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SOLVING VARIATIONAL INEQUALITIES WITH STOCHASTIC

MIRROR-PROX ALGORITHM

ANATOLI JUDITSKY∗, ARKADI NEMIROVSKI† , AND CLAIRE TAUVEL‡

September 4, 2008

Abstract. In this paper we consider iterative methods for stochastic variational inequalities

(s.v.i.) with monotone operators. Our basic assumption is that the operator possesses both smooth
and nonsmooth components. Further, only noisy observations of the problem data are available. We
develop a novel Stochastic Mirror-Prox (SMP) algorithm for solving s.v.i. and show that with the
convenient stepsize strategy it attains the optimal rates of convergence with respect to the prob-
lem parameters. We apply the SMP algorithm to Stochastic composite minimization and describe
particular applications to Stochastic Semidefinite Feasability problem and Eigenvalue minimization.
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1. Introduction. Let Z be a convex compact set in Euclidean space E with
inner product 〈·, ·〉, ‖ · ‖ be a norm on E (not necessarily the one associated with the
inner product), and F : Z → E be a monotone mapping:

∀(z, z′ ∈ Z) : 〈F (z) − F (z′), z − z′〉 > 0)(1.1)

We are interested to approximate a solution to the variational inequality (v.i.)

find z∗ ∈ Z : 〈F (z), z∗ − z〉 6 0 ∀z ∈ Z(1.2)

associated with Z,F . Note that since F is monotone on Z, the condition in (1.2) is
implied by 〈F (z∗), z − z∗〉 > 0 for all z ∈ Z, which is the standard definition of a
(strong) solution to the v.i. associated with Z,F . The inverse – a solution to v.i. as
defined by (1.2) (a “weak” solution) is a strong solution as well – also is true, provided,
e.g., that F is continuous. An advantage of the concept of weak solution is that such
a solution always exists under our assumptions (F is well defined and monotone on a
convex compact set Z).

We quantify the inaccuracy of a candidate solution z ∈ Z by the error

Errvi(z) := max
u∈Z

〈F (u), z − u〉;(1.3)

note that this error is always > 0 and equals zero iff z is a solution to (1.2).
In what follows we impose on F , aside of the monotonicity, the requirement

∀(z, z′ ∈ Z) : ‖F (z) − F (z′)‖∗ 6 L‖z − z′‖ +M(1.4)

with some known constants L > 0,M > 0. From now on,

‖ξ‖∗ = max
z:‖z‖61

〈ξ, z〉(1.5)
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is the norm conjugate to ‖ · ‖.
We are interested in the case where (1.2) is solved by an iterative algorithm based

on a stochastic oracle representation of the operator F (·). Specifically, when solving
the problem, the algorithm acquires information on F via subsequent calls to a black
box (“stochastic oracle”, SO). At i-th call, i = 0, 1, ..., the oracle gets as input a
search point zi ∈ Z (this point is generated by the algorithm on the basis of the
information accumulated so far) and returns the vector Ξ(zi, ζi), where {ζi ∈ RN}∞i=1

is a sequence of i.i.d. (and independent of the queries of the algorithm) random
variables. We suppose that the Borel function Ξ(z, ζ) is such that

∀z ∈ Z : E {Ξ(z, ζ1)} = F (z), E
{
‖Ξ(z, ζi) − F (z)‖2

∗
}

6 N2.(1.6)

We call a monotone v.i. (1.1), augmented by a stochastic oracle (SO), a stochastic

monotone v.i. (s.v.i.).
To motivate our goal, let us start with known results [5] on the limits of perfor-

mance of iterative algorithms for solving large-scale stochastic v.i.’s. To “normalize”
the situation, assume that Z is the unit Euclidean ball in E = Rn and that n is
large. In this case, the rate of convergence of a whatever algorithm for solving v.i.’s

cannot be better than O(1)
[
L
t + M+N√

t

]
. In other words, for a properly chosen pos-

itive absolute constant C, for every number of steps t, all large enough values of n
and any algorithm B for solving s.v.i.’s on the unit ball of Rn, one can point out
a monotone s.v.i. satisfying (1.4), (1.6) and such that the expected error of the
approximate solution z̃t generated by B after t steps , applied to such s.v.i., is at least

c
[
L
t + M+N√

t

]
for some c > 0. To the best of our knowledge, no one of existing algo-

rithms allows to achieve, uniformly in the dimension, this convergence rate. In fact,
the “best approximations” available are given by Robust Stochastic Approximation
(see [3] and references therein) with the guaranteed rate of convergence O(1)L+M+N√

t

and extra-gradient-type algorithms for solving deterministic monotone v.i.’s with Lip-
schitz continuous operators (see [6, 9, 10, 11]), which attains the accuracy O(1)Lt in

the case of M = N = 0 or O(1)M√
t

when L = N = 0.

The goal of this paper is to demonstrate that a specific Mirror-Prox algorithm [6]
for solving monotone v.i.’s with Lipschitz continuous operators can be extended onto
monotone s.v.i.’s to yield, uniformly in the dimension, the optimal rate of conver-

gence O(1)
[
L
t + M+N√

t

]
. We present the corresponding extension and investigate it

in details: we show how the algorithm can be “tuned” to the geometry of the s.v.i. in
question, derive bounds for the probability of large deviations of the resulting error,
etc. We also present a number of applications where the specific structure of the rate
of convergence indeed “makes a difference”.

The main body of the paper is organized as follows: in Section 2, we describe
several special cases of monotone v.i.’s we are especially interested in (convex Nash
equilibria, convex-concave saddle point problems, convex minimization). We single
out these special cases since here one can define a useful “functional” counterpart
ErrN(·) of the just defined error Errvi(·); both ErrN and Errvi will participate in
our subsequent efficiency estimates. Our main development – the Stochastic Mirror

Prox (SMP) algorithm – is presented in Section 3. Some general results obout the
performance of the SMP are presented in Section 3.2. Then in Section 4 we present
SMP for Stochastic composite minimization and discuss its applications to Stochastic
Semidefinite Feasability problem and Eigenvalue minimization. All technical proofs
are collected in the appendix.
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Notations. In the sequel, lowercase Latin letters denote vectors (and sometimes
matrices). Script capital letters, like E , Y, denote Euclidean spaces; the inner product
in such a space, say, E , is denoted by 〈·, ·〉E (or merely 〈·, ·〉, when the corresponding
space is clear from the context). Linear mappings from one Euclidean space to an-
other, say, from E to F , are denoted by boldface capitals like A (there are also some
reserved boldface capitals, like E for expectation, Rk for the k-dimensional coordi-
nate space, and Sk for the space of k × k symmetric matrices). A∗ stands for the
conjugate to mapping A: if A : E → F , then A∗ : F → E is given by the identity
〈f,Ae〉F = 〈A∗f, e〉E for f ∈ F , e ∈ E . When both the origin and the destination
space of a linear map, like A, are the standard coordinate spaces, the map is identified
with its matrix A, and A∗ is identified with AT . For a norm ‖ · ‖ on E , ‖ · ‖∗ stands
for the conjugate norm, see (1.5).

For Euclidean spaces E1, ..., Em, E = E1 × ...× Em denotes their Euclidean direct
product, so that a vector from E is a collection u = [u1; ...;um] (“MATLAB notation”)
of vectors uℓ ∈ Eℓ, and 〈u, v〉E =

∑
ℓ〈uℓ, vℓ〉Eℓ

. Sometimes we allow ourselves to write
(u1, ..., um) instead of [u1; ...;um].

2. Preliminaries.

2.1. Nash v.i.’s and functional error. In the sequel, we shall be especially
interested in a special case of v.i. (1.2) – in a Nash v.i. coming from a convex

Nash Equilibrium problem, and in the associated functional error measure. The Nash
Equilibrium problem can be described as follows: there are m players, i-th of them
choosing a point zi from a given set Zi. The loss of i-th player is a given function
φi(z) of the collection z = (z1, ..., zm) ∈ Z = Z1 × ... × Zm of player’s choices. With
slight abuse of notation, we use for φi(z) also the notation φi(zi, z

i), where zi is the
collection of choices of all but the i-th players. Players are interested to minimize their
losses, and Nash equilibrium ẑ is a point from Z such that for every i the function
φi(zi, ẑ

i) attains its minimum in zi ∈ Zi at zi = ẑi (so that in the state ẑ no player
has an incentive to change his choice, provided that the other players stick to their
choices).

We call a Nash equilibrium problem convex, if for every i Zi is a compact convex
set, φi(zi, z

i) is a Lipschitz continuous function convex in zi and concave in zi, and
the function Φ(z) =

∑m
i=1 φi(z) is convex. It is well known (see, e.g., [8]) that setting

F (z) =
[
F 1(z); . . . ;Fm(z)

]
, F i(z) ∈ ∂zi

φi(zi, z
i), i = 1, ...,m

where ∂zi
φi(zi, z

i) is the subdifferential of the convex function φi(·, zi) at a point zi,
we get a monotone operator such that the solutions to the corresponding v.i. (1.2)
are exactly the Nash equilibria. Note that since φi are Lipschitz continuous, the
associated operator F can be chosen to be bounded. For this v.i. one can consider,
along with the v.i.-accuracy measure Errvi(z), the functional error measure

ErrN(z) =
m∑

i=1

[
φi(z) − min

wi∈Zi

φi(wi, z
i)

]

This accuracy measure admits a transparent justification: this is the sum, over the
players, of the incentives for a player to change his choice given that other players
stick to their choices.

Special cases: saddle points and minimization. An important by its own right
particular case of Nash Equilibrium problem is an antagonistic 2-person game, where
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m = 2 and Φ(z) ≡ 0 (i.e., φ2(z) ≡ −φ1(z)). The convex case of this problem
corresponds to the situation when φ(z1, z2) ≡ φ1(z1, z2) is a Lipschitz continuous
function which is convex in z1 ∈ Z1 and concave in z2 ∈ Z2, the Nash equilibria are
exactly the saddle points (min in z1, max in z2) of φ on Z1 × Z2, and the functional
error becomes

ErrN(z1, z2) = max
(u1,u2)∈Z

[φ(z1, u1) − φ(u1, z2)] .

Recall that the convex-concave saddle point problem minz1∈Z1
maxz2∈Z2

φ(z1, z2) gives
rise to the “primal-dual” pair of convex optimization problems

(P ) : min
z1∈Z1

φ(z1), (D) : max
z2∈Z2

φ(z2),

where

φ(z1) = max
z2∈Z2

φ(z1, z2), φ(z2) = min
z1∈Z1

φ(z1, z2).

The optimal values Opt(P ) and Opt(D) in these problems are equal, the set of saddle
points of φ (i.e., the set of Nash equilibria of the underlying convex Nash problem)
is exactly the direct product of the optimal sets of (P ) and (D), and ErrN(z1, z2) is
nothing but the sum of non-optimalities of z1, z2 considered as approximate solutions
to respective optimization problems:

ErrN(z1, z2) =
[
φ(z1) − Opt(P )

]
+
[
Opt(D) − φ(z2)

]
.

Finally, the “trivial” case m = 1 of the convex Nash Equilibrium is the problem of
minimizing a Lipschitz continuous convex function φ(z) = φ1(z1) over the convex
compact set Z = Z1, In this case, the functional error becomes the usual residual in
terms of the objective:

ErrN(z) = φ(z) − min
Z
φ.

In the sequel, we refer to the v.i. (1.2) coming from a convex Nash Equilibrium
problem as Nash v.i., and to the two just outlined particular cases of the Nash v.i. as
the Saddle Point and the Minimization v.i., respectively. It is easy to verify that in
the Saddle Point/Minimization case the functional error ErrN(z) is > Errvi(z); this
is not necessary so for a general Nash v.i.

2.2. Prox-mapping. We once for ever fix a norm ‖ · ‖ on E ; ‖ · ‖∗ stands for the
conjugate norm, see (1.5). A distance-generating function for Z is, by definition, a
continuous convex function ω(·) : Z → R such that

1. if Zo be the set of all points z ∈ Z such that the subdifferential ∂ω(z) of ω(·)
at z is nonempty, then the subdifferential of ω admits a continuous selection
on Zo: there exists a continuous on Zo vector-valued function ω′(z) such that
ω′(z) ∈ ∂ω(z) for all z ∈ Zo;

2. for certain α > 0, ω(·) is strongly convex, modulus α, w.r.t. the norm ‖ · ‖:

∀(z, z′ ∈ Zo) : 〈ω′(z) − ω′(z′), z − z′〉 > α‖z − z′‖2.(2.1)

In the sequel, we fix a distance-generating function ω(·) for Z and assume that ω(·)
and Z “fit” each other, meaning that one can easily solve problems of the form

min
z∈Z

[ω(z) + 〈e, z〉] , e ∈ E .(2.2)
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The prox-function associated with the distance-generating function ω is defined
as

V (z, u) = ω(u) − ω(z) − 〈ω′(z), u− z〉 : Zo × Z → R+.

We set

(a) Θ(z) = maxu∈Z V (z, u) [z ∈ Zo]; (b) zc = argminZ ω(z);

(c) Θ = Θ(zc); (d) Ω =
√

2Θ/α.
(2.3)

Note that zc is well defined (since Z is a convex compact set and ω(·) is continuous
and strongly convex on Z) and belongs to Zo (since 0 ∈ ∂ω(zc)). Note also that due
to the strong convexity of ω and the origin of zc we have

∀(u ∈ Z) :
α

2
‖u− zc‖2

6 Θ 6 max
z∈Z

ω(z) − ω(zc);(2.4)

in particular we see that

Z ⊂ {z : ‖z − zc‖ 6 Ω}.(2.5)

Prox-mapping. Given z ∈ Zo, we associate with this point and ω(·) the prox-

mapping

P (z, ξ) = argmin
u∈Z

{ω(u) + 〈ξ − ω′(z), u〉} ≡ argmin
u∈Z

{V (z, u) + 〈ξ, u〉} : E → Zo.

We illustrate the just-defined notions with three basic examples.
Example 1: Euclidean setup. Here E is RN with the standard inner product,

‖ · ‖2 is the standard Euclidean norm on RN (so that ‖ · ‖∗ = ‖ · ‖) and ω(z) = 1
2z
T z

(i.e., Zo = Z, α = 1). Assuming for the sake of simplicity that 0 ∈ Z, zc = 0,
Ω = maxz∈Z ‖z‖2 and Θ = 1

2Ω2. The prox-function and the prox-mapping are given
by V (z, u) = 1

2‖z − u‖2
2, P (z, ξ) = argminu∈Z ‖(z − ξ) − u‖2.

Example 2: Simplex setup. Here E is RN , N > 1, with the standard inner prod-
uct, ‖z‖ = ‖z‖1 :=

∑N
j=1 |zj | (so that ‖ξ‖∗ = maxj |ξj |), Z is a closed convex subset

of the standard simplex

DN = {z ∈ RN : z > 0,

N∑

j=1

zj = 1}

containing its barycenter, and ω(z) =
∑N

j=1 zj ln zj is the entropy. Then

Zo = {z ∈ Z : z > 0} and ω′(z) = [1 + ln z1; ...; 1 + ln zN , z ∈ Zo.

It is easily seen (see, e.g., [3]) that here

α = 1, zc = [1/N ; ...; 1/N ], Θ 6 ln(N)

(the latter inequality becomes equality when Z contains a vertex of DN ), and thus
Ω 6

√
2 lnN . The prox-function is

V (z, u) =
N∑

j=1

uj ln(uj/zj),

and the prox-mapping is easy to compute when Z = DN :

(P (z, ξ))j =

(
N∑

i=1

zi exp{−ξi}
)−1

zj exp{−ξj}.
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Example 3: Spectahedron setup. This is the “matrix analogy” of the Simplex
setup. Specifically, now E is the space of N ×N block-diagonal symmetric matrices,
N > 1, of a given block-diagonal structure equipped with the Frobenius inner product
〈a, b〉F = Tr(ab) and the trace norm |a|1 =

∑N
i=1 |λi(a)|, where λ1(a) > ... > λN (a)

are the eigenvalues of a symmetric N ×N matrix a; the conjugate norm |a|∞ is the
usual spectral norm (the largest singular value) of a. Z is assumed to be a closed
convex subset of the spectahedron S = {z ∈ E : z � 0, Tr(z) = 1} containing the
matrix N−1IN . The distance-generating function is the matrix entropy

ω(z) =

N∑

j=1

λj(z) lnλj(z),

so that Zo = {z ∈ Z : z ≻ 0} and Ω′(z) = ln(z). This setup, similarly to the Simplex
one, results in α = 1, zc = N−1IN , Θ = lnN and Ω =

√
2 lnN [2]. When Z = S,

it is relatively easy to compute the prox-mapping (see [2, 6]); this task reduces to
the singular value decomposition of a matrix from E . It should be added that the
matrices from S are exactly the matrices of the form

a = H(b) ≡ (Tr(exp{b}))−1 exp{b}

with b ∈ E . Note also that when Z = S, the prox-mapping becomes “linear in matrix
logarithm”: if z = H(a), then P (z, ξ) = H(a− ξ).

3. Stochastic Mirror-Prox algorithm.

3.1. Mirror-Prox algorithm with erroneous information. We are about to
present the Mirror-Prox algorithm proposed in [6]. In contrast to the original version
of the method, below we allow for errors when computing the values of F – we assume
that given a point z ∈ Z, we can compute an approximation F̂ (z) ∈ E of F (z). The
t-step Mirror-Prox algorithm as applied to (1.2) is as follows:

Algorithm 3.1.

1. Initialization: Choose r0 ∈ Zo and stepsizes γτ > 0, 1 6 τ 6 t.
2. Step τ , τ = 1, 2, ..., t: Given rτ−1 ∈ Zo, set

{
wτ = P (rτ−1, γτ F̂ (rτ−1)),

rτ = P (rτ−1, γτ F̂ (wτ ))
(3.1)

. When τ < t, loop to step t+ 1.
3. At step t, output

ẑt =

[
t∑

τ=1

γτ

]−1 t∑

τ=1

γτwτ .(3.2)

The preliminary technical result on the outlined algorithm is as follows.
Theorem 3.2. Consider t-step algorithm 3.1 as applied to a v.i. (1.2) with a

monotone operator F satisfying (1.4). For τ = 1, 2, ..., let us set

∆τ = F (wτ ) − F̂ (wτ );

for z belonging to the trajectory {r0, w1, r1, ..., wt, rt} of the algorithm, let

ǫz = ‖F̂ (z) − F (z)‖∗,
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and let {yτ ∈ Zo}tτ=0 be the sequence given by the recurrence

yτ = P (yτ−1, γτ∆τ ), y0 = r0.(3.3)

Assume that

γτ 6
α√
3L
,(3.4)

Then

Errvi(ẑt) 6

(
t∑

τ=1

γτ

)−1

Γ(t),(3.5)

where Errvi(ẑt) is defined in (1.3),

Γ(t) = 2Θ(r0) +

t∑

τ=1

3γ2
τ

2α

[
M2 + (ǫrτ−1

+ ǫwτ
)2 +

ǫ2wτ

3

]
(3.6)

+

t∑

τ=1

〈γτ∆τ , wτ − yτ−1〉

and Θ(·) is defined by (2.3).
Finally, when (1.2) is a Nash v.i., one can replace Errvi(ẑt) in (3.5) with ErrN(ẑt).

3.2. Main result. From now on, we focus on the case when Algorithm 3.1 solves
monotone v.i. (1.2), and the corresponding monotone operator F is represented by
a stochastic oracle. Specifically, at the i-th call to the SO, the input being z ∈ Z,
the oracle returns the vector F̂ = Ξ(z, ζi),, where {ζi ∈ RN}∞i=1 is a sequence of
i.i.d. random variables, and Ξ(z, ζ) : Z × RN → E is a Borel function. We refer
to this specific implementation of Algorithm 3.1 as to Stocastic Mirror Prox (SMP)
algorithm.

In the sequel, we impose on the SO in question the following assumption, slightly
milder than (1.6):

Assumption I: With some µ ∈ [0,∞), for all z ∈ Z we have

(a) ‖E {Ξ(z, ζi) − F (z)} ‖∗ 6 µ
(b) E

{
‖Ξ(z, ζi) − F (z)‖2

∗
}

6 M2.
(3.7)

In some cases, we augment Assumption I by the following
Assumption II: For all z ∈ Z and all i we have

E
{
exp{‖Ξ(z, ζi) − F (z)‖2

∗/M
2}
}

6 exp{1}.(3.8)

Note that Assumption II implies (3.7.b), since

exp{E
{
‖Ξ(z, ζi) − F (z)‖2

∗/M
2
}
} 6 E

{
exp{Ξ(z, ζi) − F (z)‖2

∗/M
2}
}

by the Jensen inequality.

Remark 3.3. Observe that that the accuracy of Algorithm 3.1 (cf. (3.6)) depends

in the same way on the “size” of perturbation ǫz = ‖F̂ (z)−F (z)‖∗ and the bound M of
(1.4) on the variation of the non-Lipschitz component of F . This is why, to simplify
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the presentation, we decided to use the same bound M for the scale of perturbation
Ξ(z, ζi) − F (z) in (3.7), (3.8).

Remark 3.4. From now on, we assume that the starting point r0 in Algorithm 3.1
is the minimizer zc of ω(·) on Z. Further, to avoid unnecessarily complicated formulas
(and with no harm to the efficiency estimates) we stick to the constant stepsize policy
γτ ≡ γ, 1 6 τ 6 t, where t is a fixed in advance number of iterations of the algorithm.
Our main result is as follows:

Theorem 3.5. Let v.i. (1.2) with monotone operator F satisfying (1.4) be solved
by t-step Algorithm 3.1 using a SO, and let the stepsizes γτ ≡ γ, 1 6 τ 6 t, satisfy
0 < γ 6

α√
3L

, see (1.4). Then

(i) Under Assumption I, one has

E
{
Errvi(ẑt)

}
6 K0(t) ≡

[
αΩ2

tγ
+

21M2γ

2α

]
+ 2µΩ,(3.9)

where M is the constant from (1.4) and Ω is given by (2.3).
(ii) Under Assumptions I, II, one has, in addition to (3.9), for any Λ > 0,

Prob
{
Errvi(ẑt) > K0(t) + ΛK1(t)

}
6 exp{−Λ2/3} + exp{−Λt},(3.10)

where

K1(t) =
7M2γ

2α
+

2MΩ√
t
.

In the case of a Nash v.i., Errvi(·) in (3.9), (3.10) can be replaced with ErrN(·).
When optimizing the bound (3.9) in γ, we get the following
Corollary 3.6. In the situation of Theorem 3.5, let the stepsizes γτ ≡ γ be

chosen according to

γ = min

[
α√
3L
,
αΩ

M

√
2

21t

]
.(3.11)

Then under Assumption I one has

E
{
Errvi(ẑt

}
6 K∗

0 (t) ≡ max
[

7
4

Ω2L
t + 7ΩM√

t

]
+ 2µΩ, .(3.12)

(see (2.3)). Under Assumptions I, II, one has, in addition to (3.12), for any Λ > 0,

Prob
{
Errvi(ẑt) > K∗

0 (t) + ΛK∗
1 (t)

}
6 exp{−Λ2/3} + exp{−Λt}(3.13)

with

K∗
1 (t) =

7

2

ΩM√
t
.

In the case of a Nash v.i., Errvi(·) in (3.12), (3.13) can be replaced with ErrN(·).
3.3. Comparison with Robust Mirror SA Algorithm. Consider the case of

a Nash s.v.i. with operator F satisfying (1.4) with L = 0, and let the SO be unbiased
(i.e., µ = 0). In this case, the bound (3.12) reads

E {ErrN(ẑt} 6
7ΩM√

t
,(3.14)
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where

M2 = max

[
sup
z,z′∈Z

‖F (z)− F (z′)‖2
∗, sup

z∈Z
E
{
‖Ξ(z, ζi) − F (z)‖2

∗
}]

The bound (3.14) looks very much like the efficiency estimate

E {ErrN(z̃t)} 6 O(1)
ΩM√
t

(3.15)

(from now on, all O(1)’s are appropriate absolute positive constants) for the approx-
imate solution z̃t of the t-step Robust Mirror SA (RMSA) algorithm [3]1). In the
latter estimate, Ω is exactly the same as in (3.14), and M is given by

M
2

= max

[
sup
z

‖F (z)‖2
∗; sup

z∈Z
E
{
‖Ξ(z, ζi) − F (z)‖2

∗
}]
.

Note that we always have M 6 2M , and typically M and M are of the same order of
magnitude; it may happen, however (think of the case when F is “almost constant”),
that M ≪ M . Thus, the bound (3.14) never is worse, and sometimes can be much
better than the SA bound (3.15). It should be added that as far as implementation
is concerned, the SMP algorithm is not more complicated than the RMSA (cf. the
description of Algorithm 3.1 with the description

rt = P (rt−1, F̂ (rt−1)),

ẑt =

[
t∑

τ=1

γτ

]−1 t∑

τ=1

γτrτ ,

of the RMSA).
The just outlined advantage of SMP as compared to the usual Stochastic Ap-

proximation is not that important, since “typically” M and M are of the same order.
We believe that the most interesting feature of the SMP algorithm is its ability to
take advantage of a specific structure of a stochastic optimization problem, namely,
insensitivity to the presence in the objective of large, but smooth and well-observable
components.

We are about to consider several less straightforward applications of the out-
lined insensitivity of the SMP algorithm to smooth well-observed components in the
objective.

4. Application to Stochastic Approximation: Stochastic composite mi-

nimization.

4.1. Problem description. Consider the optimization problem as follows (cf.
[5]):

min
x∈X

φ(x) := Φ(φ1(x), ..., φm(x)),(4.1)

where

1) In this reference, only the Minimization and the Saddle Point problems are considered. How-
ever, the results of [3] can be easily extended to s.v.i.’s.
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1. X ⊂ X is a convex compact; the embedding space X is equipped with a
norm ‖ · ‖x, and X – with a distance-generating function ωx(x) with certain
parameters αx,Θx,Ωx w.r.t. the norm ‖ · ‖x;

2. φℓ(x) : X → Eℓ, 1 6 ℓ 6 m, are Lipschitz continuous mappings taking values
in Euclidean spaces Eℓ equipped with norms (not necessarily the Euclidean
ones) ‖ · ‖(ℓ) with conjugates ‖ · ‖(ℓ,∗) and with closed convex cones Kℓ. We
suppose that φℓ are Kℓ-convex, i.e. for any x, x′ ∈ X, λ ∈ [0, 1],

φℓ(λx+ (1 − λ)x′) 6Kℓ
λφℓ(x) + (1 − λ)φℓ(x

′),

where the notation a 6K b⇔ b >K a means that b− a ∈ K.
In addition to these structural restrictions, we assume that for all v, v′ ∈
X, h ∈ X ,

(a) ‖[φ′ℓ(v) − φ′ℓ(v
′)]h‖(ℓ) 6 [Lx‖v − v′‖x +Mx]‖h‖x

(b) ‖[φ′ℓ(v)]h‖(ℓ) 6 [LxΩx +Mx]‖h‖x(4.2)

for certain selections φ′ℓ(x) ∈ ∂Kℓφℓ(x), x ∈ X2) and certain nonnegative
constants Lx and Mx.

3. Functions φℓ(·) are represented by an unbiased SO. At i-th call to the oracle,
x ∈ X being the input, the oracle returns vectors fℓ(x, ζi) ∈ Eℓ and linear
mappings Gℓ(x, ζi) from X to Eℓ, 1 6 ℓ 6 m ({ζi} are i.i.d. random vectors)
such that for any x ∈ X and i = 1, 2, ...,

(a) E {fℓ(x, ζi)} = φℓ(x), 1 6 ℓ 6 m

(b) E

{
max

16ℓ6m
‖fℓ(x, ζi) − φℓ(x)‖2

(ℓ)

}
6 M2

xΩ
2
x;

(c) E {Gℓ(x, ζi)} = φ′ℓ(x), 1 6 ℓ 6 m,

(d) E

{
max
h∈X

‖h‖x61

‖[Gℓ(x, ζi) − φ′ℓ(x)]h‖2
(ℓ)

}
6 M2

x , 1 6 ℓ 6 m.

(4.3)

4. Φ(·) is a convex function on E = E1 × ...× Em given by the representation

Φ(u1, ..., um) = max
y∈Y

{
m∑

ℓ=1

〈uℓ,Aℓy + bℓ〉Eℓ
− Φ∗(y)

}
(4.4)

for uℓ ∈ Eℓ, 1 6 ℓ 6 m. Here
(a) Y ⊂ Y is a convex compact set containing the origin; the embedding

Euclidean space Y is equipped with a norm ‖·‖y, and Y - with a distance-
generating function ωy(y) with parameters αy,Θy,Ωy w.r.t. the norm
‖ · ‖y;

(b) The affine mappings y 7→ Aℓy+bℓ : Y → Eℓ are such that Aℓy+bℓ ∈ K∗
ℓ

for all y ∈ Y and all ℓ; here K∗
ℓ is the cone dual to Kℓ;

2) For a K-convex function φ : X → E (X ⊂ X is convex, K ⊂ E is a closed convex cone) and
x ∈ X, the K-subdifferential ∂Kφ(x) is comprised of all linear mappings h 7→ Ph : X → E such that
φ(u) >K φ(x) + P(u − x) for all u ∈ X. When φ is Lipschitz continuous on X, ∂Kφ(x) 6= ∅ for
all x ∈ X; if φ is differentiable at x ∈ int X (as it is the case almost everywhere on int X), one has
∂φ(x)

∂x
∈ ∂Kφ(x).
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(c) Φ∗(y) is a given convex function on Y such that

‖Φ′
∗(y) − Φ′

∗(y
′)‖y,∗ 6 Ly‖y − y′‖y +My(4.5)

for certain selection Φ′
∗(z) ∈ ∂Φ∗(y), y ∈ Y .

Example: Stochastic Matrix Minimax problem (SMMP). For 1 6 ℓ 6 m, let Eℓ = Spℓ

be the space of symmetric pℓ×pℓ matrices equipped with the Frobenius inner product
〈A,B〉F = Tr(AB) and the spectral norms | · |∞, and let Kℓ be the cone S

pℓ

+ of
symmetric positive semidefinite pℓ × pℓ matrices. Consider the problem

min
x∈X

max
16j6k

λmax

(
m∑

ℓ=1

PTjℓφℓ(x)Pjℓ

)
, (P )

where Pjℓ are given pℓ × qj matrices, and λmax(A) is the maximal eigenvalue of a
symmetric matrix A. Observing that for a symmetric p× q matrix A one has

λmax(A) = max
S∈Sq

Tr(AS)

where Sq = {S ∈ S
q
+ : Tr(S) = 1}. When denoting by Y the set of all symmetric

positive semidefinite block-diagonal matrices y = Diag{y1, ..., yk} with unit trace and
diagonal blocks yj of sizes qj × qj , we can represent (P ) in the form of (4.1), (4.4)
with

Φ(u) := max
16j6k

λmax

(
m∑

ℓ=1

PjℓuℓP
T
jℓ

)

= max
y=Diag{y1,...,yk}∈Y

k∑

j=1

Tr

(
m∑

ℓ=1

PTjℓuℓPjℓyk

)

= max
y=Diag{y1,...,yk}∈Y

m∑

ℓ=1

Tr



uℓ




k∑

j=1

PTjℓykPjℓ









= max
y=Diag{y1,...,yk}∈Y

m∑

ℓ=1

〈uℓ,Aℓy〉F

(we put Aℓy =
∑k
j=1 P

T
jℓyjPjℓ). The set Y is the spectahedron in the space Sq of

symmetric block-diagonal matrices with k diagonal blocks of the sizes qj×qj , 1 6 j 6

k. When equipping Y with the spectahedron setup, we get αy = 1, Θy = ln(
∑k

j=1 qj)

and Ωy =
√

2 ln(
∑k

j=1 qj), see Section 2.2.

Observe that in the simplest case of k = m, pj = qj , 1 6 j 6 m and Pjℓ equal to
Ip for j = ℓ and to 0 otherwise, the SMMP problem becomes

min
x∈X

[
max

16ℓ6m
λmax(φℓ(x))

]
.(4.6)

If, in addition, pj = qj = 1 for all j, we arrive at the usual (“scalar”) minimax problem

min
x∈X

[
max

16ℓ6m
φℓ(x)

]
(4.7)
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with convex real-valued functions φℓ.
Observe that in the case of (4.4), the optimization problem (4.1) is nothing but

the primal problem associated with the saddle point problem

min
x∈X

max
y∈Y

[
φ(x, y) =

m∑

ℓ=1

〈φℓ(x),Aℓy + bℓ〉Eℓ
− Φ∗(y)

]
(4.8)

and the cost function in the latter problem is Lipschitz continuous and convex-concave
due to the Kℓ-convexity of φℓ(·) and the condition Aℓy + bℓ ∈ K∗

ℓ whenever y ∈ Y .
The associated Nash v.i. is given by the domain Z and the monotone mapping

F (z) ≡ F (x, y) =

[
m∑

ℓ=1

[φ′ℓ(x)]
∗[Aℓy + bℓ]; −

m∑

ℓ=1

A∗
ℓφℓ(x) + Φ′

∗(y)

]
.(4.9)

The advantage of the v.i. reformulation of (4.1) is that F is linear in φℓ(·), so that
the initial unbiased SO for φℓ induces an unbiased stochastic oracle for F , specifically,
the oracle

Ξ(x, y, ζi) =

[
m∑

ℓ=1

G∗
ℓ (x, ζi)[Aℓy + bℓ]; −

m∑

ℓ=1

A∗
ℓfℓ(x, ζi) + Φ′

∗(y)

]
.(4.10)

We are about to use this oracle in order to solve the stochastic composite minimization
problem (4.1) by the SMP algorithm.

4.2. Setup for the SMP as applied to (4.9). In retrospect, the setup for SMP
we are about to present is a kind of the best – resulting in the best possible efficiency
estimate (3.12) – we can build from the entities participating in the description of the
problem (4.1). Specifically, we equip the space E = X × Y with the norm

‖[(x, y)‖ ≡
√
‖x‖2

x/Ω
2
x + ‖y‖2

y/Ω
2
y;

the conjugate norm clearly is

‖(ξ, η)‖∗ =
√

Ω2
x‖ξ‖2

x,∗ + Ω2
y‖η‖2

y,∗.

Finally, we equip Z = X × Y with the distance-generating function

ω(x, y) =
1

αxΩ2
x

ωx(x) +
1

αyΩ2
y

ωy(y).

The SMP-related properties of our setup are summarized in the following
Lemma 4.1. Let

A = max
y∈Y:‖y‖y61

m∑

ℓ=1

‖Aℓy‖(ℓ,∗), B =

m∑

ℓ=1

‖bℓ‖(ℓ,∗).(4.11)

(i) The parameters of the just defined distance-generating function ω w.r.t. the
just defined norm ‖ · ‖ are α = 1, Θ = 1, Ω =

√
2.

(ii) One has

∀(z, z′ ∈ Z) : ‖F (z) − F (z′)‖∗ 6 L‖z − z′‖ +M,(4.12)
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where

L = 5AΩxΩy [ΩxLx +Mx] + BΩ2
xLx + Ω2

yLy

M = [2AΩy + ‖b‖1] ΩxMx + ΩyMy

Besides this,

∀(z ∈ Z, i) : E {Ξ(z, ζi)} = F (z); E
{
‖Ξ(z, ζi) − F (z)‖2

∗
}

6 M2.(4.13)

Furethermore, if relations (4.3.b,d) are strengthened to

E

{
exp

{
max

16ℓ6m
‖fℓ(x, ζi) − φℓ(x)‖2

(ℓ)/(ΩxM)2
}}

6 exp{1},

E

{
exp

{
max
h∈X,

‖h‖x61

‖[Gℓ(x) − φ′ℓ(x)]h‖2
(ℓ)/M

2

}}
6 exp{1}, 1 6 ℓ 6 m,

(4.14)

then

E
{
exp{‖Ξ(z, ζi) − F (z)‖2

∗/M
2}
}

6 exp{1}.(4.15)

Combining Lemma 4.1 with Corollary (3.6) we get explicit efficiency estimates for the
SMP algorithm as applied to the Stochastic composite minimization problem (4.1).

4.3. Application to Stochastic Semidefinite Feasibility problem. Assume
we are interested to solve a feasible system of matrix inequalities

ψℓ(x) � 0, ℓ = 1, ...,m & x ∈ X,(4.16)

where m > 1, X ⊂ X is as in the description of the Stochastic composite problem,
and ψℓ(·) take values in the spaces Eℓ = Spℓ of symmetric pℓ × pℓ matrices. We equip
Eℓ with the Frobenius inner product, the semidefinite cone Kℓ = S

pℓ

+ and the spectral
norm ‖ · ‖(ℓ) = | · |∞ (recall that |A|∞ is the maximal singular value of matrix A). We
assume that ψℓ are Lipschitz continuous and Kℓ = S

pℓ

+ -convex functions on X such
that for all x, x′ ∈ X and for all ℓ one has

max
h∈X , ‖h‖x61

|[ψ′
ℓ(x) − ψ′

ℓ(x
′)]h|∞ 6 Lℓ‖x− x′‖(ℓ) +Mℓ,

max
h∈X , ‖h‖x61

|ψ′
ℓ(x)h|∞ 6 LℓΩx +Mℓ

(4.17)

for certain selections ψ′
ℓ(x) ∈ ∂Kℓψℓ(x), x ∈ X , with some known nonnegative con-

stants Lℓ, Mℓ.
We assume that ψℓ(·) are represented by an SO which at i-th call, the input being

x ∈ X , returns the matrices f̂ℓ(x, ζi) ∈ Spℓ and the linear maps Ĝℓ(x, ζi) from X to
Eℓ such that for all x ∈ X it holds

(a) E
{
f̂ℓ(x, ζi)

}
= ψℓ(x), E

{
Ĝℓ(x, ζi)

}
= ψ′

ℓ(x), 1 6 ℓ 6 m

(b) E

{
max

16ℓ6m
|f̂ℓ(x, ζi) − ψℓ(x)|2∞/(ΩxMℓ)

2

}
6 1

(c) E

{
max
h∈X,

‖h‖x61

|[Ĝℓ(x, ζi) − ψ′
ℓ(x)]h|2∞/M2

ℓ

}
6 1, 1 6 ℓ 6 m.

(4.18)

Given a number t of steps of the SMP algorithm, let us act as follows.
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A. We compute the m quantities µℓ = ΩxLℓ√
t

+Mℓ, ℓ = 1, ...,m, and set

µ = max
16ℓ6m

µℓ, βℓ =
µ

µℓ
, φℓ(·) = βℓψℓ(·), Lx =

µ
√
t

Ωx
, Mx = µ.(4.19)

Note that by construction βℓ > 1 and Lx/Lℓ > βℓ, Mx/Mℓ > βℓ for all ℓ, so that the
functions φℓ satisfy (4.2) with the just defined Lx, Mx. Further, the SO for ψℓ(·)’s
can be converted into an SO for φℓ(·)’s by setting

fℓ(x, ζ) = βℓf̂ℓ(x, ζ), Gℓ(x, ζ) = βℓĜℓ(x, ζ).

By (4.18), this oracle satisfies (4.3).
B. We then build the Stochastic Matrix Minimax problem

min
x∈X

max
16ℓ6m

λmax(φi(x)),(4.20)

associated with the just defined φ1, ..., φm, that is, the Stochastic composite problem
(4.1) associated with φ1, ..., φm and the outer function

Φ(u1, ..., um) = max
16ℓ6m

λmax(uℓ) = max
y∈Y

m∑

ℓ=1

〈uℓ, yℓ〉F ,

Y = {y = Diag{y1, ..., ym} ∈ Y = Sp1 × ...× Spm : y � 0, Tr(y) = 1}
⊂ Y = Sp1 × ...× Spm .

Thus in the notation from (4.4) we have Aℓy = yℓ, bℓ = 0, Φ∗ ≡ 0. Hence Lx = Mx =
0, and Y is a spectahedron. We equip Y and Y with the Spectahedron setup, arriving
at

αy = 1, Θy = ln

m∑

ℓ=1

pℓ, Ωy =

√√√√2 ln

m∑

ℓ=1

pℓ.

C. We have specified all entities participating in the description of the Stochastic
composite problem. It is immediately seen that these entities satisfy all conditions
of Section 4.1. We can now solve the resulting Stochastic composite problem by
t-step SMP algorithm with the setup presented in Section 4.2. The corresponding
convex-concave saddle point problem is

min
x∈X

max
y∈Y

m∑

ℓ=1

βℓ〈ψℓ(x), yℓ〉F ;

with the monotone operator and SO, respectively,

F (z) ≡ F (x, y) =

[
m∑

ℓ=1

βℓ[ψ
′
ℓ(x)]

∗yℓ;−Diag {α1ψ1(x), ..., αmψm(x)}
]
,

Ξ((x, y), ζ) =

[
m∑

ℓ=1

βℓĜ
∗
ℓ (x, ζ)yℓ;−Diag

{
α1f̂1(x, ζ), ..., αmf̂m(x, ζ))

}]
.

Combining Lemma 4.1, Corollary 3.6 and taking into account the origin of the quan-
tities Lx, Mx, and that A = 1, B = 0 3), we arrive at the following result:

3) See (4.11) and note that we are in the case when bℓ = 0 and ‖ · ‖(ℓ,∗) is the trace norm; thus,∑m
ℓ=1 ‖Aℓy‖(ℓ,∗) =

∑m
ℓ=1 |yℓ|1 = |y|1 = ‖y‖y .
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Proposition 4.2. With the outlined construction, the resulting s.v.i. reads

find z∗ ∈ Z = X × Y : 〈F (z), z − z∗〉 > 0 ∀z ∈ Z,(4.21)

for the monotone operator F which satisfies (1.4) with

L = 10

[
ln

m∑

ℓ=1

pℓ

] 1

2

Ωxµ(
√
t+ 1), M = 4

[
ln

m∑

ℓ=1

pℓ

] 1

2

Ωxµ;

Beside this, the resulting SO for F satisfies (4.13) with the just defined value of M .
Let now

γ =



10

[
3 ln

m∑

ℓ=1

pℓ

] 1

2

Ωxµ(
√
t+ 1)




−1

, 1 6 τ 6 t.

When applying to (4.21) the t-step SMP algorithm with the constant stepsizes γτ ≡ γ
(cf. (3.11) and note that we are in the situation α = Θ = 1), we get an approximate
solution ẑt = (x̂t, ŷt) such that

E

{
max

16ℓ6m
βℓλmax(ψℓ(x̂t))

}
6 80

Ωx [ln
∑m

ℓ=1 pℓ]
1

2 µ√
t

(4.22)

(cf. (3.12) and take into account that we are in the case of Ω =
√

2, while the optimal
value in (4.20) is nonpositive, since (4.16) is feasible).

Furthermore, if assumptions (4.18.b,c) are strengthened to

E

{
max

16ℓ6m
exp{|f̂ℓ(x, ζi) − ψℓ(x)|2∞/(ΩxMℓ)

2}
}

6 exp{1},

E

{
exp{ max

h∈X ,‖h‖x61
|[Ĝℓ(x, ζi) − ψ′

ℓ(x)]h|2∞/M2
ℓ }
}

6 exp{1}, 1 6 ℓ 6 m,

then, in addition to (4.22), we have for any Λ > 0:

Prob

{
max

16ℓ6m
βℓλmax(ψℓ(x̂t)) > 80

Ωx [ln
∑m

ℓ=1 pℓ]
1

2 µ√
t

+ Λ
15 [ln

∑m
ℓ=1 pℓ]

1

2 µ√
t

}

6 exp{−Λ2/3} + exp{−Λt}.

Discussion. Imagine that instead of solving the system of matrix inequalities
(4.16), we were interested to solve just a single matrix inequality ψℓ(x) � 0, x ∈ X .
When solving this inequality by the SMP algorithm as explained above, the efficiency
estimate would be

E
{
ψℓ(x̂

ℓ
t)
}

6 O(1) [ln(pℓ + 1)]
1/2

Ωx

[
ΩxLℓ
t

+
Mℓ√
t

]
= O(1) [ln(pℓ + 1)]

1/2
Ωx

µℓ√
t

= O(1) [ln(pℓ + 1)]1/2 β−1
ℓ

Ωxµ√
t
,
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(recall that the matrix inequality in question is feasible), where x̂ℓt is the resulting
approximate solution. Looking at (4.22), we see that the expected accuracy of the
SMP as applied, in the aforementioned manner, to (4.16) is only by a logarithmic in∑

ℓ pℓ factor worse:

E {ψℓ(x̂t)} 6 O(1)

[
ln

m∑

ℓ=1

pℓ

]1/2

β−1
ℓ

Ωxµ√
t

= O(1)

[
ln

m∑

ℓ=1

pℓ

]1/2
Ωxµℓ√

t
.(4.23)

Thus, as far as the quality of the SPM-generated solution is concerned, passing from
solving a single matrix inequality to solving a system of m inequalities is “nearly
costless”. As an illustration, consider the case where some of ψℓ are “easy” – smooth
and easy-to-observe (Mℓ = 0), while the remaining ψℓ are “difficult”, i.e., might be
non-smooth and/or difficult-to-observe (Lℓ = 0). In this case, (4.23) reads

E {ψℓ(x̂t)} 6

{
O(1) [ln

∑m
ℓ=1 pℓ]

1/2 Ω2

xLℓ

t , ψℓ is easy,

O(1) [ln
∑m
ℓ=1 pℓ]

1/2 ΩxMℓ√
t
, ψℓ is difficult.

In other words, the violations of the easy and the difficult constraints in (4.16) converge
to 0 as t → ∞ with the rates O(1/t) and O(1/

√
t), respectively. It should be added

that when X is the unit Euclidean ball in X = Rn and X, X are equipped with the
Euclidean setup, the rates of convergence O(1/t) and O(1/

√
t) are the best rates one

can achieve without imposing bounds on n and/or imposing additional restrictions
on ψℓ’s.

4.4. Eigenvalue optimization via SMP. The problem we are interested in
now is

Opt = min
x∈X

f(x) := λmax(A0 + x1A1 + ...+ xnAn),

X = {x ∈ Rn : x > 0,
∑n
i=1 xi = 1},

(4.24)

where A0, A1, ..., An, n > 1, are given symmetric matrices with common block-
diagonal structure (p1, ..., pm). I.e., all Aj are block-diagonal with diagonal blocks
Aℓj of sizes pℓ × pℓ, 1 6 ℓ 6 m. We denote

p(κ) =

m∑

ℓ=1

pκℓ , κ = 1, 2, 3; pmax = max
ℓ
pℓ.

Setting

φℓ : X 7→ Eℓ = Spℓ , φℓ(x) = Aℓ0 +

n∑

j=1

xjA
ℓ
j , 1 6 ℓ 6 m,

we represent (4.24) as a particular case of the Matrix Minimax problem (4.6), with
all functions φℓ(x) being affine and X being the standard simplex in X = Rn.

Now, since Aj are known in advance, there is nothing stochastic in our problem,
and it can be solved either by interior point methods, or by “computationally cheap”
gradient-type methods; these latter methods are preferable when the problem is large-
scale and medium accuracy solutions are sought. For instance, one can apply the t-step
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(deterministic) Mirror Prox algorithm from [6] to the saddle point reformulation (4.8)
of our specific Matrix Minimax problem, i.e., to the saddle point problem

min
x∈X

max
y∈Y

〈y,A0 +
∑n

j=1 xjAj〉F ,
Y =

{
y = Diag{y1, ..., ym} : yℓ ∈ S

pℓ

+ , 1 6 ℓ 6 m, Tr(Y ) = 1
}
.

(4.25)

The accuracy of the approximate solution x̃t of the (deterministic) Mirror Prox algo-
rithm is [6, Example 2]

f(x̃t) − Opt 6 O(1)

√
ln(n) ln(p(1))A∞

t
.

This efficiency estimate is the best known so far among those attainable with “com-
putationally cheap” deterministic methods. On the other hand, the complexity of
one step of the algorithm is dominated, up to an absolute constant factor, by the
necessity, given x ∈ X and y ∈ Y ,

1. to compute the matrixA0+
∑n
j=1 xjAj and the vector [Tr(Y A1); ...; Tr(Y An)];

2. to compute the eigenvalue decomposition of y.
When using the standard Linear Algebra, the computational effort per step is

Cdet = O(1)[np(2) + p(3)]

arithmetic operations.
We are about to demonstrate that one can equip the deterministic problem in

question by an “artificial” SO in such a way that the associated SMP algorithm, under
certain circumstances, exhibits better performance than deterministic algorithms. Let
us consider the following construction of the SO for F (different from the SO (4.10)!).
Observe that the monotone operator associated with the saddle point problem (4.25)
is

F (x, y) =




[Tr(yA1); ...; Tr(yAn)]︸ ︷︷ ︸

Fx(x,y)

; −A0 −
∑n

j=1
xjAj

︸ ︷︷ ︸
Fy(x,y)




.(4.26)

Given x ∈ X , y = Diag{y1, ..., ym} ∈ Y , we build a random estimate Ξ = [Ξx; Ξy] of
F (x, y) = [F x(x, y);F y(x, y)] as follows:

1. we generate a realization  of a random variable taking values 1, ..., n with
probabilities x1, ..., xn (recall that x ∈ X , the standard simplex, so that x
indeed can be seen as a probability distribution), and set

Ξy = A0 +A;(4.27)

2. we compute the quantities νℓ = Tr(yℓ), 1 6 ℓ 6 m. Since y ∈ Y , we have
νℓ > 0 and

∑m
ℓ=1 νℓ = 1. We further generate a realization ı of random

variable taking values 1, ...,m with probabilities ν1, ..., νm, and set

Ξx = [Tr(Aı1ȳı); ...; Tr(Aınȳı)], ȳı = (Tr(yı))
−1yı.(4.28)

The just defined random estimate Ξ of F (x, y) can be expressed as a deterministic
function Ξ(x, y, η) of (x, y) and random variable η uniformly distributed on [0, 1].
Given x, y and η, the value of this function can be computed with the arithmetic cost
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O(1)(n(pmax)2 + p(2)) (indeed, O(1)(n+ p(1)) operations are needed to convert η into
ı and , O(1)p(2) operations are used to write down the y-component −A0 − A of
Ξ, and O(1)n(pmax)2 operations are needed to compute Ξx). Now consider the SO’s
Ξk (k is a positive integer) obtained by averaging the outputs of k calls to our basic
oracle Ξ. Specifically, at the i-t call to the oracle Ξk, z = (x, y) ∈ Z = X × Y being
the input, the oracle returns the vector

Ξk(z, ζi) =
1

k

k∑

s=1

Ξ(z, ηis),

where ζi = [ηi1; ...; ηik] and {ηis}16i, 16s6k are independent random variables uni-
formly distributed on [0, 1]. Note that the arithmetic cost of a single call to Ξk is

Ck = O(1)k(n(pmax)2 + p(2)).

The Nash v.i. associated with the saddle point problem (4.25) with the stochastic
oracle Ξk (k being the first parameter of our construction) specify a Nash s.v.i. on
the domain Z = X × Y . Let us equip the standard simplex X and its embedding
space X = Rn with the Simplex setup, and the spectahedron Y and its embedding
space Y = Sp1 × ...×Spm with the Spectahedron setup (see Section 2.2). Let us next
combine the x- and the y-setups, exactly as explained in the beginning of Section 4.2,
into an SMP setup for the domain Z = X × Y – a distance-generating function ω(·)
and a norm ‖ ·‖ on the embedding space Rn× (Sp1 × ...×Spℓ) of Z. The SMP-related
properties of the resulting setup are summarized in the following statement.

Lemma 4.3. Let n > 3, p(1) > 3. Then
(i) The parameters of the just defined distance-generating function ω w.r.t. the

just defined norm ‖ · ‖ are α = 1, Θ = 1, Ω =
√

2.
(ii) For any z, z′ ∈ Z one has

‖F (z)− F (z′)‖∗ 6 L‖z − z′‖, L = 2 ln(n) + 4 ln(p(1)).(4.29)

Besides this, for any (z ∈ Z, i = 1, 2, ...,

(a) E {Ξk(z, ζi)} = F (z);
(b) E

{
exp{‖Ξ(z, ζi) − F (z)‖2

∗/M
2}
}

6 exp{1},
M = 27[ln(n) + ln(p(1))]A∞/

√
k.

(4.30)
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5. Appendix.

5.1. Proof of Theorem 3.2. We start with the following simple observation:
if re is a solution to (2.2), then ∂Zω(re) contains −e and thus is nonempty, so that
re ∈ Zo. Moreover, one has

〈ω′(re) − e, u− re〉 > 0 ∀u ∈ Z.(5.1)

Indeed, by continuity argument, it suffices to verify the inequality in the case when
u ∈ rint(Z) ⊂ Zo. For such an u, the convex function

f(t) = ω(re + t(u− re)) + 〈re + t(u− re), e〉, t ∈ [0, 1]

is continuous on [0, 1] and has a continuous on [0, 1] field of subgradients

g(t) = 〈ω′(re + t(u − re)) + e, u− re〉.

It follows that the function is continuously differentiable on [0, 1] with the derivative
g(t). Since the function attains its minimum on [0, 1] at t = 0, we have g(0) > 0,
which is exactly (5.1).

At least the first statement of the following Lemma is well-known:
Lemma 5.1. For every z ∈ Zo, the mapping ξ 7→ P (z, ξ) is a single-valued

mapping of E onto Zo, and this mapping is Lipschitz continuous, specifically,

‖P (z, ζ) − P (z, η)‖ 6 α−1‖ζ − η‖∗ ∀ζ, η ∈ E .(5.2)

Besides this,

(a) ∀(u ∈ Z) : V (P (z, ζ), u) 6 V (z, u) + 〈ζ, u− P (z, ζ)〉 − V (z, P (z, ζ))

(b) 6 V (z, u) + 〈ζ, u− z〉 +
‖ζ‖2

∗

2α .
(5.3)

Proof.
Let v ∈ P (z, ζ), w ∈ P (z, η). As V ′

u(z, u) = ω′(u) − ω′(z), invoking 5.1, we have
v, w ∈ Zo and

〈ω′(v) − ω′(z) + ζ, v − u〉 6 0 ∀u ∈ Z.(5.4)

〈ω′(w) − ω′(z) + η, w − u〉 6 0 ∀u ∈ Z.(5.5)

Setting u = w in (5.4) and u = v in (5.5), we get

〈ω′(v) − ω′(z) + ζ, v − w〉 6 0, 〈ω′(w) − ω′(z) + η, v − w〉 > 0,
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whence 〈ω′(w) − ω′(v) + [η − ζ], v − w〉 > 0, or

‖η − ζ‖∗‖v − w‖ > 〈η − ζ, v − w〉 > 〈ω′(v) − ω′(w), v − w〉 > α‖v − w‖2,

and (5.2) follows. This relation, as a byproduct, implies that P (z, ·) is single-valued.
To prove (5.3), let v = P (z, ζ). We have

V (v, u) − V (z, u) = [ω(u) − 〈ω′(v), u − v〉 − ω(v)] − [ω(u) − 〈ω′(z), u− z〉 − ω(z)]

= 〈ω′(v) − ω′(z) + ζ, v − u〉 + 〈ζ, u− v〉 − [ω(v) − 〈ω′(z), v − z〉 − ω(z)]

(due to (5.4)) 6 〈ζ, u− v〉 − V (z, v),

as required in (a) of (5.3). The bound (b) of (5.3) is obtained from (5.3) using the
Young inequality:

〈ζ, z − v〉 6
‖z‖2

∗
2α

+
α

2
‖z − v‖2.

Indeed, observe that by definition, V (z, ·) is strongly convex with parameter α, and
V (z, v) >

α
2 ‖z − v‖2, so that

〈ζ, u − v〉 − V (z, v) = 〈ζ, u − z〉 + 〈ζ, z − v〉 − V (z, v) 6 〈ζ, u− z〉 +
‖ζ‖2

∗
2α

.

We have the following simple corollary of Lemma 5.1:
Corollary 5.2. Let ξ1, ξ2, ... be a sequence of elements of E. Define the sequence

{yτ}∞τ=0 in Zo as follows:

yτ = P (yτ−1, ξτ ), y0 ∈ Zo.

Then yτ is a measurable function of y0 and ξ1, ..., ξτ such that

(∀u ∈ Z) : 〈−
t∑

τ=1

ξτ , u〉 6 V (y0, u) +

t∑

τ=1

ζτ ,(5.6)

with

|ζτ | 6 r‖ξτ‖∗ (here r = max
u∈Z

‖u‖); ζτ 6 −〈ξτ , yτ−1〉 +
‖ξτ‖2

∗
2α

.(5.7)

Proof. Using the bound (b) of (5.3) with ζ = ξt and z = yt−1 (so that yt =
P (yt−1, ξt) we obtain for any u ∈ Z:

V (yt, u) − V (yt−1, u) − 〈ξt, u〉 6 −〈ξt, yt〉 − V (yt−1, yt) ≡ ζt.

Note that

ζt = max
v∈Z

[−〈ξt, v〉 − V (yt−1, v)],

so that

−r‖ξt‖∗ 6 −〈ξt, yt−1〉 6 ζt 6 r‖ξt‖∗.
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Further, due to the strong convexity of V ,

ζt = −〈ξt, yt−1〉 + [−〈ξt, yt − yt−1〉 − V (yt−1, yt)] 6 −〈ξt, yt−1〉 +
‖ξt‖2

∗
2α

.

When summing up from τ = 1 to τ = t we arrive at the corollary.
We also need the following result.
Lemma 5.3. Let z ∈ Zo, let ζ, η be two points from E, and let

w = P (z, ζ), r+ = P (z, η)

Then for all u ∈ Z one has

(a) ‖w − r+‖ 6 α−1‖ζ − η‖∗
(b) V (r+, u) − V (z, u) 6 〈η, u− w〉 +

‖ζ−η‖2

∗

2α − α
2 ‖w − z‖2.

(5.8)

Proof. (a): this is nothing but (5.2).
(b): Using (a) of (5.3) in Lemma 5.1 we can write for u = r+:

V (w, r+) 6 V (z, r+) + 〈ζ, r+ − w〉 − V (z, w).

This results in

V (z, r+) > V (w, r+) + V (z, w) + 〈ζ, w − r+〉.(5.9)

Using (5.3) with η substituted for ζ we get

V (r+, u) 6 V (z, u) + 〈η, u− r+〉 − V (z, r+)

= V (z, u) + 〈η, u− w〉 + 〈η, w − r+〉 − V (z, r+)

[by (5.9)] 6 V (z, u) + 〈η, u− w〉 + 〈η − ζ, w − r+〉 − V (z, w) − V (w, r+)

6 V (z, u) + 〈η, u− w〉 + 〈η − ζ, w − r+〉 −
α

2
[‖w − z‖2 + ‖w − r+‖2],

due to the strong convexity of V . To conclude the bound (b) of (5.8) it suffices to
note that by the Young inequality,

〈η − ζ, w − r+〉 6
‖η − ζ‖2

∗
2α

+
α

2
‖w − r+‖2.

We are able now to prove Theorem 3.2. By (1.4) we have that

‖F̂ (wτ ) − F̂ (rτ−1)‖2
∗ 6 (L‖rτ−1 − wτ‖ +M + ǫrτ−1

+ ǫwτ
)2

6 3L2‖wτ − rτ−1‖2 + 3M2 + 3(ǫrτ−1
+ ǫwτ

)2.(5.10)

Let us now apply Lemma 5.3 with z = rτ−1, ζ = γτ F̂ (rτ−1), η = γτ F̂ (wτ ) (so that
w = wτ and r+ = rτ ). We have for any u ∈ Z

〈γτ F̂ (wτ ), wτ − u〉 + V (rτ , u) − V (rτ−1, u)

6
γ2
τ

2α
‖F̂ (wτ ) − F̂ (rτ−1)‖2 − α

2
‖wτ − rτ−1‖2

[by (5.10)] 6
3γ2
τL

2

2α

[
‖wτ − rτ−1‖2 +M2 + (ǫrτ−1

+ ǫwτ
)2
]
− α

2
‖wτ − rτ−1‖2

[by (3.4)] 6
3γ2
τ

2α

[
M2 + (ǫrτ−1

+ ǫwτ
)2
]
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When summing up from τ = 1 to τ = t we obtain

t∑

τ=1

〈γτ F̂ (wτ ), wτ − u〉 6 V (r0, u) − V (rt, u) +
t∑

τ=1

3γ2
τ

2α

[
M2 + (ǫrτ−1

+ ǫwτ
)2
]

6 Θ(r0) +

t∑

τ=1

3γ2
τ

2α

[
M2 + (ǫrτ−1

+ ǫwτ
)2
]
.

Hence, for all u ∈ Z,

t∑

τ=1

〈γτF (wτ ), wτ − u〉

6 Θ(r0) +

t∑

τ=1

3γ2
τ

2α

[
M2 + (ǫrτ−1

+ ǫwτ
)2
]
+

t∑

τ=1

〈γτ∆τ , wτ − u〉

= Θ(r0) +

t∑

τ=1

3γ2
τ

2α

[
M2 + (ǫrτ−1

+ ǫwτ
)2
]
+

t∑

τ=1

〈γτ∆τ , wτ − yτ−1〉(5.11)

+

t∑

τ=1

〈γτ∆τ , yτ−1 − u〉,

where yτ are given by (3.3). Since the sequences {yτ}, {ξτ = γτ∆τ} satisfy the
premise of Corollary 5.2, we have

(∀u ∈ Z) :
∑t
τ=1〈γτ∆τ , yτ−1 − u〉 6 V (r0, u) +

∑t
τ=1

γ2

τ

2α‖∆τ‖2
∗

6 Θ(r0) +
∑t

τ=1
γ2

τ

2α ǫ
2
wτ
,

and thus (5.11) implies that for any u ∈ Z

t∑

τ=1

〈γτF (wτ ), wτ − u〉 6 2Θ(r0) +

t∑

τ=1

〈γτ∆τ , wτ − yτ−1〉(5.12)

+
t∑

τ=1

3γ2
τ

2α

[
M2 + (ǫrτ−1

+ ǫwτ
)2 +

ǫ2wτ

3

]

To complete the proof of (3.5) in the general case, note that since F is monotone,
(5.12) implies that for all u ∈ Z,

t∑

τ=1

γτ 〈F (u), wτ − u〉 6 Γ(t),

where

Γ(t) = 2Θ(r0) +
t∑

τ=1

3γ2
τ

2α

[
M2 + (ǫrτ−1

+ ǫwτ
)2 +

ǫ2wτ

3

]
+

t∑

τ=1

〈γτ∆τ , wτ − yτ−1〉

(cf. (3.6)), whence

∀(u ∈ Z) : 〈F (u), ẑt − u〉 6

[
t∑

τ=1

γτ

]−1

Γ(t).
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When taking the supremum over u ∈ Z, we arrive at (3.5).
In the case of a Nash v.i., setting wτ = (wτ,1, ..., wτ,m) and u = (u1, ..., um) and

recalling the origin of F , due to the convexity of φi(zi, z
i) in zi, for all u ∈ Z we get

from (5.12):

t∑

τ=1

γτ

m∑

i=1

[φi(wτ ) − φi(ui, (wτ )
i)] 6

t∑

τ=1

γτ

m∑

i=1

〈F i(wτ ), (wτ )i − ui〉 6 Γ(t).

Setting φ(z) =
∑m

i=1 φi(z), we get

t∑

τ=1

γτ

[
φ(wτ ) −

m∑

i=1

φi(ui, (wτ )
i)

]
6 Γ(t).

Recalling that φ(·) is convex and φi(ui, ·) are concave, i = 1, ...,m, the latter inequality
implies that

[
t∑

τ=1

γτ

][
φ(ẑt) −

m∑

i=1

φi(ui, (ẑt)
i)

]
6 Γ(t),

or, which is the same,

m∑

i=1

[
φi(ẑt) −

m∑

i=1

φi(ui, (ẑt)
i)

]
6

[
t∑

τ=1

γτ

]−1

Γ(t).

This relation holds true for all u = (u1, ..., um) ∈ Z; taking maximum of both sides
in u, we get

ErrN(ẑt) 6

[
t∑

τ=1

γτ

]−1

Γ(t).

5.2. Proof of Theorem 3.5. In what follows, we use the notation from Theo-
rem 3.2. By this theorem, in the case of constant stepsizes γτ ≡ γ we have

Errvi(ẑt) 6 [tγ]
−1

Γ(t),(5.13)

where

Γ(t) = 2Θ +
3γ2

2α

t∑

τ=1

[
M2 + (ǫrτ−1

+ ǫwτ
)2 +

ǫ2wτ

3

]
+ γ

t∑

τ=1

〈∆τ , wτ − yτ−1〉

6 2Θ +
7γ2

2α

t∑

τ=1

[
M2 + ǫ2rτ−1

+ ǫ2wτ

]
+ γ

t∑

τ=1

〈∆τ , wτ − yτ−1〉.(5.14)

For a Nash v.i., Errvi in this relation can be replaced with ErrN.
Note that by description of the algorithm rτ−1 is a deterministic function of

ζN(τ−1) and wτ is a deterministic function of ζM(τ) for certain increasing sequences
of integers {M(τ)}, {N(τ)} such that N(τ − 1) < M(τ) < N(τ). Therefore ǫrτ−1

is

a deterministic function of ζN(τ−1)+1, and ǫwτ
and ∆τ are deterministic functions of
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ζM(τ)+1. Denoting by Ei the expectation w.r.t. ζi, we conclude that under assumption
I we have

EN(τ−1)+1

{
ǫ2rτ−1

}
6 M2, EM(τ)+1

{
ǫ2wτ

}
6 M2, ‖EM(τ)+1 {∆τ} ‖∗ 6 µ,(5.15)

and under assumption II, in addition,

EN(τ−1)+1

{
exp{ǫ2rτ−1

M−2}
}

6 exp{1},
EM(τ)+1

{
exp{ǫ2wτ

M−2}
}

6 exp{1}.
(5.16)

Now, let

Γ0(t) =
7γ2

2α

t∑

τ=1

[
M2 + ǫ2rτ−1

+ ǫ2wτ

]
.

We conclude by (5.15) that

E {Γ0(t)} 6
21γ2M2t

2α
.(5.17)

Further, yτ−1 clearly is a deterministic function of ζM(τ−1)+1, whence wτ − yτ−1 is a
deterministic function of ζM(τ). Therefore

EM(τ)+1 {〈∆τ , wτ − yτ−1〉} = 〈EM(τ)+1 {∆τ} , wτ − yτ−1〉
6 µ‖wτ − yτ−1‖ 6 2µΩ,(5.18)

where the concluding inequality follows from the fact that Z is contained in the ‖ · ‖-
ball of radius Ω =

√
2Θ/α centered at zc, see (2.5). From (5.18) it follows that

E

{
γ

t∑

τ=1

〈∆τ , wτ − yτ−1〉
}

6 2µγtΩ.

Combining the latter relation, (5.13), (5.14) and (5.17), we arrive at (3.9). (i) is
proved.

To prove (ii), observe, first, that setting

Jt =

t∑

τ=1

[
M−2ǫ2rτ−1

+M−2ǫ2wτ

]
,

we get

Γ0(t) =
7γ2M2

2α
[t+ Jt] .(5.19)

At the same time, we can write

Jt =

2t∑

j=1

ξj ,

where ξj > 0 is a deterministic function of ζI(j) for certain increasing sequence
of integers {I(j)}. Moreover, when denoting by Ej conditional expectation over
ζI(j), ζI(j)+1..., ζI(j)−1 being fixed, we have

Ej {exp{ξj}} 6 exp{1},
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see (5.16). It follows that

E




exp{
k+1∑

j=1

ξj}




 = E




Ek+1




exp{
k∑

j=1

ξj} exp{ξk+1}











= E




exp{
k∑

j=1

ξj}Ek+1 {exp{ξk+1}}




 6 exp{1}E




exp{
k∑

j=1

ξj}




 .(5.20)

Whence E[exp{J}] 6 exp{2t}, and applying the Tchebychev inequality, we get

∀Λ > 0 : Prob {J > 2t+ Λt} 6 exp{−Λt}.
Along with (5.19) it implies that

∀Λ > 0 : Prob

{
Γ0(t) >

21γ2M2t

2α
+ Λ

7γ2M2t

2α

}
6 exp{−Λt}.(5.21)

Let now ξτ = 〈∆τ , wτ − yτ−1〉. Recall that wτ − yτ+1 is a deterministic function of
ζM(τ). Besides this, we have seen that ‖wτ − yτ−1‖ 6 D ≡ 2Ω. Taking into account
(5.15), (5.16), we get

(a) EM(τ)+1 {ξτ} 6 ρ ≡ µD,
(b) EM(τ)+1

{
exp{ξ2τR−2}

}
6 exp{1}, with R = MD.

(5.22)

Observe that exp{x} 6 x+exp{9x2/16} for all x. Thus (5.22.b) implies for 0 6 s 6 4
3R

EM(τ)+1 {exp{sξτ}} 6 sρ+ exp{9s2R2/16} 6 exp{sρ+ 9s2R2/16}.(5.23)

Further, we have sξτ 6
3
8s

2R2 + 2
3ξ

2
τR

−2, hence for all s > 0,

EM(τ)+1 {exp{sξτ}} 6 exp{3s2R2/8}EM(τ)+1

{
exp

{
2ξ2τ
3R2

}}
6 exp

{
3s2R2

8
+

2

3

}
.

When s > 4
3R , the latter quantity is 6 3s2R2/4, which combines with (5.23) to imply

that for s > 0,

EM(τ)+1 {exp{sξτ}} 6 exp{sρ+ 3s2R2/4}.(5.24)

Acting as in (5.20), we derive from (5.24) that

s > 0 ⇒ E

{
exp{s

t∑

τ=1

ξτ}
}

6 exp{stρ+ 3s2tR2/4},

and by the Tchebychev inequality, for all Λ > 0,

Prob

{
t∑

τ=1

ξτ > tρ+ ΛR
√
t

}
6 inf

s>0
exp{3s2tR2/4 − sΛR

√
t} = exp{−Λ2/3}.

Finally, we arrive at

Prob

{
γ

t∑

τ=1

〈∆τ , wτ − yτ−1〉 > 2γ
[
µt+ ΛM

√
t
]
Ω

}
6 exp{−Λ2/3}.(5.25)

for all Λ > 0. Combining (5.13), (5.14), (5.21) and (5.25), we get (3.10).
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5.3. Proof of Lemma 4.1.

Proof of (i). We clearly have Zo = Xo × Y o, and ω(·) is indeed continuously
differentiable on this set. Let z = (x, y) and z′ = (x′, y′), z, z′ ∈ Z. Then

〈ω′(z) − ω′(z′), z − z′〉 =
1

αxΩ2
x

〈ω′
x(x) − ω′

x(x
′), x− x′〉 +

1

αyΩ2
y

〈ω′
y(y), y − y′〉

>
1

Ω2
x

‖x− x′‖2
x +

1

Ω2
y

‖y − y′‖2
y > ‖[x′ − x; y′ − y]‖2.

Thus, ω(·) is strongly convex on Z, modulus α = 1, w.r.t. the norm ‖ · ‖. Further,
the minimizer of ω(·) on Z clearly is zc = (xc, yc), and

Θ =
1

αxΩ2
x

Θx +
1

αyΩ2
y

Θy = 1,

so that Θ = 1, whence Ω =
√

2Θ/α =
√

2.
Proof of (ii). 10. Let z = (x, y) and z′ = (x′, y′) with z, z′ ∈ Z. Observe that

‖y − y′‖y 6 2Ωy and thus

‖y′‖y 6 2Ωy(5.26)

due to 0 ∈ Y .
On the other hand, we have from (4.9) F (z′) − F (z) = [∆x; ∆y], where

∆x =
m∑

ℓ=1

[φ′ℓ(x
′) − φ′ℓ(x)]

∗[AT
ℓ y

′ + bℓ] +
m∑

ℓ=1

[φ′ℓ(x)]
∗Aℓ[y

′ − y],

∆y = −
m∑

ℓ=1

A∗
ℓ [φℓ(x) − φℓ(x

′)] + Φ′
∗(y

′) − Φ′
∗(y).

We have

‖∆x‖x,∗ = max
h∈X ‖h‖x61

〈h,

m∑

ℓ=1

[
[φ′

ℓ(x
′) − φ

′
ℓ(x)]∗[AT

ℓ y
′ + bℓ] + [φ′

ℓ(x)]∗Aℓ[y
′ − y]

]
〉X

6

m∑

ℓ=1

[
max
h∈X

‖h‖x61

〈h, [φ′
ℓ(x

′) − φ
′
ℓ(x)]∗[AT

ℓ y
′ + bℓ]〉X + max

h∈X ,‖h‖x61
〈h, [φ′

ℓ(x)]∗Aℓ[y
′ − y]〉X

]

=

m∑

ℓ=1

[

max
h∈X

‖h‖x61

〈[φ′
ℓ(x

′) − φ
′
ℓ(x)]h,A

T
ℓ y

′ + bℓ〉X + max
h∈X ,‖h‖x61

〈[φ′
ℓ(x)]h,Aℓ[y

′ − y]〉X

]

6

m∑

ℓ=1

[
max

h∈X ‖h‖x61
‖[φ′

ℓ(x
′) − φ

′
ℓ(x)]h‖(ℓ)‖Aℓy

′ + bℓ‖(ℓ,∗)

+ max
h∈X ‖h‖x61

‖φ′
ℓ(x)h‖(ℓ)‖Aℓ[y

′ − y]‖(ℓ,∗)

]

.

Then by (4.2),

|∆x‖x,∗ 6

m∑

ℓ=1

[

[Lx‖x − x
′‖x + Mx][‖Aℓy

′‖(ℓ,∗) + ‖bℓ‖(ℓ,∗)] + [LxΩx + Mx]‖Aℓ[y − y
′]‖(ℓ,∗)

= [Lx‖x − x
′‖x + Mx]

m∑

ℓ=1

[‖Aℓy
′‖(ℓ,∗) + ‖bℓ‖(ℓ,∗)] + [LxΩx + Mx]

m∑

ℓ=1

‖Aℓ[y − y
′]‖(ℓ,∗)

6 [Lx‖x − x
′‖x + Mx][A‖y′‖y + B] + [LxΩx + Mx]A‖y − y

′‖y ,
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by definition of A and B. Next, due to (5.26) we get by definition of ‖ · ‖
‖∆x‖x,∗ 6 [Lx‖x − x

′‖x + Mx][2AΩy + B] + [LxΩx + Mx]A‖y − y
′‖y

6 [LxΩx‖z − z
′‖ + Mx][2AΩy + B] + [LxΩx + Mx]AΩy‖z − z

′‖,

what implies

(a) : ‖∆x‖x,∗ 6 [Ωx[2AΩy + B]Lx + 2AΩy[LxΩx +Mx]] ‖z − z′‖ + [2AΩy + B]Mx

Further,

‖∆y‖y,∗ = max
η∈Y,‖η‖y61

〈η,−
m∑

ℓ=1

A
∗
ℓ [φℓ(x) − φℓ(x

′)] + Φ′
∗(y

′) − Φ′
∗(y)〉Y

6 max
η∈Y,‖η‖y61

m∑

ℓ=1

〈η,A
∗
ℓ [φℓ(x) − φℓ(x

′)]〉Y + ‖Φ′
∗(y

′) − Φ′
∗(y)‖y,∗

= max
η∈Y,‖η‖y61

m∑

ℓ=1

〈Aℓη, φℓ(x) − φℓ(x
′)〉Eℓ

+ ‖Φ′
∗(y

′) − Φ′
∗(y)‖y,∗

6 max
η∈Y,‖η‖y61

m∑

ℓ=1

‖Aℓη‖(ℓ,∗)‖φℓ(x) − φℓ(x
′)‖(ℓ)‖Φ

′
∗(y

′) − Φ′
∗(y)‖y,∗

6 max
η∈Y,‖η‖y61

m∑

ℓ=1

‖Aℓη‖(ℓ,∗)[LxΩx + Mx]‖x − x
′‖x[Ly‖y − y

′‖y + My],

by (4.2.b) and (4.5). Now

‖∆y‖y,∗ 6 A[LxΩx +Mx]‖x− x′‖x + [Ly‖y − y′‖y +My],

and we come to

(b) : ‖∆y‖y,∗ 6 [ΩxA[LxΩx +Mx] + ΩyLy] ‖z − z′‖ +My.

From (a) and (b) it follows that

‖F (z) − F (z′)‖∗ 6 Ωx‖∆x‖x,∗ + Ωy‖∆y‖y,∗
6
[
Ω2
x[2AΩy + B]Lx + 3AΩxΩy[LxΩx +Mx] + LyΩ

2
y

]
‖z − z′‖

+Ωx[2AΩy + B]Mx + ΩyMy.

We have justified (4.12)
20. Let us verify (4.13). The first relation in (4.13) is readily given by (4.3.a,c).

Let us fix z = (x, y) ∈ Z and i, and let

∆ = F (z) − Ξ(z, ζi)

= [
m∑

ℓ=1

[φ′ℓ(x) − Gℓ(x, ζi)]
∗

ψℓ︷ ︸︸ ︷
[Aℓy + bℓ]

︸ ︷︷ ︸
∆x

;−
m∑

ℓ=1

A∗
ℓ [φℓ(x) − fℓ(x, ζi)]

︸ ︷︷ ︸
∆y

.(5.27)

As we have seen,

m∑

ℓ=1

‖ψℓ‖(ℓ,∗) 6 2AΩy + B(5.28)
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Besides this, for uℓ ∈ Eℓ we have

‖
m∑

ℓ=1

A∗
ℓuℓ‖y,∗ = max

η∈Y, ‖η‖y61
〈
m∑

ℓ=1

A∗
ℓuℓ, η〉Y = max

η∈Y, ‖η‖y61
〈
m∑

ℓ=1

uℓ,Aℓη〉Y

6 max
η∈Y, ‖η‖y61




∑

16ℓ6m

‖uℓ‖(ℓ)‖Aℓη‖(ℓ,∗)





6 max
η∈Y, ‖η‖y61

[
max

16ℓ6m
‖uℓ‖(ℓ)

] ∑

16ℓ6m

‖Aℓη‖(ℓ,∗) = A max
16ℓ6m

‖uℓ‖(ℓ).(5.29)

Hence, setting uℓ = φℓ(x) − fℓ(x, ζi) we obtain

‖∆y‖y,∗ = ‖
m∑

ℓ=1

A∗
ℓ [φℓ(x) − fℓ(x, ζ)]‖y,∗ 6 A max

16ℓ6m
‖φℓ(x) − fℓ(x, ζ)‖(ℓ)

︸ ︷︷ ︸
ξ=ξ(ζi)

.(5.30)

Further,

‖∆x‖x,∗ = max
h∈X , ‖h‖x61

〈h,
m∑

ℓ=1

[φ′ℓ(x) − Gℓ(x, ζi)]
∗ψℓ〉X

= max
h∈X , ‖h‖x61

m∑

ℓ=1

〈[φ′ℓ(x) − Gℓ(x, ζi)]h, ψℓ〉X

6 max
h∈X , ‖h‖x61

m∑

ℓ=1

‖[φ′ℓ(x) − Gℓ(x, ζi)]h‖(ℓ)‖ψℓ‖(ℓ,∗)

6

m∑

ℓ=1

max
h∈X , ‖h‖x61

‖[φ′ℓ(x) − Gℓ(x, ζi)]h‖(ℓ)

︸ ︷︷ ︸
ξℓ=ξℓ(ζi)

‖ψℓ‖(ℓ,∗)︸ ︷︷ ︸
ρℓ

Invoking (5.28), we conclude that

‖∆x‖x,∗ 6

m∑

ℓ=1

ρℓξℓ,(5.31)

where all ρℓ > 0,
∑

ℓ ρℓ 6 2AΩy + B and

ξℓ = ξℓ(ζi) = max
h∈X , ‖h‖x61

‖[φ′ℓ(x) − Gℓ(x, ζi)]h‖(ℓ)

Denoting by p2(η) the second moment of a scalar random variable η, observe that
p(·) is a norm on the space of square summable random variables representable as
deterministic functions of ζi, and that

p(ξ) 6 ΩxMx, p(ξℓ) 6 Mx

by (4.3.b,d). Now by (5.30), (5.31),

[
E
{
‖∆‖2

∗
}] 1

2 =
[
E
{
Ω2
x‖∆x‖2

x,∗ + Ω2
y‖∆y‖2

y,∗
}] 1

2
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6 p (Ωx‖∆x‖x,∗ + Ωy‖∆y‖y,∗) 6 p

(
Ωx

m∑

ℓ=1

ρℓξℓ + ΩyAξ
)

6 Ωx
∑

ℓ

ρℓmax
ℓ
p(ξℓ) + ΩyAp(ξ)

6 Ωx[2AΩy + B]Mx + ΩyAΩxMx,

and the latter quantity is 6 M , see (4.12). We have established the second relation
in (4.13).

30. It remains to prove that in the case of (4.14), relation (4.15) takes place. To
this end, one can repeat word by word the reasoning from item 20 with the function
pe(η) = inf

{
t > 0 : E

{
exp{η2/t2}

}
6 exp{1}

}
in the role of p(η). Note that similarly

to p(·), pe(·) is a norm on the space of random variables η which are deterministic
functions of ζi and are such that pe(η) <∞.

5.4. Proof of Lemma 4.3. Item (i) can be verified exactly as in the case of
Lemma 4.1; the facts expressed in (i) depend solely on the construction from Section
4.2 preceding the latter Lemma, and are independent of what are the setups for X,X
and Y,Y.

Let us verify item (ii). Note that we are in the situation

‖(x, y)‖ =
√
‖x‖2

1/(2 ln(n)) + |y|21/(4 ln(p(1))),

‖(ξ, η)‖∗ =
√

2 ln(n)‖ξ‖2
∞ + 4 ln(p(1))|η|2∞.

(5.32)

For z = (x, y), z′ = (x′, y′) ∈ Z we have

F (z)−F (z′) =



∆x = [Tr((y − y′)A1); ...; Tr((y − y′)An)]; ∆y = −
n∑

j=1

(xj − x′j)Aj



 .

whence

‖∆x‖∞ 6 |y − y′|1 max
16j6n

|Aj |∞ 6
√

2 ln(n)A∞‖z − z′‖,

|∆y |∞ 6 ‖x− x′‖∞ max
16j6n

|Aj |∞ 6 2
√

ln(p(1))A∞‖z − z′‖,

and

‖(∆x, ∆y)‖∗ 6 [2 ln(n) + 4 ln(p(1))]‖z − z′‖,

as required in (4.29). Further, relation (4.30.a) is clear from the construction of Ξk.
To prove (4.30.b), observe that when (x, y) ∈ Z, we have (see (4.27), (4.28))

‖Ξx(x, y, η)‖∞ 6 |ȳı| max
16j6n

|Aıj |∞ 6 A∞,

and, since F x(x, y) = E {Ξx(x, y, ζ},

‖Ξx(x, y, η) − F x(x, y)‖∞ 6 2A∞.(5.33)

Clearly,

|Ξy(x, y, η) − F y(x, y)|∞ = |A −
n∑

j=1

xjAj |∞ 6 2A∞.(5.34)
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Applying [4, Theorem 2.1(iii), Example 3.2, Lemma 1], we derive from (5.33) and
(5.34) that for every (x, y) ∈ Z and every i = 1, 2, ... it holds

E
{
exp{‖Ξxk(x, y, ζi) − F x(x, y)‖2

∞/N
2
k,x}

}
6 exp{1},

Nk,x = 2A∞
(
2 exp{1/2}

√
ln(n) + 3

)
k−1/2

and

E
{
exp{‖Ξyk(x, y, ζi) − F y(x, y)‖2

∞/N
2
k,y}

}
6 exp{1},

Nk,y = 2A∞

(
2 exp{1/2}

√
ln(p(1)) + 3

)
k−1/2.

Combining the latter bounds with (5.32) we conclude (4.30.b).


