a point x, the sum of the derivatives of the inverse branches of T is equal to

∞ n=1 (v ′ n (x) + w ′ n (x)) + N • |J|/N = ∞ n=1 a n (2 + 2 cos 2 (2πn 4 x) + 2 sin 2 (2πn 4 x)) + |J| = ∞ n=1 4a n + |J| = 1.
Let L be the transfer operator of T associated to Lebesgue measure, given by L f (x) = T (y)=x f (y)/T ′ (y). Let also

L n f (x) = T (y)=x, y∈In f (y)/T ′ (y) = v ′ n (x)f (v n x) + w ′ n (x)f (w n x),
and M f (x) = T (y)=x, y∈J f (y)/T ′ (y), so that L = n L n + M.

Lemma 2. Assume that lim sup n 4 a n = ∞. Then, for any k ≥ 1, the operator L k does not act continuously on the space BV of bounded variation functions.

Proof. Let us fix an inverse branch v of T with v(I) ⊂ J (v is affine and its slope is |J|/N ). Fix k > 0. Let χ n be the characteristic function of the interval v k-1 • v n (I). Its variation is bounded by 2. Moreover,

L k χ n (x) = a n (1 + 2 cos 2 (2πn 4 x))(|J|/N ) k-1 , hence the variation of L k χ n is at least C(k)a n n 4 , for some C(k) > 0.
This concludes the proof.

The next lemma is the crucial lemma: it ensures that L n behaves well on Lip, while we have seen (in the proof of Lemma 2) that it is not the case on BV. We should emphasize that each branch of L n behaves badly on Lip: this is the addition of the two branches that gives a better behavior, thanks to the compensations of the bumps of v ′ n and w ′ n . Lemma 3. We have

L n f Lip ≤ a n (32πn 4 a n + 8) f Lip . Proof. Let us decompose L n /a n as L n f (x)/a n = (1 + 2 cos 2 (2πn 4 x))f (v n x) + (1 + 2 sin 2 (2πn 4 x))f (w n x) = (f (v n x) + 3f (w n x)) + 2 cos 2 (2πn 4 x)(f (v n x) -f (w n x)) =: L (1) n f (x) + 2 L (2) n f (x).
We have L

(1)

n f C 0 ≤ 4 f C 0 .
Moreover, since v n and w n are contracting by a factor at least 3a n , we have Lip(L

(1) n f ) ≤ 12a n Lip(f ) ≤ 3 Lip(f ). Hence, L (1) 
n f Lip ≤ 4 f Lip .

Let us now turn to L

(2)

n . It satisfies L (2) n f C 0 ≤ 2 f C 0 . Moreover, for any x, y L (2) n f (x) -L (2) n f (y) = (cos 2 (2πn 4 x) -cos 2 (2πn 4 y))(f (v n x) -f (w n x)) + cos 2 (2πn 4 y)((f (v n x) -f (v n y)) -(f (w n x) -f (w n y))).
Since the derivative of cos 2 (2πn 4 x) is bounded by 4πn 4 , the first term is at most 4πn 4 |x-y||f (v n x)-f (w n x)|. The distance between v n x and w n x being at most the length of I n , i.e., 4a n , we therefore get a bound 16πn 4 a n |x -y| Lip(f ). For the second term, cos 2 (2πn 4 y) is bounded by 1, and |f

(v n x) - f (v n y)| ≤ 3a n Lip(f )|x -y| ≤ Lip(f )|x -y|. Similarly, |f (w n x) -f (w n y)| ≤ Lip(f )|x -y|.
This second term is therefore bounded by 2|x -y| Lip(f ). We obtain Lip(L (2) n f ) ≤ (16πn 4 a n + 2) Lip(f ). This proves the lemma.

Let us fix once and for all a n = c/n 3 , with c small enough so that (1)

∞ n=1 L n f Lip ≤ 1 2 f Lip .
Using Lemma 3, one can check that c = 1/100 is sufficient.

Lemma 4. If N ≥ 4, the operator L satisfies L f Lip ≤ 3 4 f Lip + f C 0 .
Proof. The operator M satisfies by construction M f C 0 ≤ |J| f C 0 , and Lip(M f ) ≤ |J| Lip(f ) • |J| N (since every inverse branch of T on J contracts by a factor |J|/N ). With (1), we obtain

L f Lip ≤ 1 2 + |J| 2 N f Lip + |J| f C 0 .
This gives the desired conclusion if N ≥ 4, since |J| ≤ 1.

Proof of the main theorem. By Lemma 2, the choice of a n ensures that the transfer operator L does not act continuously on BV. On the other hand, since the inclusion of Lip in C 0 is compact, Lemma 4 and Hennion's theorem show that the essential spectral radius of L acting on Lip is ≤ 3/4 < 1.

It remains to study the eigenvalues of modulus 1 of L. Let f be a nonzero eigenfunction for such an eigenvalue λ. Let x be such that |f (x)| is maximal, then There is equality everywhere in these inequalities. Hence, |f (y)| = |f (x)| for any preimage y of x, and the complex numbers f (y) all have the same argument. This shows that f is constant on the set T -1 (x). Applying the same argument to L n , we see that f is constant on T -n (x). This set being more and more dense as n tends to infinity, this shows that f is constant, concluding the proof.

  |f (x)| = | L f (x)| = T (y)=x f (y)/T ′ (y) ≤ T (y)=x |f (y)|/T ′ (y) ≤ T (y)=x sup |f |/T ′ (y) = |f (x)|.