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Abstract. Data from the Jicamarca digisonde and the
ROCSAT-1 satellite are employed to study the equatorial
ionosphere on the west side of South America during April
1999–March 2000 for the concurrent bottomside spread
F (BSSF) and plasma bubble events. This study, using
digisonde and ROCSAT-1 concurrently, is the first attempt to
investigate the equatorial spread F. Results show that BSSF
and plasma bubble observations appear frequently respec-
tively in the summer (January, February, November, and De-
cember) and in the equinoctial (March, April, September,
and October) months, respectively, but are both rarely ob-
served in the winter (May–August) months. The upward
drift velocity during the concurrent BSSF and bubble obser-
vations has been determined to study the driving mechanism.
This analysis shows that large vertical drift velocities favor
BSSF and bubble formations in the equinoctial and sum-
mer months. Conversely, the smaller upward velocities dur-
ing the winter months cause fewer BSSF and bubble occur-
rences. For the geomagnetic effect, the BSSF/bubble occur-
rence decreases with an increasingKp value in the equinoc-
tial months, but no such correlation is found for the summer
and winter months. Moreover, the anti-correlations between
Kp and dh′F /dt are apparent in the equinoctial months, but
not in the summer and winter months. These results indi-
cate that in the equinoctial months the BSSF/bubble gener-
ations and the pre-reversal drift velocity can be suppressed
by geomagnetic activity, because the disturbance dynamo ef-
fects could have decreased the eastward electric field near
sunset. However, BSSF and bubble occurrences may not be
suppressed by the geomagnetic activity in the summer and
winter months.
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1 Introduction

Plasma irregularities and inhomogeneities in the equatorial F
region caused by plasma instabilities are called the equato-
rial spread F (ESF) (e.g. Kelley, 1989). Many investigators
(Tsunoda et al., 1982; Zalesack et al., 1982; Kelley, 1989;
Sultan, 1996) have proposed that the instability processes, in-
volving the gravitational Rayleigh-Taylor (GRT) andE×B

instabilities, could have started with irregularities in the bot-
tomside F-layer (bottomside spread F, BSSF). Further, the
nonlinear development of instabilities will form the vertical
elongated wedges of plasma depletions (bubbles) that drift
upward from the bottomside F-layer to altitudes as high as
1500 km (e.g. Kelley, 1989; Sultan, 1996). According to the
previous investigations (e.g. Aarons, 1993; Whalen, 2002),
the irregularities of the equatorial BSSF are usually confined
to below the F-peak. Therefore, BSSF, which maps via the
geomagnetic field to a narrow band of latitude, is observed
only by sounders near the dip equator. On the other hand,
plasma bubbles can extend to a wider latitudinal coverage,
because the flux tubes in a vertical wedge are typical depleted
along their north-south extent (Whalen, 1997, 2002).

Since the original description of the equatorial BSSF and
bubble by Woodman and La Hoz (1976), the two have been
interesting subjects of many studies (e.g. Whalen, 1997,
2002; Fejer et al., 1999; Huang, 2001; Su et al., 2001). The
past results indicate that the occurrences of both BSSF and
bubble depend on season, longitude, solar cycle, and geo-
magnetic activity (Maruyama and Matuura, 1984; Whalen,
1997, 2002; Fejer et al., 1999; Huang, 2001; Lee at al.,
2005). Nevertheless, little work has been published exam-
ining the simultaneous occurrence of BSSF and bubble in
the equatorial ionosphere (Whalen, 1997, 2002). In his first
report, Whalen (1997) compared the monthly occurrence of
bubble with that of BSSF during solar maximum, using a
chain of ionospheric sounders in the western American sec-
tor. He found that the BSSF and bubble occurrences were
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Fig. 1. The location of Jicamarca digisonde (black dot) and the
area for ROCSAT-1 data selection (shaded area). The solid circle
represents the wide beam of the digisonde transmit antenna at 600-
km altitude. The shaded area is through±15◦ dip latitudes and
355±5◦ geomagnetic longitudes. An example of a ROCSAT-1 pass
(solid line) and the associated ion density measurement (red line) is
during 03:50–04:02 UT on 24 March 2000.

greater in the summer (December) and equinoctial (April and
September) months, and had a minimum in the winter (July)
months. Then Whalen (2002) employed the same data set
to study the dependence of BSSF and bubble occurrences on
season, the geomagnetic activity, and theE×B drift veloc-
ity. He suggested that bubble occurrence is associated with
the magnitude of the drift velocity, and the BSSF/bubble gen-
eration is suppressed by the geomagnetic activity.

Although Whalen (1997, 2002) simultaneously investi-
gated the BSSF and bubble formations in the equatorial iono-
sphere, he did not use satellite data or estimated the vertical
drift velocity from his data set. The vertical drift velocity has
been known to greatly affect the occurrences of the BSSF
and plasma bubble (Fejer et al., 1999). Therefore, to study
the BSSF and bubble more thoroughly, we employ the Jica-
marca (12◦ S, 76.9◦ W, dip latitude: 1.2◦ N) digisonde data
and the ROCSAT-1 observations of plasma bubbles, to study
the equatorial ionosphere from April 1999 to March 2000. In
particular, the verticalE×B drift derived from the minimum
virtual height of the F-layer (h′F) on the observed ionogram
is used in this study. Moreover, we have used these data to
examine the dependence of the BSSF and bubble occurrences
on season, theE×B drift velocity, and the geomagnetic ac-
tivity (Kp) in the current study.

Fig. 2. Two ionogram examples of Jicamarca BSSF at(a) 03:30 and
(b) 04:00 UT on 24 March 2000.

2 Experiment setup

The Jicamarca digisonde (12◦ S, 76.9◦ W, dip latitude:
1.2◦ N, geomagnetic longitude: 355◦, see Fig. 1) observes
the ionosphere near the dip equator. The solid circle in Fig. 1
represents a wide beam illuminating an area of∼500-km ra-
dius at 600 km altitude of the digisonde transmit antenna.
The ionogram data with a time interval of 30 min during
April 1999–March 2000, which is close to the peak of solar
cycle 23 which is in April 2000, are used for this study. No-
tice that in this period, the monthly smoothed sunspot num-
bers are between 85.5–119.9 and the monthly average values
of F10.7 solar flux are 118.0–206.1. The presence/absence
of a BSSF and other ionospheric parameters, for example,
h′F (minimum virtual height of the F layer),foF2 (maxi-
mum frequency of F-layer), RF (range spread in km), were
obtained by the ARTIST program (Reinisch, 1996) and man-
ual works. For example, two ionograms of BSSF at 03:30
and 04:00 UT of 24 March 2000 are displayed in Figs. 2a
and b, respectively. Because we focus on the pre-midnight
BSSF, only BSSF that occurred between 18:00 and 24:00 LT
(LT=UT–5 h) is included in the statistical analysis. More-
over, we deduced the value of dh′F /dt from the temporal
rate (the time interval is 30 min) ofh′F . Notably, the value
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Fig. 3. Illustration of the bubble distribution in altitude and in relation to the geomagnetic fields. An equatorial bubble can rise to high
altitudes and extent via the geomagnetic field to high latitudes as∼16◦ dip latitude (gray area) where the crest of equatorial ionization
anomaly is located. When a bubble intersects the anomaly crest, it is detectable at 600 km between±15◦ dip latitude by the ROCSAT-1.

Table 1. Numbers of BSSF day, digisonde day, bubble day, and ROCSAT-1 day for each month during April 1999–March 2000.

month Jan Feb Mar Apr Mai Jun Jul Aug Sep Oct Nov Dec

BSSF day (days) 17 26 30 20 12 7 9 14 21 21 25 23

digisonde day (days) 17 28 31 26 27 22 20 29 26 25 26 24

bubble day (days) 6 9 9 3 0 0 0 1 4 6 3 5

ROCSAT-1 day (days) 16 25 17 15 12 12 12 14 12 13 11 20

of dh′F /dt can describe theE×B drift velocity, according
to Bittencourt and Abdu (1981). SinceE×B drift generally
reaches its maximum value before the onset of a BSSF (e.g.
Fejer et al., 1999; Whalen, 2002; Lee et al., 2005), we uti-
lize the maximum value of dh′F /dt (hereafter described as
dh′F /dt) between 18:00 LT and the time of BSSF onset in
the following analysis.

Bubbles are recorded by the ion trap (IT) on board
ROCSAT-1 orbiting at a 600-km altitude with a 35◦ inclina-
tion (see Yeh et al. (1999) for detail). For a concurrent study
with the Jicamarca BSSF, we chose the plasma bubbles that
appear in the area inside±15◦ dip latitudes and 355±5◦ ge-
omagnetic longitudes (shaded area in Fig. 1) during 18:00–
24:00 LT. The±15◦ dip latitude limit is chosen because it
is near the location of the crests of the equatorial ionization
anomaly in both the north and south hemispheres (dark el-
lipse in Fig. 3) where bubbles can be extended via the geo-
magnetic field (Whalen, 1997, 2002). The region of 355±5◦

geomagnetic longitudes is chosen because of the coverage
of the beam width of the Jicamarca digisonde. Therefore,

a bubble that appears in the gray area of Fig. 1 during pre-
midnight can be associated with bubbles that are over the
top of the Jicamarca BSSF. An example of a ROCSAT-1
bubble (red line) that appears simultaneously with the Jica-
marca BSSF (shown in Fig. 2) and the associated satellite
pass (solid line) during 03:50–04:02 UT on 24 March 2000
are shown in Fig. 1.

3 Results and discussion

3.1 Seasonal occurrences of BSSF and bubble formation

In each month, the number of days (BSSF day) on which at
least one pre-midnight BSSF event is observed on that day
and the number of days of digisonde observation (digisonde
day) are shown in Table 1. For the bubble events, the num-
ber of days (bubble day) on which at least one pre-midnight
bubble event is observed in the chosen area (Fig. 1) on that
day and the number of days (ROCSAT-1 day) on which the
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Fig. 4. The seasonal variations in the BSSF (solid line) and bubble
(dashed line) occurrences during March 1999–April 2000.

ROCSAT-1 passes over the chosen area during pre-midnight
are also displayed in Table 1.

Figure 4 shows the seasonal variation in the occurrence
probabilities of BSSF (solid line) and bubble (dashed line)
between April 1999 and March 2000. The occurrence prob-
ability of BSSF is the ratio of BSSF day to digisonde day.
For the occurrence of BSSF, the highest (100%) and lowest
(32%) probabilities of occurrence fall in January (summer)
and in June (winter), respectively. During the equinoctial
months (March, April, September, and October), the occur-
rence probabilities are more than 75%. Generally, the BSSF
occurrence is higher in the summer (November, December,
January, and February)/the equinoctial months, than in the
winter months (May, June, July, and August). The seasonal
variation of the Jicamarca BSSF occurrence is similar with
that in the Huancayo (12◦ S, 75.3◦ W) BSSF occurrence rate
reported by Whalen (2002) for 1958. He found that the high-
est and lowest occurrence rates of total BSSF (his Fig. 4) are
in December and July, respectively.

For the bubble event, the occurrence probability is the ra-
tio of bubble day to ROCSAT-1 day. It is found that in Fig. 4
the highest occurrence probability for bubbles does not exist
in the summer months. Two peaks of high bubble occurrence
probability are noticed in March (53%) and October (46%),
with the lowest occurrence in the winter months. Notably,
only one bubble has been observed by ROCSAT-1 in August
and none during May-July (0%). Such distribution for the
two-peak variation in bubble occurrence has also been pro-
posed by Huang et al. (2001) and Whalen (2002). Huang
et al. (2001) showed that DMSP F9 measured the highest
occurrences of the equatorial plasma bubble over Huancayo
(their Fig. 7) in March and October. In addition, Whalen
(2002) concluded that the two peaks of bubble occurrence

Fig. 5. The seasonal variations in the monthly mean dh′F /dt of
the BSSF (black line) and bubble (gray line) events. The error bar
represents the standard deviation of the mean dh′F /dt in the BSSF
and bubble events.

are in April and September (his Fig. 4). It is now known
that the seasonal variation in the BSSF occurrence is related
to the magnitude of the maximum pre-reversal drift velocity
and the late reversal time of the vertical velocity (Fejer et al.,
1999; Whalen, 2002). However, the reason for the seasonal
variation in the bubble occurrence is still not clear. Although
Whalen (2002) suggested that the bubble occurrence is asso-
ciated with the magnitude of the maximum pre-reversal drift
velocity, he did not compare the probability of bubble occur-
rence with the vertical drift velocity of his data set. Thus, it is
necessary to study the relationship between the BSSF/bubble
occurrence and the associated vertical drift velocity.

3.2 Seasonal variation in dh′F /dt

In this section, we examine the seasonal variations in the
monthly mean value of dh′F /dt (Fig. 5). The mean value of
dh′F /dt for the BSSF (black line)/bubble (gray line) events
in a month is the average of the maximum pre-reversal
drift velocities of days on which at least a pre-midnight
BSSF/bubble is observed. For the BSSF event, the mean
dh′F /dt peaks in March (32 m/s) and in October (28 m/s).
During the summer and winter months, the mean dh′F /dt
are 20–27 and 14–18 m/s, respectively. Regarding the bub-
ble event, there are also two peaked values found, one in
March (35 m/s) and the other in October (33 m/s). The val-
ues of the mean dh′F /dt are 20–31 and 20 m/s in the sum-
mer months and in August, respectively. During the months
from May to July, no dh′F /dt is calculated because no bub-
ble appeared in these months. These seasonal variations are
close to what Fejer et al. (1999) found (his Fig. 8). They
claimed that the largest and smallest vertical velocities are
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found at the equinox and the June solstice, respectively. The
values of the maximum vertical velocity during the high so-
lar activity period obtained by Fejer et al. (1999) are 33–48,
28–34, and 18 m/s in the equinoctial, summer, and winter
months, respectively. Notably, in Fig. 5, the values of mean
dh′F /dt (standard deviation) are generally larger (smaller)
for the bubble event than for the BSSF event.

For the BSSF events, the seasonal variation in the mean
dh′F /dt is different from that in the BSSF occurrence (solid
line in Fig. 4). During the equinoctial months, a larger
dh′F /dt and a higher BSSF occurrence rate indicate that a
larger upward drift lifts the F-layer to higher altitudes, which
not only results in a favorable condition for the GRT insta-
bility but also causes anE×B drift instability (Maruyama,
1988; Kelley, 1989). In contrast, the small dh′F /dt value
and the lower occurrence in the winter months suggest that
the F-layer is not raised to an altitude high enough to gener-
ate instabilities. These relations between the mean value of
dh′F /dt and the BSSF occurrence distribution indicate that
the pre-reversalE×B drift plays an important role in the
seeding mechanism of developing BSSF (Sultan, 1996; Fejer
et al., 1999; Whalen, 2002; Lee et al., 2005). Additionally,
during the summer months, the highest BSSF occurrence and
the mean values of dh′F /dt, 20–27 m/s, suggest that another
mechanism would also help the BSSF formation. In addition,
the late reversal time of the upward drift velocity should be
another reason to account for the highest occurrence proba-
bility at December solstice, because the late reversal time is
favorable for the development of strong scattering layers in
the F-region (Maruyama, 1988; Fejer et al., 1999).

For the bubble events, the mean dh′F /dt and the probabil-
ity occurrence (dashed line in Fig. 4) both show peaks oc-
curring in March and October. This coincidence between
the two demonstrates that the magnitude of the maximum
pre-reversal velocity is a principle mechanism for the bubble
generation. Furthermore, the result obtained in this obser-
vation supports the report of Whalen (2002), who compared
the bubble occurrence with the maximum pre-reversal drift
velocity of Fejer et al. (1999).

3.3 Geomagnetic effect on the occurrence of BSSF and
bubble formation

The occurrence of BSSF/bubbles was examined for each day
in relation to the geomagnetic activity of that day, which is
taken as the average value ofKp recorded during the 6 h prior
to the BSSF onset (e.g. Fejer et al., 1999; Whalen, 2002).
Notice that the averageKp (hereafter referred simply asKp)
is generally derived from the interval of 18:00-24:00 UT
(13:00-19:00 LT). The numbers of BSSF day, digisonde day,
bubble day, and ROCSAT-1 day for eachKp in the equinoc-
tial, summer, and winter months are displayed in Tables 2, 3,
and 4, respectively.

The occurrence probabilities of BSSF (black bar) and bub-
bles (gray bar) observed are categorized by season and plot-
ted versusKp in Fig. 6. The occurrence probability in each
Kp for the BSSF (bubble) event is the ratio of BSSF (bubble)

Table 2. Numbers of BSSF day, digisonde day, bubble day, and
ROCSAT-1 day for each averageKp in the equinoctial months.

averageKp 0 1 2 3 4 5 6 7

BSSF day (days) 5 32 16 20 17 2 0 0

digisonde day (days) 5 33 18 25 22 4 0 1

bubble day (days) 3 9 5 3 2 0 0 0

ROCSAT-1 day (days) 4 15 12 11 14 1 0 0

Table 3. Numbers of BSSF day, digisonde day, bubble day, and
ROCSAT-1 day for each averageKp in the summer months.

averageKp 0 1 2 3 4 5 6 7

BSSF day (days) 6 18 23 28 14 2 0 0

digisonde day (days) 6 19 24 28 14 3 1 0

bubble day (days) 1 4 7 6 4 1 0 0

ROCSAT-1 day (days) 5 15 13 23 12 3 1 0

Table 4. Numbers of BSSF day, digisonde day, bubble day, and
ROCSAT-1 day for each averageKp in the winter months.

averageKp 0 1 2 3 4 5 6 7

BSSF day (days) 9 11 10 8 2 1 0 1

digisonde day (days) 12 30 26 20 7 2 0 1

bubble day (days) 0 0 0 0 1 0 0 0

ROCSAT-1 day (days) 7 14 12 9 5 2 0 1

day to digisonde (ROCSAT-1) day. In the equinoctial months
(Fig. 6a), BSSF occurs frequently or less frequently when
Kp is 0 or 5, respectively. The occurrence probability for
a BSSF event tends to decrease with increasingKp in this
season. Such a descending trend in occurrence probability
for Kp=0 to 4 also appears for the bubble events. On the
other hand, during the summer and winter months, no de-
scending trend fromKp=0 to 5 is found in the distribution
of the BSSF and bubble events (Figs. 6b and c). Note that
since there was only a single event, the descending trend in
the bubble event cannot be identified for the winter months.
Based on Fejer et al. (1999) and Whalen (2002), the descend-
ing trend in the equinoctial months indicates that increasing
the geomagnetic activity would progressively suppress the
BSSF and bubble developments in this season. However,
these results are different from the report by Whalen (2002)
(his Fig. 5), who reported that the descending trends in the to-
tal BSSF and macroscopic bubble occurrences are observed
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Fig. 6. Occurrence probabilities of BSSF (black bar) and bubble (gray bar) for equinoctial(a), summer(b), and winter(c) months plotted as
a function ofKp determined as the average during the 6 h prior to measurement.

Fig. 7. Scatter plots ofKp and dh′F /dt for the BSSF and bubble events in the equinoctial(a, d), summer(b, e), winter (c) months.
The correlation coefficient and 95% corresponding confidence interval (C. I.) are displayed in the upper-left corner. The solid line is the
least-squares straight line fitting to the points.

in the equinoctial and summer months, but not in the winter
months. This difference might be related to the geomagnetic
effect on the pre-reversal vertical velocity.

Consequently, the scatter plots ofKp and dh′F /dt for
the BSSF and bubble events in the equinoctial, summer,
and winter months are shown in Fig. 7. In the equinoc-
tial months (Figs. 7a and d), the correlation coefficients

(–0.57 and –0.72) and 95% corresponding confidence in-
tervals – (–0.71, –0.39) and (–0.93,–0.52) mean thatKp

and dh′F /dt are moderately and well anti-correlated in
the BSSF and bubble events, respectively. Notice that
the 95% corresponding confidence interval is obtained by
the Fisher’sz-transformation with a normal approxima-
tion (David, 1938). The least-squares straight lines fitting
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to the points are given byKp= –0.09×dh′F /dt+4.95 and
Kp= –0.14×dh′F /dt+6.24 for the BSSF and bubble events,
respectively. The moderate and well anti-correlations reveal
that the geomagnetic activity in this season would inhibit
the maximum pre-reversal velocity, and further suppress the
BSSF and bubble generations (Fig. 6a). This suppression ef-
fect is due to the disturbance dynamo electric fields which
decrease the upward drift velocity near the sunset terminator
(Scherliess and Fejer, 1997; Fejer et al., 1999). Moreover,
the greater value of the absolute coefficient in Fig. 7d sug-
gests that the suppression effect of geomagnetic activity is
more effective for bubble than for BSSF development.

For the summer months, the correlation coefficients
(–0.49 and –0.28) and the least-squares straight lines
(Kp= –0.08×dh′F /dt+4.77 andKp= –0.04×dh′F /dt+3.93)
of the BSSF and bubble events are displayed in Figs. 7b
and e. The moderate anti-correlation of –0.49 indicates that
the geomagnetic activity could suppress the vertical veloc-
ity in the BSSF event. However, the poor anti-correlation
(–0.28) indicates that the geomagnetic suppression effect on
dh′F /dt is not evident in the bubble event. Recall that the
descending trend is not obvious in Fig. 6b; the geomag-
netic suppression effects on the vertical velocity, and the
BSSF and bubble formations are not evident in this sea-
son. Similarly, in the winter months (Fig. 7c), the moderate
anti-correlation is –0.45 and the least-squares straight line is
Kp= –0.12×dh′F /dt+4.66. Notice that the descending trend
in the plot of BSSF days versusKp is not evident in Fig. 6c.
Therefore, in this season, the geomagnetic suppression due to
the disturbance dynamo electric fields does not affect either
the vertical drift velocity or the BSSF generation.

4 Summary and conclusion

We have analyzed one year of data of BSSF and bubble ob-
servations in the equatorial ionosphere. This analysis is the
first attempt to investigate concurrently the equatorial BSSF
and bubble occurrences, respectively, obtained by the Jica-
marca digisonde and ROCSAT-1 during April 1999–March
2000. The occurrence dependences of BSSF and bubble for-
mation on season, dh′F /dt, andKp were also examined in
the work.

For the BSSF events, the higher occurrence probabilities
correlate well with a larger mean dh′F /dt (>20 m/s) in the
equinoctial and summer months. This result confirms that a
larger pre-reversal velocity will lift the F-layer to higher al-
titudes, and, in turn, help to develop the bottomside F-layer
irregularities in these seasons. In contrast, a lower occur-
rence probability and a smaller vertical velocity in the win-
ter months indicates that the small pre-reversal velocity can-
not raise the F-layer high enough to generate irregularities.
For the bubble events, the two-peak distribution with maxi-
mums in March and October is coincidentally observed in the
seasonal variations for both the bubble occurrence and the
mean dh′F /dt. This propounds that the bubble generation is

associated with the magnitude of the maximum pre-reversal
drift velocity.

For the geomagnetic activity, we have demonstrated that
the number of days for a BSSF/bubble event decreases with
increasingKp in the equinoctial months, but not in the sum-
mer and winter months. The fact of this anti-correlation sug-
gests that the geomagnetic activity progressively suppresses
the BSSF and bubble developments in that season. Addi-
tionally, well to moderate anti-correlations betweenKp and
dh′F /dt show that the pre-reversal drift velocity could be in-
hibited by the geomagnetic activity, likely as a result of the
disturbance dynamo effects. In contract, the BSSF and bub-
ble generations may not be suppressed by the geomagnetic
activity in the summer and winter months.
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