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Abstract — Processing marine-mammal signals for passive ocearpustic tomography or species
classification and monitoring are problems that daecently attracted attention in scientific littwee. For
these purposes, it is necessary to use a methathwbuld be able to extract the useful informatirout
the processed data, knowing that the underwateir@mwient is highly non-stationary. In this contette-
frequency or time-scale methods constitute a piatleaypproach.

Practically, it has been observed that the m&jownf time-frequency structures of the marine-
mammal signals are highly non-linear. This facteaf§ dramatically the performances achieved by the
Cohen's class methods, these methods being efficidre presence of linear time-frequency struesur

Fortunately, thanks to the warping operator piple, it is possible to generate other class ofetim
frequency representations (TFRs). The new TFRsanalyze non-linear chirp signals better than Cobken'
class does. In spite of its mathematical elegatids,principle is limited in real applications bwé major
elements. First, as we will see, its implementateads to a considerable growth of the signal langt
Consequently, from operational point of view, thigiciple is limited to short synthetic signals.cBedly,
the design of a single warping operator can be prapriate if the analyzed signal is multi-component
Furthermore, the choice of “adapted” warping opevatbecomes a problem when the signal components
have different time-frequency behaviors.

In this paper, we propose a processing methomharine-mammal signals, well adapted to a real
passive underwater context. The method tries tocowee the two limitations mentioned before. Alde, t
first step consists in data size reducing by theect®n of the time-frequency regions of interdR®©Is).
Furthermore, in each ROI, a technique which combmme typical warping operators is used. The tesul
an analytical characterization of the instantanefegiuency laws of signal components.

The simulations on real underwater data showpgédormances of this method in comparison with
classical ones.

Keywords time-frequency analysis, wavelet transform, higter statistics, underwater environment, warping
operators, passive tomography

1.INTRODUCTION

Motivation for processing marine-mammal signalsmsefrom increasing interest in the
behavior of endangered marine mammals, reflectea mumber of publications in the scientific
literature [1,2]. The ultimate goal of the curreasearch in this field is to develop tools for the
simultaneous localization of mammals and analysihe® emitted signal for species identification
and monitoring.

On the other hand, the characterization of undemeatvironment is a challenging topic, due
to the richness of the potential information thamh de extracted for navigation or communication,
for example. One of the major methods is ticeanicactive tomography3], which provides an
environmental characterization using a man-madesitnéted signal. Nevertheless, it is possible to



imagine the passive tomography concept which vefidiit by the generated signals by the natural
sources (opportunity sources).

These two applications constitute arguments for tleelopments of some adequate
processing tools. In order to detail the purpodethe proposed method, we firstly point out on
some considerations about classical passive sgsgenss. From signal processing point of view,
the receiver of a passive sonar system is orgariged figure 1 [4].

Observation Detection Detected Bl T-F Classification
_ i el characterization/ Tformaton * Localization
g [Parameter extraction| f Synthesis

t

Figure 1. Organization of the passive processinguniderwater signals

This figure indicates the two signal processingrapens involved in a passive sonar system :
detectionandcharacterization

It is well known that the sounds produced by manmammals have generally a non-
stationary behavior. It ranges from short transi¢atlong tones, with a huge variety of non-linear
chirp-like structures. Analysis of these sounds dseadapted tools in order to accurately
characterize the signals in both time and frequeleensions. In numerous studies [4,5,6] and for
well-known reasons the spectrogram [7] has beed asethe interface between sounds and the
feature extraction stage. Nevertheless, in manjicgtions, such as passive sonar signal processing
or speech processing, the spectrogram does notdpr@nough freedom to the user. When the
interest is to obtain, via spectrogram, a “nicetye’ of the sound a marine mammals actually
transmits, it is indispensable to be able to chdbsegood parameter set (window type and length,
overlapping parameter, etc.). On the other haredsgiectrogram representation is unable to provide
information describing the auditory perception bistkind of signal. This information is often
required by the post-processing stages [8]. Thezefwith the notion that the auditory system
inherently represents acoustic signals in robustnea [9], a promising approach to solve the
detectionof underwater sounds seems to lie in the mimickih¢hat process. Recent research [9]
has indicated an analytically appealing model ahan auditory processing in its early stages. This
model is based on the Over-Complete Wavelet Trams{®@CWT) [10]. Therefore, the proposed
detection method is based on the OCWT which leadgynal processing on interest frequency sub-
bands. In each of them, an irregular sampling o will be used, in order to adaptively detect
the signal time-frequency features. On the oth@dh#he detection stage reduces the size of the
data applied to the next phasgarameter extractionSince only the useful parts of the received
signal are taken into account, the complexity ef¢haracterization procedure is naturally reduced.

Furthermore, the parameter extraction algorithnhlvélapplied in each detected ROI. In order
to deal with the non-stationary behavior of thenaigbelonging to each ROI, the use of time-
frequency representation constitutes a potentiatageh. Usually [8, 11], the time-frequency (T-F)
methods belonging to the Cohen’s class [7] are usedthe extraction of time-frequency
information from non-stationary signals. Nevertlsslethese methods perform correctly while the
time-frequency components of the analyzed signe¢ lzalinear T-F behavior. More precisely, the
time-frequency distribution is highly concentrat@aund the linear instantaneous frequency law
(IFL). In the case of non-linear IFLs, some artifagppear, related to the bi-linearity of this sla
TFRs [7]. The attenuation of these artifacts ingliee application of some smoothing functions
(kernels) in the ambiguity plane. This operatiomldocreate some degradation of the quality of
time-frequency information [7,12].

Fortunately, it is possible to generate other ctdggne-frequency representations which may
analyze non-linear chirp signals better than Cahela'ss does. The technique used to generate the
non-linear TFR classes is based on the use of ngupperators [12]. Generally, this operator is
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interpreted as a unitary axis deforming. In timegirency analysis context its application produces
the “linearization” of the time-frequency behaviof the signal. The application of warping
technique imposes the knowledge of the time-frequéehavior of the signal. Moreover, if the T-F
components of the signal have different types &f Structures (example, Hyperbolic Chirps and
Linear Chirps) it is necessary to combine severaipimg operators. In this paper, we propose a
new method for time-frequency feature extractiosdobon the signal-dependent selection of some
warping operators. The aim is to obtain a comptliete-frequency description of marine-mammal
emissions. The examples will illustrate the perfances of this method in a real-data context.

In conclusion, the main purpose of this paper iprimpose an alternative solution for both
detection and parameter extraction stages whicpateof a passive sonar system.

The jointly use of the proposed methods will bastfated on some real marine —mammal
emissions.

The paper is organized in two main parts. The bre# — “Passive Detection Methods” deals
with the problem of detection of the transient panft the signal. In Section 2 we briefly presert th
OCWT concept and its relation with the auditory miaty. Furthermore, we propose a new method
for underwater signal detection in a passive cdniExis method is based on an irregular sampling
of the time axis, provided by split and mergealgorithm [13]. In Section 3, we will study the
performances of the new approach using the reatrwadter mammal emissions. Furthermore, we
will compare the obtained results with the one®qgilsy two classical methods.

The second part of the paper is devoted to the Bdmdter Signal Characterization”. After a
short presentation of the warping-based non-lifd&éR (Section 4), we introduce, in section 5, a
parameter extraction method based on the combmatio several time-frequency warping
operators. The jointly use of the new detection pahmeter extraction methods is illustrated, via
some examples, in the Section 6. Section 7 - "Gmmwh and Perspectives” - highlights the
significance of the results and the realistic pectipes.

PART 1. PASSIVE DETECTION METHODS

2.PAssIVE DETECTION METHOD BASED ON OVER COMPLETE WAVELET TRANSFORM

Human auditory system has a remarkable capacity afmustic signal detection and
interpretation. In the last years, many works ttiedlesign a similar artificial system, based am th
mimic of the physical phenomena which occurs imaan auditory system.

When a signal enters the ear it creates a patfeactivity (displacement) along the basilar
membrane [9]. This membrane has a length and, harsjgatial axis (indexed I8y associated with
it which extends from its bases=0) towards its apexs@0). The magnitude of activity at any
particular spatial locatiors, on the membrane may be modeled as the outputinéar (bandpass)
filter with an impulse respongg(-). Because of the physical nature of the membresfilters s
: s > 0} are related in a special way. Physicallystie reflected by the fact that the basilar
membrane provides a logarithmic mapping of the sttospectrum. One might think of the basilar
membrane as acting like a bank of bandpass filtdiere the center frequency of the filtdy(-) is
related logarithmically ts. As it is shown in [9], this type of relationsiépn be described nicely in
terms of wavelet transformation (see [14], for ctete references). In its continuous form, the
wavelet transform is expressed as :

A

(CWTgX)(t’ao) <x,rtDaog> = |aO|l/2J. x(u)g” (a, (t - u))du (1)
where g is the analyzing waveletx is a given signal, 7, is the translation operator

((r,f)(u)= f(u-1t)) andDsis the scale operat{(DSf)(u) _1 f(in. Despite the fact that there is
BH &

an infinity of possible sampling procedure of th&/ T, the termdiscrete wavelet transform (DWT)
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is commonly used to mean the one associated watllyadic sampling latticead=2). Fora, lower
than2 we get the Over Complete Wavelet Transform (OCWT).

From computational point of view, the OCWT is implented in two stages :
I.  First, we decompose the signal with a linear filbank structure (an example is given in
figure 2.a). The impulse responses of the filterkoare determined by the analyzing waveleind
the scale parametag. The filtering stage result is mathematically estias :

OCWT, x(t,a,) = (x0D,. g" )t) )
Hereap is a scaling index which controls the overlappi@gween the filter transfer functions

(figure 2.b). Forap=2, we obtain the filter bank structure used for th& Dcomputation. A filter
bank example is shown in 2.b., using the Morlets/let as the analyzing function :

1 EejZﬂth—(tz/yb) (3)
Vb

IMorlet(t) =

where)s and ¢ are the bandwidth and the frequency center oFtheier transform of.
Signal) x _ Filter bank (a0=2)

v v .

[{ FFT(h(1) \ [EFFP;"‘M]
— ¢ “
| J
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Figure 2. Comparison between filter banks at diféert scales

Il. In the second stage we will sample the signal d$ramn the filter bank. We take into account
the samples at discrete times given by (figure 2.a).

Mathematically, OCWT may be interpreted as the C¥dimpled version of the signal by a

non-dyadic structure. Usually, we use the semisitigaic regular sampling, given by [10] :
F(A,ao)é{m}x{ag‘},2> 3,>1A>0 4)

The parameteg, controls the filter overlapping, and, implicitlyhe redundancy degree. If
ap<2, the wavelet function set will be a frame : teeonstruction is not perfect but we can adapt
our distribution to the signal singularities. Tlesn be done by non-uniformly sampling the signal
issued from each sub-band, according to its cheniatits.

Generally speaking, there are some advantagesof achon-uniform sampling strategy in a
representation. Many of these advantages are teefriom the ability of a non-uniform sampling
to be sensitive to signal time-frequency behavia®. The theoretical framework of the non-
uniform sampling strategies is presented in [15§ aome applications (for noise suppression,
digital communication, compression, etc.) are presgtin [10]. In this section we propose a new
passive detection method based on a non-unifornplgagrtechnique in a noisy environment. This
technique sets different weights to signal samg@lesording to its statistic properties.

It is well known [13] that the non-gaussian waveleéfficients provide a large value of the
fourth order statistic cumulankyrtosig. On the other hand, the noise coefficients, whielve
usually a gaussian probability density functiore eharacterized by a small value of thetosis.
The kurtosis allows us to discriminate betweenubkeful (transitory) and useless (noise) parts of
the signal. This principle, illustrated in the négure, will be applied for signals issued frontka
OCWT sub-band.
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Figure 3. The non-uniform sampling procedure for stiiand i

In the above figure we present the principle ofriba-uniform sampling procedure. Initially,
the waveform issued from tfi&-channel of the OCWT filter bank is uniformly padied in equal
length intervalsly composed each one By samples. For each of them the value of kurtosis is
estimated, using the following relation [16] :

kurt(l, )= N(iz::x“j/(gxz]z;{)q}ﬂlk (5)

Using these values, we apply an iterative Split &rlye algorithm in order to establish the
optimal partition. For each two adjacent intervaksndly.1, we test the following condition :

Ho: if kurt(l j)s HUs & kurt(l j+1)s Us = |'j =1 0141
= kurt(lj): max[kurt (I j), kurt (I j+1)] (6)

Hy: if kurt(l j)> HUgor kurt(l j+1)> Us = theintervalswill
beconserve

where/sis a threshold computed for each sub-band as pezkbelow.

The Hp hypothesis states that there is no useful parigoBsin the considered intervals. More
precisely, since the kurtosis values of both irdenare inferior tqs we assume that only the noise
is presented in the considered intervals. Therefinese ones will benerged(fusion operation).
The kurtosis of the new interval will be chosernlas maximum from the kurtosis of the intervals.
This over-estimation of the kurtosis minimizes #ffect of the estimation errors [13].

Alternatively, theH; hypothesis states that one or both intervals amntaseful parts of signal
and will beconservedThe algorithm runs until no fusion is possible.

Since the noise is generally colored, the OCWT fanehts issued from each sub-band have
different energies, according to their places i filequency domain [13]. This justifies the use of
kurtosis instead of" order cumulant : the kurtosis will normalize theefficients in each sub-band.
Therefore, the estimation being normalized, théavae of kurtosis estimator, in the case of a noise
with a variances’does not depend am The expression of variance is [17] :

Var (kurt) = % (7)
whereNs is the number of samples in the sub-baritlis related to the total samples number via :
NS = ﬁs (8)
9
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whereag is the scale index. Consequently, the threshialdn (6) is expressed, for the sub-band

as
1 [ s24

Uszm aON 9

where o is the confidence degred\ is the signal length and the sub-band index
(s=1..Number_of_subbands). This threshold is obtainech the maximization of the confidence
intervals [13]. It guaranties its availability ine case of short adjacent intervals.

Finally, applying the Split&Merge algorithm, we @it an optimal partition (figure 3) and
and its kurtosis values. The obtained curve weitflgssamples of the supposed waveform, ensuring
an non-uniform sampling of this one : the samplesoaiated to transient parts of signal will be
"highlighted”, whereas the ones associated to theerwill be shrunk. This effect is illustrated in
the figure 4. We consider two chirps atoms (both1l@8 samples), mixed with real underwater
noise (SNR=6.02 dB). After the OCWT (the numbersab-bands is about 128) we apply the
method to the waveform from each channel. The atdidurtosis for the optimal partition provide
an optimal sampling grid which improves the repn¢sgon quality. Repeating the same algorithm
for all OCWT channels, we obtain a two-dimensiamath-uniform sampling grid which leads to the
detection of time-frequency regions-of interest (R@figure 4). On the other hand, by unifying the
kurtosis curves for all sub-bands and for all terapposition, we obtaithe detection curvin both
time and frequency domainBhis curve provides an information about tempooahlization of the
transient parts of the signals.

baged Dadecson chrves

4

Diginciog ROjp i RSO

acoo 0
Figure 4. Detection of the time-frequency ROIls, ngithe OCWT and the non-uniform sampling procedure

With the principle described in this section, fassive detector scheme is organized as shown
in the figure 5.

OC‘%P’F ﬁlte“ barlk ....................
Irregular
% sampling P
Unknown il Trrestlar Fusion T-F ROIs
signfl : e sampling —> =

Trregular

> sampling —

TEGUERCY
4

'
Confidence thresholding

Figure 5. Passive detector based on Irregular Samglof OCWT (OCWT-IS)
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The received underwater signal passes troughtex filank, designed to cover the interest
frequency domain. In our case, since the real 8gna used for the experiments were sampled at
44.1 kHz, the useful frequency range is about 1@BHz. Nevertheless, the detection method
performs in the same way for an arbitrary frequermyge. Using an OCWT filter bank, this
domain is partitioned ihs sub-bands. The filters of this bank are overlappedrder to ensure the
conservation of global time-frequency informatid9].

The signal issued from each sub-band filter idyanea with the procedure described in (6).
The purpose is to distinguish, in the considereddbahe useful parts of the received signal.
Furthermore, using the “Split & Merge” procedureldtion 6), we obtain a non-uniform sampling
grid adapted to the sub-band representation o$itieal. The sets of the sampling grids associated
to the sub-bands form the time-frequency regioratefest.

3. PERFORMANCES OF PROPOSEDDETECTOR

In this section we compare the proposed passivectgtwith some other detectors. We will
present comparatively the results of the deteaiimtained by the method introduced in the previous
sections (OCWT-IS — OCWT and irregular sampling) &mo classical passive detectors based on
the following methods : Short-Time Fourier Transfo{STFT) [5] and the signal decomposition on
the Local Cosine Basis (LCB) [13]. This last metldetomposes the signal in a local cosine basis.
The choice of the best basis involves a split amuigen algorithm, similar to the one presented
previously. This concept has been generalizedens#ttion 2 by the “Split and merge” algorithm
applied to each sub-band response.

As test data set, we used the signal emitted Byraiops Truncatusand recorded in the
Marineland site [29] located in South of Francee Bampling frequency is 44.1 kHz and we have
taken into account an observation of 5.92 secofus.receiver frequency range was .025-23 kHz.

As a performance measure, the receiver operakhiagacteristics (ROC) are computed. Recall
that the ROC is a collection of curves describing probability of detection as a function of the
probability of false alarm for a set of differengrsal to noise ratio (SNR). Figure 6 displays the
ROCs generated for three SNR values : 5, 3, 1 dByube methods previously enumerated.

SNR =5 dB SNR =3 dB
1 T A ~ 1 ; = B
- + .'.2."‘/4-”"4 et =l A
09 o : f}‘fﬁ}r} LR:7 ek E;};f;g}“@f
i_; 05 .j/ ....................... :.; 05&—-—!_/_(/&-@;/
- 8 L
a o7 ,;g_;f i E 0.4 RSN, S
i L R & 5IFT = = STFT
0.64° - LCB 0.2 Y
OCWT-1S : +— QCWT-IS
0.5 0 i
0 2 3 4 S 0 2 4 B
P (False Alarm) x10° P (False Alarm) 107
a. ) b,
; SNR=1dB
¥
&
= ¥ L
= o 4
E 0.6 # e E fﬁ
;j Y b e e A s oo
e TR —=— STFT
Y oo B
#— OCWT-IS
0
0 2 4 6
P (False Alarm) 4

C

Figure 6. ROCs for detection schemes : a. SNR =85 i. SNR =3 dB; c. SNR =1 dB
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Obviously, the results indicate that the OCWT basgethod (forag=1.12) outperforms a
good detection performance in all the cases. fjraté obtain an acceptable value for the detection
probability, even for a SNR close to 0 dB. Seconthg false alarm level is lower than the values
generated by the first two methods. Both of thestsfdemonstrate the superiority of the OCWT-IS
based detector.

The good performances of the OCWT-IS detector ixelbt to the two other methods are
explained as following. In the case of the STFTebamethod, the parameters and the detection
threshold are selected before the simulations amdtained constant during the experiments. Since
the experiment conditions were changing (for exanible noise parameters were different for each
trial), the performances of the STFT based detedémreased much faster than the ones of the
OCWT-IS. On the other hand, the use of a regutae-irequency partition does not allow efficient
extracting of the signal characteristics.

The second detector, based on the LCB decompagspenforms better than the STFT based
detector. This can be explained by the Split&Mebgsed algorithm for best basis extraction who
adapts the time-frequency partition with respecsigmal characteristics. Nevertheless, the dyadic
sampling grid is inherently less robust in a noisedironment than a non-dyadic one [10]. It
explains the superiority of the OCWT-IS based deteitlustrated also by the statistical detection
performances.

Another comparison criterion is the quality of tR®I’'s time-frequency information. This
criterion is very important while the quality of R@formation has a critical implication for the
next stage -the feature extractianAs we will see in the next sections, if the R@ts correctly
extracted the feature extraction will be successfugrformed from both operational and efficiency
points of view.

To study comparatively the three methods, let amrsh sequence of a real underwater sound.
We start with the results provided by the spectiogand the LCB-based detectors.

o, Observatian : Tursion Marineland emigsion a L L el i B e Ll L )
E E
] : sl il : = i . Lo :
=4 .':'E ad E Ens Enai 1 : 12 Time [aec] : Sl ". b ML LR 12 Time [sec]
Spectrogram (Kaiser, 79) baged Detector LGB tepllaMoes) aseahoeelor = oo o
; #l i ! of = : R e ap gy
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Figure 7. ROIs detection using the spectrogram, L@Bd OCWT-IS —based methods



As a reference measure we consider the “ideal’sR@¢fined in the figure 7 as the time-
frequency rectangles bounded by the dashed linesrepresent the start/stop coordinates of the
useful parts of the signal. The horizontal linegresents the spectrum limits whereas the vertical
ones are associated to the time supports of thgzmuhsignal. The detected ROIls are represented
by solid gray rectangles.

In the case of spectrogram-based detector (figualy we have used a Kaiser-type analysis
window of size 79. We observe that the detectedsR(é larger, in the frequency direction, than
the ideal ones. This is due to the Heisenbergiscjpie and, consgently, to the trade-off between
time and frequency resolution. The best trade-®fflifficult to be done and it depends on the
optimal choice of spectrogram parameters.

In the case of LCB (Split&Merge)-based detectauffe 7.b) the time-frequency resolution is
improved. Neverthless, due to the Split & Mergep&ethm, the time supports are not well matched
in the detected ROIs.

Finally, we present the results obtained in the adsOCWT-1S-based detector (figure 7.c). It
can be observed that the detected ROIs are cldbe ideal time-frequency partitions associated to
useful parts of the signals. The used filter banilustrated in figure 7.d : we considered a 128
Morlet-type filters and an overlapping degrag=1.02. In these conditions the ROIs are well
detected. Therefore, the signal components are waiserved and it will ensure the good
performances for feature extraction stage as shiowre next section.

For the signal considered in the previous exanthee OCWT-IS performs also the separation
of the three component of the signal. Neverthelgsthe time-frequency components are close,
having the same supports in time and frequency dwnée complete separation is impossible.
This phenomenon is illustrated in the next figureing a sound generated by a long-finned pilot
whale Globicephala melgs The sampling frequency is 44.1 kHz and we haken into account
an observation of 5.92 seconds. The results aoepatsented for the three detectors with the same
parameters as in the previous example.

5 Observation : Globicephala melas emission
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In the case of this test signal, the detected R©®tgain many time-frequency components
enclosed in the same T-F ROI.

We close this section with some remarks about gezational aspects. The proposed detector
OCWT-IS is well adapted to a real passive contexte detection is performed without any
information about the received signal. On the otteerd, the detection is automatically done : there
is only one parameter to set — the confidencevatePractically, the performance tests have been
done with a pre-defined value 85%. Therefore, acpcal context, the method can be considered as
completely adaptive. The examples provided for teal marine-mammal observations show that
the OCWT-IS successfully performs without any clesngf the filter bank structure.

PART 2. UNDERWATER SIGNAL CHARACTERIZATION

4. THE PRINCIPLE OF WARPING-BASED TIME -FREQUENCY REPRESENTATIONS

The examples illustrated in the previous sectioowslthat, in real cases, the underwater
signals are characterized by three items (figui®).7k-irstly, signals are particularly non-statipna
Therefore, it explains the interest for time-freqeye methods. Secondly, the time-frequency
features of the signals are generally non-linedirdly, a ROI can contain many time-frequency
structures with a different T-F structure.

In this section we will study a class of methodsléal with the non-linear behavior of time-
frequency structures of the analyzed signals. WEesee that, in spite of its theoretical potential,
this method is limited when a given ROI containswn@-F structures. A possible approach will be
proposed in the section 5.

At this stage we consider the problem of time-festy representation of a signal having
non-linear T-F structures.

Typical time-frequency analysis, imposed by the-stationarity of the sounds generated by
the marine-mammals, involves the use of Cohen’ssctaembers such as the spectrogram or the
Wigner-Ville Distribution - WVD [11] or wavelet-basl methods [8]. While these methods are
natural for signals containing pulse, sinusoidialedr chirps, there are many other signal classes
that are not well described in terms of time, freey or scale. It is also the case of the majafity
underwater signal classes. Matching these typesigrfals requires new joint distribution with
different instantaneous frequency and group dedaglization properties. One of the most known
techniques is the unitary similarity transformasionhis type of transformations provides a simple
powerful tool for generating new classes of joirdtributions based on concepts different from
time, frequency and scale [12]. These new signaksentations focus on the critical characteristics
of large classes of signals, and, hence, provestadeful for representing and processing signals
that are not well matched by current techniquedudlty, it is possible to construct (via unitary
transformation) distributions that match almost amye-to-one group delay or instantaneous
frequency characteristics. One of the most knowtanntransforms is thaxis transformatiorl12],
defined for a signai(t) as an operatdd on L*(0), whose effect is given by

(Us) (1) =|w( )" { (1] (10)

wherew is a smooth, one-to-one function comprising adasgbclass of unitary transformations
([12]). The termw stands for the first derivative of the functian The functionsw(t) = € and

w(t) :|t|ksgn(t) k# C provide examples of useful warping functions ([18P]). Generally, these

functions are chosen to ensure the “linearizatiof’ a signal time-frequency behavior.
Consequently, for a signal expressed as

S('[) — ej2n(f0t—ﬂm(t)) (11)
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(where m(t) is the frequency modulation law arfflis the rate of modulation), the associated
warping function is given by [20] :
w(t) =m* (1) (12)

The application of this operator produces thedirmtion of the time-frequency content. The
following example illustrates this property. Foetsignal given by

5(t) = @2roa-00E) .
the associated warping function can be defined @is [
W(t) = {13 "

In the next figure the effect of the correspondivayping operator in the time frequency plane
is plotted. The WVD of the original signal (figuBs middle part) illustrates the presence of the
cross terms which is caused by the non-linearititofFL (figure 9). Application of the warping
operator (14) linearizes the time-frequency contdrthe original signals as indicated in figure 9
(left subplot). Consequently, the time warping aper effect consists in transforming a non-linear
frequency modulation in a tone. In the case of firguency warping (figure 9, right side),
linearization is done in a dual manner : a nondinéequency modulation becomes a pulse.
According to the concepts introduced in [7] and] [tt#2 linearization is achieved by computing the
WVD for the new time and frequency coordinatesegiby the general expression (15).

.WLxS - Original signal - W, s
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Figure 9. The time-frequency effect of the signal mgéng

Linearization of the time-frequency content, pd®ad by signal warping, is materialized by
taking the WVD of the transformed signal (figurdedt side).
The new time-frequency coordinates are relatebdastandard ones via [12]
f=w(t) ; f=fw"(wt))-for time warping operator (15)
f=tw*(w(f)) ; T=wf)-forfrequency warping operat

wherew? is the inverse function ofv and W™ represents its first derivative. In the case of
frequency warping operators, the deformation fumctw is applied in the frequency domain. To
specify its application in the spectral domains thperator is often denoted By.

As exemplified in figure 9, the effect of warpirgperator is the linearization of time-
frequency structure of the analyzed signal. Thiedrization is materialized in the time-frequency
plan by computing the TFR of the warped signal. dllyuthe TFRs of the Cohen’s class (CTFR)
are used. The general form of the CTFR is :

CTFR(t f):ﬂD »{t—%) x( t+£2j @ d}q)(r,f) g2t g g (16)
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wherejx[t—%) X (t+%j €27 dt is the ambiguity function of the sigral The weighting function

Adr,é), called kernel of the distribution, determines completely the gadies of the CTFR.
Different choices for the kernel functignyield widely different time-frequency representaso

Finally, the warped-based TFR (WTFR) is obtainedubyvarping the coordinates of the
CTFR [12] using the following formula :

WTFR'(t f)= CTFR,( w (), A w()) (17)

The unwarping procedure consists in transforntimg coordinates of the WVD image
according to the real time and frequency coordméim example figure 9, left side). The resulais
cross-terms free time-frequency distribution, pdawy a correct concentration of the energy across
the theoretical instantaneous frequency law. Thk ¢d cross-terms is explained by the linearity of
the unwarping transform applied on a cross-terra-2B data (i.e., the WVD of warped signal).
This main property of the warping-based TFR issiitated in the next figure for the signal given in
(13).

Wigner-Ville Distribution 7 Warping-based TFR

5 IO SRR SR . S | ¥ .
0.2 {02
0.1 : ' | 01 : . S

: i i i 0 i i
100 200 300 400 5004 100 200 300 400 500 ¢
Figure 10. Warping-based TFR vs Wigner-Ville didbttion

In spite of its elegance, the principle of the viagpbased time-frequency analysis is limited
for real data context. Actually, there are two méijoitations.

Firstly, the implementation scheme [21] of the pymag operators involves a drastic increasing
of the signal length. The increasing of sample nemperformed by a zero padding operation, is
imposed by the interpolation procedure. This ormpces new signal values associated to the new
warped coordinates. In [21], it is shown that atiere increasing of the signal size is necessary to
obtain a sufficient accurate estimation of the neavped signal values. Since the warping-based
TFR principle supposes the computation of a Cohelass distribution of the warped signal, the
increasing of the signal size leads to seriouslprod in the case of real data, represented byga lar
number of samples. In this context, a potentialitsmh is to analyzenly the signal components
bounded by the time-frequency ROIs. Therefore, sbtution we adopted to overcome this
limitation is to analyze the signal of the deted®€Is by the method previously presented.

Secondly, as it was observed in section 3, thén@amammal sounds generally contain many
non-linear time-frequency structures. The warpiagda time-frequency analysis of these types of
structures imposes firstly the separation and klagacterization of each time-frequency component.
Nevertheless, this operation constitutes a verficdlf one because it must to be done in a passive
context (i.e., there is no any a priori informatadvout the time-frequency structures).

One possible method was proposed in [22] for neanrammal sounds. The involved technique is
based on the signal decomposition an extended basis function dictionatizat can accurately
represent a multiple TF structure signal, everttiernon-linear case [23]. This dictionary contains
different frequency modulation (FM) chirps

w(1,8) =0 (18)
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which is uniquely specified by its FM rate its monotonic phase functiof{t) and the parameter
setd :[to, fo,c,d] (which contains the time and frequency centrespatate and signal duration,
respectively) The dictionary may contain the following FM chirpssinusoids £(t)=t), linear
chirps ¢(t)=t?) or k-power FM (PFM) chirps{(t)=t“).

Using this extended dictionary and a projectiogogthm ("Matching Pursuit” [24], for
example) we can obtain an optimal approximationafgiven signal as a sum of the corresponding
basis function, weighted by the decomposition gokeffits. These coefficients are obtained by the
inner product between the signal and the assockses functions. This approximation leads to an
adaptive time-frequency representation of the amalysignal [23]. On the other hand, the signal
can be "parameterized" by the basis function fest and &(t)), achieving also a data set for
signal characterization.

Nevertheless, in order to achieve good analysibbpeances, the dictionary size must be
very large. More precisely, the method proposed2B] is based on an extended dictionary
composed by a set of individual dictionaries assed to the modulation types. Obviously, the
dictionary grows with the number of the considemeztlulations.

For example, the dictionary involved in the exampiestrated in [22] contains 20,971,520
elementary functions (knowing that 10 modulatiopety have been considered). Consequently,
some computational difficulties appear when suclnimer of elementary functions must be
managed in a sequential manner (as proposed ih [23]

On the other hand, the size of the required diatiprcan be reduced considering only the
signal within the detected ROIs. For example, en¢hse of the second detected ROI in figure 8, the
parametetty will be searched only in the interval [3.3,3.8]gastead of [0,6]sec if all the signal
samples are considered. For the same precisjone number of parametegswe are looking for
are 0.5/P and 6/P, respectively. We remark thteércase of the ROI signal processing, the number
of thetp is 30 times smaller than in the case of processiradl signal samples.

In the next section we propose an alternative atethhich is based on signal component
separation using different warping operators. Thethod will be exemplified in the case of the
signal emitted by a long-finned pilot whale.

5.WARPING-BASED SIGNAL DECOMPOSITION

In the previous section we have presented theimgtgchnique principle and its application
for warping-based time-frequency representation.néiee seen that the implementation of warping
operators involves some assumptions concerning ntitere of the analyzed time-frequency
structures (relation 13). Moreover, the warpingdthd FR is obtained by processing the time-
frequency distribution of the warped signal (relatil7), and, consequently, the size of the analyzed
signal cannot be arbitrarily large. Since the smgblem is partially solved by the ROIs detection
procedure, the knowledge of the signal time-fregyenature remains a real difficulty in the
context of signal analysis via non-linear TFR.

In this section we propose a hew method for featxtraction which is applied to the signal
of previously detected ROIs. The method is basetherapplication, in a parallel manner, of many
warping operators. Hence, for each issued sigmaiesentation; we look for linear time-frequency
structures. In fact, applying the warping operatitihe T-F components having a T-F behavior
associated to the warping law become linear clikg-tomponents. These new structures can be
estimated by chirplet transform principle [25], ileqmented, for example, by Matching Pursuit
method [24].

To illustrate the features of the new method, Waypbased Signal Decomposition (WSD),
let consider the following expression for a signellonging to the ROK :

ROIK:s()=YD" ¢ (19)
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where {Cj} is the set of the time-frequency structure typeasses) an@sﬁc‘)} is the set of signal

component having &i-type time-frequency behavioC; can denote the hyperbolic frequency
modulation (HFM) class [18}(th order Power Frequency Modulation (PFM) [19], linehirp class,
etc.N. is the number o€i-type time-frequency structures which comps(sg

We consider Y} — the family of warping operators associated e tlassesi}. The
effect of the application of an element of this figgmW;, on s(t) is the linearization of time-

frequency structures corresponding{ Eé)ci)} :

WVB,¢ (1 1) - 5{ f- (ot %)] (20)

chirp
W, — warping operator associateddc

Therefore, the components which become chirp 8gnahe new representation space form
the Ci-type signal subset (denoted ISbG :{~§i}; )- They can be obtained by estimating g

chirps{(//k (t,?)} i and modulating these functions with the associatedulation operator :

1N,

s (1) =(Mw )(£8); j=1,...N

(21)

The estimation of the chirplet functions can befgrened by a Matching Pursuit-based
method [24]. In fact, the idea is to search iteadyi, for theW; warped version of the signal, the
local best matched functions, selected from aatietiy.

(wWis(t) (1))

g
6=[t, f,.c.d]

6 = max

(22)

The parameter sét,= [fo, fo,é,a}, contains the estimation of time and frequencytresn

chirp rate and signal duration, respectively. Galhgrin order to estimate correctly the chirp-like
components of a signal, the dictionary must beeaegough. Nevertheless, using agriori
information the detected ROIs parameters, theatfietly size can be considerably reduced [22].
Using a battery of warping operators and a MagHursuit-based Chirplet Estimation

(MPCE) procedure, we can estimate all parametersigrfal components. The WSD method is
illustrated in the figure 11.

11{Wz) )
— Wy, ——s MPCE |-

] b &
(Wys) | —— 1 ey

— e i 1||1l .

* - W, ) MPCE

Figure 11. Warping-based Signal Decomposition diagr
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The warping operators are implemented accordindpeéodesired warping law [21] and the
parameters of ROIs (the time and frequency centiese and frequency supports). These
parameters are also used to pre-define the chigitdtonary. Furthermore, the algorithm is
parallelized inM braches, wher# is the number of T-F behaviour types of interédter the
application ofW;, all the C; time-frequency components of the signal will beeérized and the
others will have an arbitrary shapes. Consequeintlgach branch, looking (via MPCE algorithm)
for linear T-F structures, the componelss(t) will be well matched, thanks to their linear T-F
structures. For the other structures, even if they more energetic, the chirplet decomposition
coefficients will be smaller than the ones corregfing to the chirplet structures.

The parallel organization of this algorithm allovesluction of the required dictionary size.
It avoids the sequential exploration of the sigmsihg several dictionary types as proposed in [23].
By working with a parallel scheme, the warped sigimaresponding to each branch is projected on
the samechirplet dictionary. In other words, only one dictary is required. Comparing with the
method proposed in [23] it is equivalent with thetidnary size reducing

In practical applications [24] the choice of thenmher of searched chirplet functions
constitutes a complex problem. If a small dictignar considered, some of signal time-frequency
structures could not be modelled. This is due #oféitt that the corresponding basis functions (that
would match these structures) don’t belong to tiiahary. At opposite, in case of a large
dictionary, the computation time will increase &reclarge number of functions will be taken into
account. Since we have no idea about how the pgedesignal looks like, the choice of dictionary
could be set up according to the application. In @ase, since we are interested in signal feature
extraction, it is appropriate to oversize this pagter.

Finally, the estimations obtained from each braaoh used to generate, by the inverse
warping operation, the corresponding T-F componeNtturally, the component number being
oversized, the number of estimated componentsbheillager than the real one. Consequently, the
WSD algorithm finishes with a post-operation anislys order to identify the real T-F components
of the analyzed signal. As depicted in the figule We propose the computing of the matching
degrees between the signal and all the estimataga@oents, given by the following function :

/]ij = <S(t)7 M vz > (23)

Analyzing the variation of the valugg, by a conjugate gradient meth@é], we can estimate
the number of components of each time-frequencylimnearity types. However, if some inherent
errors occur, the artifacts (i.e. the retained comgmts which do not belong to the analyzed signal)
will have relative small contributions on the sigmendelling.

Therefore, after the WSD performing, the signahmdelled as

Ne,
§(t) = ZZAU (M Wi )(t) (24)
G j=1
where (M Wi )(t) is the signal estimated component, completelyadtarized by the parameters of

associated chirps signal (time and frequency cenr@ndwidth and duration) and the instantaneous
frequency law provided by thd;.

To estimate the frequency tones a spectral esbmatiethod [27] (MUSIC, for example) can
be applied on the residual signal. The completeatigharacterization is also expressed as :

5(t)= ZA M o)+ > e (25)

where §} are the frequency estimations of the tones engsin the signal T-F structure.
In order to show the performing of the WSD altgari we consider a synthetic signal composed by
three frequency modulations.
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Figure 12. Warping-based Signal Decomposition fosgnthetic signal

The battery of the warping operators used fa& &xample contains the power warping operators of
ordersk=0.1-0.9. The parameters of the three time-frequency compisnare accurately estimated as
indicated in the figure 12. In the same time, iheetfrequency representation provided by the WSDids/
the resolution problems of the spectrogram consgraiso the information about the true time-freaquyen
content of the signal.

Furthermore, we exemplify the proposed WSD algaritin the case of a real underwater data
extracted from a ROI. As a test signal we constblersecond arrival of the Globicephala Melas emissi
(figure 9). The battery of the warping operatorstams the following elements :

- the power frequency warping operators [19]
W, =tV (26)
of orders k=0.1, 0.3, 0.4, 0.5, 0.6, 0.8. Thesepungr operators are associated to the instantaneous
frequency law of typé"
- the logarithmic frequency operator [18]

WIog = eXp(t) (27)

which corresponds to logarithmic frequency moduolaiog(t).
The processing algorithm is depicted in the nigxire.

S(th

— T 1T T 13

War| [Was| [Wea| [Wes| [Wae| [Wes ‘n‘n

lmpn?Eg I‘.uT?E| |rJIPCE| |MPL"E‘ MPI."E‘ lMP'_"E‘ l:-.r.D?E|

B
Identification of signal components using the matching
-:!eg:'f-eq

Signal mo ir]Jm,;_‘
¥
=3 3 A, (M, It ‘
r ;-: Complete signal

" characterization

Rcﬂdual signal
Rs=glt|-§
Figure 13. WSD algorithm for characterization of marine-mammal emission

MUSIC '—':‘

After the signal transformations according to eaenping operator, the chirplet estimation
is performed. For each signal transformation, wimede 8 chirplet functions. This number has
been experimentally chosen since for the tests tiaa®e been done it provides an accurate
estimation.
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The matching degrees, estimated with (23), prowtt@mation about the components that are
parts of signal. Using the residual signal, weneate the tone components of the signal.

In the next figure we show the time-frequency espntation of one of the ROI detected by
the OCWT-IS algorithm (figure 8).

TFR of the signal of the detected ROI

o w
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Figure 14. TFR of the considered ROI

Obviously, the time-frequency representation af tletected signal provides only general
information about its time-frequency behavior. Bus signal, the results of warping operators and
the estimation of the chirplet components aretitated in the figure 15.
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The left subplots illustrate the WVDs of the signabtained after the warping operators
composing the WSD scheme (figure 11). The timetfemgy complexity and the noise existing in
the analyzed ROI do not permit to distinguish, gsihe information provided by the WVD, the
signal T-F components. For each branch, the sigpatoximation by chirplet function (MPCE) is
represented in the middle subplots. Each warpedabigill be approximated by eight chirplet
functions using the algorithm proposed in [28].

In the case of power warping of orders 0.6, 0.8,v@e observe that one dominant linear T-F
component appears. It is also traduced in the iloigion of the decomposition coefficients,
depicted, for each branch, in the right side ofifegg15. The largest coefficient corresponds to the
major chirplet function. The existence of this doamt chirplet coefficient indicates that it
corresponds to the power frequency modulationsr@¢r0.6, 0.5 and 0.4, respectively. The other
chirplets functions, which are less energetic,espond to different PFM types. This is given by the
amplitude of the associated coefficients and byyairey comparatively the results for the orders
0.6, 0.5, 0.4. The linear chirplets (approximat@nBFM), which are connected, do not appear in the
decomposition associated to the correct warpingratpe Therefore, three components are
estimated : a 0"6order PFM, a 0% order PFM and 0% order PFM. The other parameters are
given by the elements of estimated chirplet funtidcor example, in the case of the PER) the
chirplet function obtained by the corresponding puag is characterized by the following
parameters : duration D=0.35 sec, a bandwidth B=48z, a time centre;$3.62 sec and the
frequency centrep£2.41 kHz. The relationship between the parametetise chirplet function and
the associated non-linear T-F structure is a caressee of the unitary property which characterizes
the warping operators.

For the other warped signals, the decompositi@ificients are energetically reduced. On the
other hand, the T-F representations of the estunakgplets do not contain a dominant chirplet
function (all 8 chirplets are represented and #eodposition coefficients have a reduced dynamic
— figure 15). Consequently, the analyzed signalsdoet contain the assumed non-linear T-F
natures.

Finally, the residual signal is estimated. Apptyithe MUSIC method we estimate the tone
components existing in the signal structure. Inftgere 16, the MUSIC pseudo spectrum and the
time-frequency distribution of the remained tone @presented.
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Figure 16. Processing of residual signal

The pseudo-spectrum, evaluated by MUSIC methaticates the existence of a single tone
component, located to the frequency 8.5 kHz.

After the estimation of all searched componetite, combination of the adapted TFR of
each extracted components provides the global fietpiency representation of the analyzed
signal.
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GTFR(t f) :Zip”f WTFIﬁ;wU_ (£ (28)
G =l

The issued T-F image constitutes ti@n-parametric informatiomprovided by the WSD
algorithm. For the signal extracted from the dezddROl illustrated in figure 14, the global TFR is
depicted in the figure 17.

Global TFR of the globicephala mellas emission

151

10L& \

| . oy S i

Freguency [ kHz]

o . . .
3.4 3.5 3.6 37 Time [590]
Figure 17. Global TFR of the considered test signal

The issued time-frequency image provides a coregmesentation of the T-F components of
the analyzed signal. Moreover, the obtained reptasien is cross-terms free and uncorrupted by
any artefacts (noise, false components, etc).

On the other hand, this algorithm furnishegaaametric descriptiorof T-F components of
signal. Therefore, these components can be exprbégsie corresponding instantaneous frequency
laws (IFL). For the considered test signal, theinested IFLs (represented in figure 17) of
components are expressed as :

& (t)[kHZ] =8.55; tO[ 3.3,3.4p sec (29.a)
&, (t)[kHZ =8.57~0.0054F° ; tO[ 3.45,3]8 se (29.b)
& (t)[kHZ =17.3-0.018¥° ; t0[ 3.43,3 se (29.c)
& (t)[kHZ =19.2-0.0351* ; t0[ 3.4,3.75 se (29.d)

The analytical estimation of the IFLs providegfus information for the further processing
stage. The parameters of these IFLs constitutextracted feature of the analyzed signal and they
could be used for signal identification, classifica or signal characteristic tracking.

In conclusion, the method proposed in this saectitased on the exploration of the warped
versions of the analyzed signal (Warping based&iBecomposition), providesarrectandrich
information about the studied process. Therect means that the most important T-F components
of the analyzed signal are characterized. Of colesme components may be lost, but, as it was
illustrated by the previous example, the most regméative T-F structures of the signal are
extracted. On the other hand, the informationcis, because we obtain a lot of parameters, such as,
modulation type, bandwidth, duration, locationime, etc.

In the next section we will illustrate more rasudbtained for real marine-mammal signals.

6. RESULTS FOR REAL DATA

In this section we present the results providedhayalgorithm proposed previously. Three
marine-mammal signals are the subjects of our st first one is an emission of Taursiops
Truncatuswhose ROI detection is illustrated in the figureThe second is the signal bounded by
the detected ROIs for @lobicephala melagmission, illustrated in figure 8. The both signate
sequences of underwater recordings provided by nieghCentre of Naval Systems from French
Department of Weapons.
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The last tested signal corresponds to a commonrhaolphistle, downloaded from the web
site www.dolphlinear.com/de_sound

For these test signals we apply the proposed #hgoriln the first stage, the signal regions of
interest are detected, using the OCWT-IS basecatbetdn our work context — feature extraction —
this first operation has two main purposes. Firstlye reduction of signal length offers the
conditions for the implementation of warping operat used in the further stage. Secondly,
processing signal only in a T-F region minimizes ttumber of artifacts caused to the noise.

After the ROIs detection, for each correspondingnais, we apply the feature extraction
procedure obtaining also the parameters of T-F corapts. The algorithm proposed in this paper
has been designed to deal with multi-component aod-linear time-frequency behaviors.
Therefore, the combination between the warping atperconcept and the chirplet decomposition
has been used. More precisely, the warping operdatansform the non-linear T-F structures in
linear ones. Furthermore, the new structures amma&®d using a chirplet decomposition method.
The final results are the estimation of the ingtaabus frequency law of the T-F components.
Generally, the estimated IFL of th8 component can be expressed as :

& (t)= fo +ﬂkmk(t);tD|:tOk—%;t0k+D_2k:| (30)

wheretyy, fox are the centers in time and frequency coordin&igshe duration the modulation
rate. These parameters are provided by the MPCéaritdgh when applied on the linear T-F
structure obtained after the warping operatidn directly related to the modulation lama(t).

The virtues of this algorithm are illustrated bye tfollowing examples. We compare the
obtained T-F image with the one provided by thecBpgram, which is the main tool for
underwater signal analysis.

Firstly, we consider a real signal correspondingtendetected ROIs of Rursiops Truncatus
emission (figure 7). Applying the WSD algorithmn(giar to the one illustrated in figure 12) for the
signals existing in the detected ROIs, we estimate T-F components, given by the figure 18.
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Figure 18. Feature extraction from a Tursiops Margland emission

In the case of spectrogram, the representation-bfcbntents is affected by the trade-off
between time and frequency resolution. A betteresgntation may be achieved by testing many
spectrogram parameters (window type and length).

Using the Warped Based Decomposition, for eachctedeROI, three PFM components are
estimated. The parameters of all PFM componentsgaen in figure 18. The correspondence
between these parameters and the associated T4pooemnts are represented in the same figure.
We observe that the T-F components estimated by \&I§brithm are visually close to the T-F
behavior illustrated by the spectrogram. In additime WSD provides an analytical description of
the IFLs. Based on this description, the signaltihiby a Tursiops Truncatus is composed by
three time-frequency regions of interest. Eacharegif interest contains three power frequency
modulations : the first one frequency decreasing second and third ones — frequency increasing.

The short durations of the T-F components provecidyeability of the WSD to deal with
transient signals. Since the visual T-F informatipmovided by both spectrogram and WSD
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algorithm indicates three similar component séts, Malues of the parameters of each ROIs justify
objectively this similarity.

Consequently, the both information types — visual parametric - illustrated in figure 18
provides a complete description of analyzed signal.

We continue our analysis with@lobicephala Melagmission which has been the subject of
the example given in previous section. Now, we m@rsboth detected ROIs illustrated in figure 9.
The analysis, via WSD, is illustrated in figure 2&.in the previous example, the spectrogram TFR
is also pictured.
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Figure 19. Feature extraction from a Globicephataelas emission

Obviously, as it is visually indicated by both spegram and WSD, the analyzed sequence is
composed by two similar signal packets (figure EHch packet contains one tone sigrfaland
&, respectively) and three power frequency modutatioln addition, the feature extraction
provided by WSD algorithm objectively indicates thienilarity degree between the both packets.
Examining the table of figure 19, we observe th@ilar modulation types act in both packets : the
orders of the PFMs and the modulation rates ha@esime values. Nevertheless, we can observe
that the frequency centers of the T-F componentgs m@t the same values : the frequency center
values of the second ROI are superior than theognal values of the first packet. It could be
explained by the Doppler effect induced by the seueceiver relative motion.

We can also observe that the differences betwe&n ghrameter are not the same.
Consequently, the propagation environment has é&ecy dependent characteristics. The
evaluation of the parameter variation, for manyeneed characteristics, may lead to the quantitative
analysis of propagation phenomenon of the envirarinwbere the source evaluates.

With the remark that the spectrogram is unableuamntjfy the signal parameters variation, this
example illustrates the capability of the WSD aithon to analytically express the time-frequency
features.

The last example, consisting in a Dolphin whistlalgsis, is illustrated in the figure 20.
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Figure 20. Feature extraction from a Dolphin whitt
In the case of Dolphin whistle, the visual and patic (figure 20) information provides an

analytical characterization of signal features.the figure 20, we observe that the WSD can
eliminate the noise from the T-F image. Observitgp @¢he noise existing in the spectrogram
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representation, the noise robustness of the WSaridig is illustrated. This property is explained
by the signal processing only in the detected R@Ilay the performances of the WSD algorithm.

The examples of this section, provided on real ,ddkastrate the performances of the
proposed approach. We have seen that the WSD thigofurnishes two information types : visual
and parametric. The visual information consisthatime-frequency distribution of the signal. But,
unlike the spectrogram, the information is cleafypresented because only the estimated T-F
components are plotted.

The parametric information of the WSD provides &malytical characterization of the IFLs of
the T-F components. This information, less int@tithan the visual one, could have a lot of
applications, such as signal identification and ssifecation, underwater environment
characterization, underwater source separatiordasdription, etc.

The features and the possible applications of thepgsed algorithm will be briefly
commented in the next section.

7.CONCLUSION AND PERSPECTIVES

In this paper, we have presented a new method rfdemwater signal characterization in a
passive context. It is well known that the undeewagnvironment is a very difficult one, from
signal processing point of view. The noise, the-at@tionnarity and the diversity of the signalg ar
only few characteristics of underwater signal pssogeg field. To deal with these, the time-
frequency methods constitute an attractive solution

In this context, we proposed a new time-frequelnayed technique for feature extraction of
underwater signal. We focused the developmentisfrttethod on the marine-mammal emissions,
which constitute richness sources of informationwtihe underwater environment. Generally, the
characterization of these types of signals implessignal detectiorandfeature extractionin this
paper, these signal processing stages have besuolijeets of two proposed approaches.

Firstly, we have proposed a filter bank-based nutfoo thedetectionof transient parts of the
signal. We have used the OCWT filter bank whichvptes a robust tool to detect the transient
signals. Furthermore, in order to adapt the tinegidiency partition according to the signal
particularities, we proposed the use of an irregglEmpling procedure. The construction of the
irregular sampling grid is based on the discrimorabetween signal and environmental noise. This
is provided by the R order statistical moments. The application ofithegular sampling procedure
guaranties the satisfaction of theoretical condgioelated to the noise whiteness. The proposed
method, OCWT-IS, provides an optimal time-frequepaytition and a set of detection curves. The
set of these curves furnishes the signal regiomsterfest.

The proposed OCWT-IS detector has been compared twid classical ones, based on
spectrogram and Local Cosine Basis. The teststafftardd on synthetic and real data have proved
the quality of the proposed approach from both cdi&te performances and feature conservation
points of view.

In the second stage, we studied the problem ofhleacterizatiorof signals contained by the
detected ROIs. Since the detected signals are tatiorgary, the time-frequency methods constitute
the potential solution. For time-frequency représgon of signal features, thanks to its operationa
capabilities and to the intuitive T-F informatiothe spectrogram is the most popular tool.
Nevertheless, since the spectrogram analysis im@owing-based method, the induced smoothing
leads to T-F structure localization at differenbiinates than the correct ones. Consequently, the
accurate extraction of T-F parameters needs somicathl procedures, difficult to design for a
passive context.

An alternative solution to deal with these typeS &f components consists in generating new
time-frequency distributions based on warping ofereoncept. In this paper, the warping principle
is used to furnish both signal modeling and repregsn.

The first purpose-signal modeling, is based ondsimation of signal time-frequency non-
linearities. To do that, the analyzed signal ispearin some fashions and we estimate, for each
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deformation, the virtual linear time-frequency stures (chirplets). These chirp-like components
corresponds to the associated non-linear T-F coemisnexisting in the signal structure. The
analysis of extracted chirplets and correspondiagothposition coefficients from all branches
leads to the identification of T-F components & #ignal. Therefore, the signal modeling provides
the parametric information about the signal. Th&asted parameters can be associated to the
signal features.

The second purpose - signal representation is aitoeflirnish visual information about
analyzed phenomenon. This is done by combiningvirping-based TFRs of extracted component.

The performances of this algorithm, called Warpaged Signal Decomposition, have been
evaluated in a real context, using some marine-manmemissions. The main features of this
algorithm have been illustrated.

Firstly, the analytical description of the IFLgyeattly related to the visual time-frequency
image, provides rich information about the analygeghal. These two information types may be
very useful in practical applications as underwatgmnal identification or classification. It is
possible to synthesize the signal, since it is/faHaracterized by its parameters.

Secondly, we have seen that the proposed methatiies an adaptive estimation over the
time. Therefore, the parameter tracking could mtevinteresting information about the source
evolution, environments parameters, etc.

The good performances in noise environment, fddst on real data, guarantee the correct
processing in real environment.

Nevertheless, the performances of the WSD algurittepend on the number of warping
operators that are used. Practically, this numbelimited, and the consequences may be the
apparition of false component or the loosenesofesuseful ones. On the other hand, since in a
passive context the information about the undemvwaitgmmals emissions cannot be assumed, the
complete analysis supposes a multi-disciplinaryisti : signal processing, biologic, underwater
engineering, etc. In this context, the main tasthefproposed algorithm is to help in the procegsin
of a huge volume of data. Furthermore, WSD canroffie alternative characterization of the
underwater signals in terms of time-frequency conemb estimation.

In future works, we will use this alternative degtion in underwater signal classification and
oceanic passive tomography.

For the first topic, the analysis of many underwaignal classes will be done. The study of
discrimination capabilities provided by the exteatparameters must be also done.

In theoretical field, two directions will be expéat. Firstly, new implementation structures
will be analyzed in order to improve the operatioonharacteristics. Secondly, new warping
techniques will be studied, to achieve a more atewtescription of real signals.

Acknowledgments. This work was supported by the French Military @enof Oceanography
under the research contract CA/2003/06/CMO.

REFERENCES

[1] W.A. Watkins, M.A. Daher, K.M. Fristrup, T.J. dwald, Sperm whales tagged with
transponders and tracked underwater by soriaeep Sea Research, vol.9, pp. 55-67, 1993.

[2] W.J. Richardson, C.R. Greene, C.Il. Malme, DHhomson,Marine Mammals and Noise,
Academic Press, California, 1995.

[3] W. Munk, P. Worcester, C. WunscRceanic acoustic tomography;ambridge University
Press, 1995.

[4] W.S. Burdic,Underwater acoustic system analys$tsetince-Hall, 1984.

[5] R.A. Altes, Detection, estimation and classification with spegtams,Journal of the Acoustic
Society of America, vol. 67, no. 4, pp. 1232-12A6y. 1980.

[6] G. Roberts, A.M. Zoubir, B. Boashasfijme-Frequency Classification using a Multiple
Hypotheses Test: An Application to the Classifaratf Humpback Whale Signals,

23



[7] L. Cohen ,Time-Frequency AnalysiBretince Hall, New Jersey, 1993.

[8] E. Delory, J.R. PotterQbijectivity in the study of marine mammal vocalma: a wavelet
approach European Cetacean Society Proceeding, Valengial, A999.

[9] A. Theolis, S. ShammaClassification of Transient Signals via Auditory pResentation
Technical Research Report TR 91-99, University afyMnd, 1999.

[10] A. Theolis,Computational Signal Processing with Wavekitkhauser Press, Boston, 1998.
[11] B. Boashash, P. O’'Shea, methodology for detection and classification oimg acoustic
signals using time-frequency analysis techniqUEEE Trans. On Acoustics, Speech and Signal
Processing, 38 (11):1829-1841, Nov 1990.

[12] R. BaraniukUnitary Equivalence : a new twist on signal proéegs|EEE Trans. On Signal
Processing, vol. 43, no. 10, October, 1995.

[13] P. Ravier, P.-O. AmblardVavelets Packets and De-noising Based on HigheeQ#datistics
for Transient DetectionEEE Trans. on Signal Processing, Vol. 81/9,19§9-1926, Aug, 2001.
[14] S. Mallat, A Wavelet Tour of signal processjfgademic Press, 1998.

[15] K. Grdchenig,lrregular sampling of wavelet and short time Fouri€ransform Constr.
Approx., No 9, 282-297, 1993.

[16] J.M. Mendel,Tutorial on Higher-Order Statistics (Spectra) igBal Processing and System
Theory: Theoretical Results and some applicatio®®pceedings of the IEEE 79(3):278-305,
March 1991.

[17] M.G. Kendall, A. Stuart,The advanced theory of statisticSharles Griffin & Company
Limited, 1963.

[18] A. Papandreou, S.M. Kay, G.F. Boudreaux-Bartéhe use of hyperbolic time-frequency
representation for optimum detection and paramegstimation of hyperbolic chirpdEEE-SP
Symposium on Time-Frequency/Time-Scale, Philadelphpp. 512-518, Oct. 1994.

[19] F. Hlawatsch, A. Papandreou, G.F. Boudreauxdbs, The power classes- quadratic time-
frequency representationdkEEE Trans. Signal Processing, vol. 47, pp. 38683, Nov. 1999.

[20] T. Twaroch, F. HlawatsciModulation and warping operators in joint signalawysis in Proc.
IEEE-SP Int. Sympos. Time-Frequency Time-Scale ysig] Pittsburgh, PA, pp. 9-12, Oct. 1998.
[21] K. Canfield, D.L. Jonedmplementing Time-Frequency Representations for@omen Class
Proceedings of the #7ASILOMAR Conference, Pacific Grove, 1993, pp. 14648

[22] C. loana, A. Quinquigdn the use of time-frequency warping operatorsafoalysis of marine-
mammal signalsProceedings of ICASSP 2004, Montreal, pp. 605-64y 2004.

[23] A. Papandreou-Suppappola, S. Suppappsidaptive time-frequency representations for
multiple structures Proceedings of the TOIEEE Workshop on Statistical Signal and Array
Processing, Pocono Manor, , pp. 579-583, 2000.

[24] S. Mallat, Z. ZhangMatching pursuit with time-frequency dictionarjdEEE Trans. Signal
Processing, vol.41, no.12, PP. 3397-3415, Dec.3.199

[25] S. Mann, S. HaykinThe Chirplet Transform : A Generalisation of Gatslogon Canadian
Image Processing and Patern Recognition Society,1081.

[26] E. Polak, Computational Methods in OptimizatioAcademic Press; Oct. 1997.

[27] P. Stoica, R. Mosefntoduction to spectral analysi®retince Hall, 1997.

[28] J.C. O’Neill, P. FlandrinChirp Hunting,IEEE Int. Symp on Time-Frequency and Time-Scale
Analysis, pp. 425-428, Pittsburg, Oct. 1998.

[29] www.marineland.fr

24



- Cornel loana received the Dipl.-Eng degree in electrical engimge and
& informatics in 1999 from the Romanian Military Teetal Academy of
e Bucharest. Between 1999 and 2001 he activated rasitary researcher in a
research institute of Romanian Ministry of DefefS#eTRA, Bucharest). He
a,:, received the M.S. degree in telecommunication seien 2001 and the PhD in
‘ . electrical engineering field in 2003, both from Uarisity of Brest-France. Since

‘ | 2003 he works as researcher and development emgmdeNSIETA, Brest-
France. His current research activity deals with ithplementation of signal processing methods
adapted to the passive underwater tomography. étisnical interests are non-stationary signal
processing, electronic warfare, sonar and real-fystems.

André Quinquis received the M.S. degree in 1986 and the Ph.D.edegr
1989 in signal processing, both from the Universitrest. Between 1989 and
1992 he taught and developed research activitisgyimal and image processing
at the Naval Academy in Brest. In 1992 he joined #Engineering School
ENSIETA of Brest, where he held the positions ofi8eResearcher and Head
of the Electronics and Informatics Department. 8i2001 he has been
Scientific Director of ENSIETA. He is mainly intested in signal processing,
time-frequency methods, and statistical estimaéind decision theory. Dr. Quinquis is author of 8
books and of more than 100 papers (internationaingls and conferences) in the area of signal
processing.

Yann STEPHAN was born in Lannion, France, in 1966. He receivésl h
engineering diploma in Electrical Engineering fr&&NSIEG in Grenoble. He
received his Ph.D. degree in Computer Science®9% Irom CNAM in Paris.
Since 1992, he has worked with tBervice Hydrographique et Océanographique
de la Marine (SHOMJwithin the Center for Military Oceanography in BteHis
current topics include inverse methods, acoustidrenmental assessment and
tactical use of the environment

25



