
HAL Id: hal-00317986
https://hal.science/hal-00317986

Submitted on 18 Jun 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

One-step ahead prediction of foF2 using time series
forecasting techniques
K. Koutroumbas, A. Belehaki

To cite this version:
K. Koutroumbas, A. Belehaki. One-step ahead prediction of foF2 using time series forecasting tech-
niques. Annales Geophysicae, 2005, 23 (9), pp.3035-3042. �hal-00317986�

https://hal.science/hal-00317986
https://hal.archives-ouvertes.fr


Annales Geophysicae, 23, 3035–3042, 2005
SRef-ID: 1432-0576/ag/2005-23-3035
© European Geosciences Union 2005

Annales
Geophysicae

One-step ahead prediction off oF2 using time series forecasting
techniques

K. Koutroumbas and A. Belehaki

National Observatory of Athens, Institute for Space Applications and Remote Sensing, Metaxa and V. Pavlou, Palaia Penteli,
15 236, Athens, Greece

Received: 24 February 2005 – Revised: 9 September 2005 – Accepted: 4 October 2005 – Published: 22 November 2005

Part of Special Issue “1st European Space Weather Week (ESWW)”

Abstract. In this paper the problem of one-step ahead
prediction of the critical frequency (f oF2) of the middle-
latitude ionosphere, using time series forecasting methods, is
considered. The whole study is based on a sample of about
58 000 observations off oF2 with 15-min time resolution,
derived from the Athens digisonde ionograms taken from the
Digisonde Portable Sounder (DPS4) located at Palaia Penteli
(38◦ N, 23.5◦ E), for the period from October 2002 to May
2004. First, the embedding dimension of the dynamical sys-
tem that generates the above sample is estimated using the
false nearest neighbor method. This information is then uti-
lized for the training of the predictors employed in this study,
which are the linear predictor, the neural network predictor,
the persistence predictor and thek-nearest neighbor predic-
tor. The results obtained by the above predictors suggest that,
as far as the mean square error is considered as performance
criterion, the first two predictors are significantly better than
the latter two predictors. In addition, the results obtained by
the linear and the neural network predictors are not signif-
icantly different from each other. This may be taken as an
indication that a linear model suffices for one step ahead pre-
diction off oF2.

Keywords. Ionosphere (Modelling and forecasting) – His-
tory of geophysics (Instruments and techniques)

1 Introduction

The accurate prediction of ionospheric conditions is critical
for several applications affected by the space weather, in-
cludingHF communications, satellite positioning and nav-
igation applications. Ionospheric storms can cause large-
scale, drastic changes to the usable range ofHF frequen-
cies. Large solar flares cause short-wave fadeouts, resulting
in blackouts ofHF signals. Also, protons emitted from the
Sun result in polar cap absorption events and consequently
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in blackouts ofHF signals propagating through the Earth’s
polar regions. Ionospheric effects can also generate time-
varying ionospheric currents, especially in the northern lati-
tudes causing problems in ground systems, such as systems
for power generation and supply; oil and gas pipeline distri-
bution; aerial surveying for minerals, oil and gas; drilling for
oil and gas; railways.

To handle the complexity of the problem, the development
of accurate models to forecast the ionospheric conditions
is of crucial importance, especially during disturbed condi-
tions. Considerable effort has been devoted on the develop-
ment of physical models (Anderson et al., 1998) based on
the coupling between the thermosphere and the ionosphere.
However, the use of such models is not suitable for real-
time applications due to both the input data requirements for
the simulation of the thermosphere (Fuller-Rowell and Rees,
1980) and the computational load.

The empirical models driven by magnetic indices are
a second group of ionospheric models. Fuller-Rowell et
al. (2001) developed the empirical storm-time ionospheric
correction model driven by the previous time-history of the
geomagnetic index,ap, and it is designed to scale the quiet-
timeF -layer critical frequency (f oF2) to account for storm-
time changes in the ionosphere. The model provides a use-
ful, yet simple tool for estimating the changes to ionosphere
in response to geomagnetic activity.

Another well-known statistical model for the prediction of
ionospheric parameters was introduced by Muhtarov and Ku-
tiev (1999), which makes use of the auto correlation function
of the parameter under consideration without using any geo-
magnetic index. Muhtarov et al. (2002) further improved the
prediction capability of the autocorrelation model by adding
a geomagnetic index and its statistical characteristics.

An alternative approach for predicting ionospheric condi-
tions is based on time series forecasting techniques. Data-
driven modelling techniques, such as neural networks, are
used to predict the behaviour of the ionosphere under the as-
sumption that non linear processes are the dominant mecha-
nisms that generatef oF2 variability (Tulunay et al., 2004a,



3036 K. Koutroumbas and A. Belehaki: One-step ahead prediction off oF2 using time series forecasting techniques

b; Wintoft and Cander, 2000; McKinnell and Poole, 2000).
Wintoft and Cander (2000) used time-delay, feed-forward

neural networks to predict the hourly values of the iono-
sphericF2 layer critical frequency,f oF2, 24 h ahead. The
24 measurements off oF2 per day are reduced to five coeffi-
cients with principal component analysis. A time delay line
of these coefficients is then used as input to a feed-forward
neural network. Also included in the input are the 10.7-cm
solar flux and the geomagnetic indexAp. The network is
trained usingf oF2 data from 1965 to 1985 gathered at the
Slough ionospheric station and validated on an independent
validation set from the same station for the periods 1987–
1990 and 1992–1994.

In a recent study, Tulunay et al. (2004) presented the appli-
cation of the Middle East Technical University Neural Net-
work (METUNN) to forecast thef oF2 values one hour in
advance, based on hourly resolution data. The input param-
eters are year, month, coded season, day, hour, coded hour,
f oF2 value observed one hour ago, first and second rela-
tive difference, station code. The method was applied to data
from Poitier, Slouth and Uppsala, and the mean square errors
were within reasonable limits (0.11353 to 0.21145 MHz).

The problem considered in this study is the estimation of
the next value off oF2 using time series forecasting meth-
ods. The available data sampleX={x1, x2, . . ., xp} consists
of aboutp=58 000 observations off oF2 derived from the
Athens digisonde ionograms taken from the ionospheric sta-
tion located at Palaia Penteli, for the period from October
2002 to May 2004. The sampling rate is 15 min. There is
a small fraction of missing observations that have been ne-
glected from the subsequent prediction stages.

If we denote the current value off oF2 byx(n), then the
estimation of the next valuex(n+1) is based on

y(n) = [x(n), x(n − 1), . . . , x(n − (d − 1))]T . (1)

The first problem to be faced is the estimation ofd, the so-
called embedding dimension. This is estimated using the
false nearest neighbormethod. After the determination of
d, two sets of pairs of the form(y(n), x(n+1)) are created.
The first one, denoted byS1 and called thetraining set, will
be used for the training of the predictors, while the second
one, denoted byS2 and called thetest set, will be used for
the evaluation of the performance of the predictors. The eval-
uation criterion for the above predictors is themean square
error (MSE), that is the mean value of the squared difference
between the actual and the predicted values off oF2.

In this study, both parametric and non-parametric predic-
tors are used. Specifically, from the first category the linear
predictor, as well as neural network predictors, are consid-
ered, while from the second category the persistence predic-
tor, as well as thek nearest neighbor predictor, are consid-
ered. The experimental results show that all predictors ex-
hibit a less than 13% error on the test set, in terms of the
MSE criterion. This issue will be discussed further in the
simulation results section.

The rest of the paper is organized as follows. In Sect. 2, the
definition of the embedding dimension,d, is given, together

with a short description of the false nearest neighbor method
that estimatesd. In Sect. 3 a short description of the predic-
tors considered in this study is given. In Sect. 4 the procedure
that generates the training and the test sets,S1 andS2, is de-
scribed. In addition, the results of the predictors followed by
a short discussion are provided. Finally, concluding remarks,
as well as future research directions, are included in Sect. 5.

2 The embedding dimension

LetA denote thed-dimensional dynamical system that pro-
duces the available time series of observations and lets(n)

denotes its state vector at timen. Assuming thatA is a
discrete dynamical system, it is described by the following
equation (also called map)

s(n + 1) = h(s(n)). (2)

Clearly, this system is unknown, that is we do not know the
dimensiond, nor the functionh. The only available informa-
tion about it is through the sequence of observations{x(n)},
which are related with the state vectors(n) via the following
equation:

x(n) = g(s(n)). (3)

Since, in general, the available sequence of observations1

does not represent properly the multi-dimensional phase
space of the dynamical system, one has to employ some
technique to unfold the multi-dimensional structure using the
available data series (Hegger et al., 1999).

The most important technique for the phase space recon-
struction is the method of delays (see, e.g. Tsonis, 1992;
Hegger et al., 1999). According to this method, the vectors in
the new space (the embedding space) are formed from time
delayed values of the scalar measurements, i.e.2

y(n)=[x(n), x(n − 1), . . ., x(n − (d − 1))]T , (4)

andd is the dimension of the embedding space, called the
embedding dimension. Knowledge ofd is of crucial impor-
tance, but, of course, it is unavailable in real world situations
and has to be estimated from the available data series. Specif-
ically, d should be chosen large enough to allow for the un-
folding of the multi-dimensional structure of the system, but
not too large, in order to avoid the undesirable effects of the

1which is one-dimensional in most cases
2In general, y(n) is defined asy(n)=[x(n), x(n−T ), . . .,

x(n−(d−1)T )]T , whereT is the so-calledtime delayparameter.
However, in the present study we assume thatT =1 since we are
interested in one-step ahead predictions. However, allowing values
greater than 1 forT , we may obtain interesting results. For exam-
ple, choosing a value ofT equal to 26, which corresponds to 6.5 h,
since the sampling rate for the data at hand is 15 min (this is the
first time where the autocorrelation function for the data set at hand
becomes zero, see Tsonis, 1992), we obtain very good 6.5-h ahead
prediction. Nevertheless, the last issue deserves more investigation.
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noise encountered in the measurements, as well as the un-
necessary increase in computational complexity (Kennel et
al., 1992).

A method that has been extensively used for the estima-
tion of d is the so-called method of false nearest neigh-
bors (Kennel et al., 1992), which is described below. Let
X′

={x(1), x(2), . . ., x(q)}3 be the set of observations on
which the estimation ofd will be based.

The false nearest neighbor method

• Compute the quantities

x=
1

q

q∑
n=1

x(n), R2
A=

1

q

q∑
n=1

(x(n) − x)2.

• SetRtot=15 andAtot=2 (as suggested in Kennel et al.,
1992).

• Choose a high enough value ofd, say,dmax, and useX′

to construct the set

Z = {y(n)=[x(n), x(n − 1), . . ., x(n−(dmax−1))]T ,

n = dmax, . . ., q}.

• Ford=1 todmax

– For eachy(n) in Z, determine its nearest neigh-
bor y′(n)=[x′(n), . . . , x′(n−(dmax−1))]T in
Z−{y(n)}, based on the lastd coordinates
of the y values, i.e. choose y’(n) such that
d(y(n), y′(n))= miny∈Z−{y(n)} d(y(n), y),
where the distance between twodmax-
dimensional vectors,u and v, is defined as
d(u, v)=

∑d
i=0(ui−vi)

2, whereui and vi are the
i-th coordinates ofu andv, respectively.

– For eachy(n) in Z compute

R2
d(n) =

∑d−1
k=0(x(n−(dmax−1)+k)

−x′(n−(dmax−1)+k))2

T 2
d+1(n) = |x(n−(dmax−1)+d)

−x′(n−(dmax−1)+d)|

R2
d+1(n)=R2

d(n)+T 2
d+1(n)

– Count the points for which

(
Td+1(n)

Rd(n)
>Rtot) OR(

Rd+1

RA

>Atot)

– If their fraction is smaller than 1% ofq (as sug-
gested in Kennel et al., 1992), choosed as the em-
bedding dimension and terminate the procedure.

• End{for-loop}

3We useq instead ofp observations for the estimation ofd be-
cause a part of the data will be used for the evaluation of the results
obtained by the various predictors, and it is assumed to be unknown.

In words, the above method tests ifd is an appropriate es-
timate for the embedding dimension, by utilizing the neigh-
borhood information of thedmax-dimensional vectorsy(n) in
Z. Specifically, for each vectory(n) in Z, its nearest neigh-
bory′(n) is determined based on the lastd coordinates of the
vectors. LetR2

d(n) be the distance betweeny(n) andy′(n)

when only the lastd coordinates are taken into account. Then
R2

d+1(n) is computed and the difference betweenR2
d(n) and

R2
d+1(n) is considered. IfR2

d(n) andR2
d+1(n) differ signif-

icantly, then we say thaty′(n) is a false nearest neighbor
of y(n) 4. If this happens for a significant number of points
y(n) ∈ Z, it is an indication that the multi-dimensional struc-
ture of the system does not “unfold” well in thed dimen-
sional space, i.e. a larger value ofd must be considered.

Finally, it is worth noting that the above algorithm may
also be used by considering not only the nearest neighbor of
each vectory ∈ Z but also itsk-nearest neighbors.

3 The predictors

3.1 Parametric predictors

3.1.1 The linear predictor

In this framework, the estimation ofx(n+1), denoted
by x̂(n+1), is assumed to depend linearly on the values
x(n), x(n−1), . . . , x(n−(d−1)), i.e.

x̂(n + 1) =

d−1∑
i=0

wix(n − i) + wd = [y(n) 1]
T w, (5)

wherew=[w0, w1, . . . , wd−1, wd ]
T is the parameter vector

of the predictor. Given a data setY = {x(1), . . . , x(q)}, w is
chosen such that the following cost function is minimized

J (w) =

q−d∑
n=d

(x(n + 1) − x̂(n + 1))2

=

q−d∑
n=d

(x(n + 1) − [y(n) 1]
T w)2. (6)

It can be proven (see, e.g. Theodoridis et al., 2003) that the
vectorw that minimizesJ (w) is

ŵ = (ZT Z)−1ZT u, (7)

where ZT
=[[y(d)T 1]

T , [y(d + 1)T 1]
T , . . . , [y(q −

d)T 1]
T
] andu=[x(d + 1), x(d + 2), . . . , x(q − d + 1)]T .

The estimated value ofx(n + 1), x̂(n + 1), is given by
Eq. (5), whereŵ is used in place ofw.

4Consider, for example, the pointsy1=[0.5, 0.5]
T and

y2=[0.55, 5.5]
T . With respect to the first coordinate, their squared

Euclidean distance is only 0.0025, while if both coordinates are
taken into account, their squared Euclidean distance becomes ap-
proximately equal to 25.0025.
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3.1.2 Neural networks predictor

In this study we consider only two-layer, feedforward neural
networks (2LFNN ), with m nodes in their hidden layer and
a single output node5. These networks are modelled by the
following equation

x̂ = g(

m∑
j=1

vjf (wj
T
[yT 1]

T ) + v0), (8)

wherey is the input vector and̂x is the output of the network.
f is typically chosen to be equal to logi(x)=1/(1+e−ax) or
tanh(x)=(1−e−ax)/(1+e−ax), while g may be chosen to be
equal tox, logi(x) or tanh(x). Them (d + 1)-dimensional
vectorswj , as well as the values ofvj , j=0, . . . , m are
the parameters of the network. LetW denote a vector
that contains all these parameters.W is usually estimated
by optimizing an appropriately defined cost function, using
tools from nonlinear optimization theory. Given a data set
Y={x(1), . . . x(q)}, a typical cost function that is frequently
employed is the sum of square errors, defined as

J (W ) =

q−d∑
n=d

(x(n + 1) − g

(
m∑

j=1

vjf (wj
T
[yT (n) 1]

T ) + v0)

)2

. (9)

The advantage of the above types of models is that they can
describe more reliably phenomena that exhibit significant
nonlinearities. However, their major disadvantage follows
from the fact that the cost function to be optimized is non-
convex, due to the nonlinear nature off and (probably)g in
Eq. (8). As a consequence, it is difficult to obtain the global
optimumW ∗ of J (W ) that best represents the data at hand.
Thus, instead of trying to determine the global optimum of
J (W ), we seek for local optima ofJ (W ), which are (hope-
fully) suitable for the problem at hand. Their suitability is
assessed through the test set.

3.2 Non-parametric predictors

3.2.1 The persistence predictor

In this case, the estimator ofx(n + 1), x̂(n + 1), is x(n), that
is x̂(n + 1)=x(n). This simple predictor is expected to give
satisfactory results in cases where the sample-to-sample vari-
ation is small, as is the case for periods where no significant
disturbances occur in the ionosphere.

3.2.2 Thek nearest neighbor predictor

In this case, for a given vectory(n), the predictor computes
the estimate ofx(n+1) as follows. First, thek nearest neigh-
bors, denoted byy(n1), y(n2), . . . , y(nk), of y(n) in S1 are
identified. Then, the estimate ofx(n+1) is taken to be equal
to the mean ofx(n1 + 1), x(n2 + 1), . . . , x(nk + 1). This
method is met under the name “first order local approxima-
tion” in Tsonis (1992).

5See, e.g. Rummelhart et al. (1986); Pao (1989); Haykin (1994);
Theodoridis et al. (2003).

20

dimension

P
er

ce
n

ta
g

e
o

f
fa

ls
e

n
ea

re
st

n
ei

g
h

b
o
rs

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 1:
Fig. 1. Plot of the percentage of the false nearest neighbors versus
the space dimension. For dimensions greater than or equal to 6 the
percentage falls well below 1%.

4 Experimental results

Before we proceed with the generation of the training and
the test sets, we need to estimate the embedding dimension
d of the space where the dynamical system that produces the
data sampleX at hand “unfolds” in a satisfactory fashion
its multi-dimensional structure. In applying the false nearest
neighbor method described in Sect. 2 at the first half of the
data sampleX (that isq=p/2), we find that a good choice for
d is 6. Specifically, for dimensions greater than or equal to
6, the percentage of false nearest neighbors falls well below
1% (see also Fig. 1)6.

Having estimatedd, we then describe the way the training
and the test sets are generated. Specifically, the data sam-
ple X is split into two halves,X1 (first half) andX2 (second
half). From eachXi , i=1, 2, a corresponding setSi , i=1, 2
is generated as follows

S1 = {(y(d), x(d + 1)),

(y(d + 1), x(d + 2)), . . . , (y(p/2 − 1), x(p/2))} (10)

and

S2 = {(y(p/2 + d), x(p/2 + d + 1)), (y(p/2 + d + 1),

x(p/2 + d + 2)), . . . , (y(p − 1), x(p))}, (11)

whered is chosen to be equal to 6,y(n) is defined as in
Eq. (1) and the vectorsy(n) with missing values are omitted.

All the predictors have been trained usingS1, and their
performance has been measured on the test setS2. The re-
sults are summarized in Table 1. Also, in Figs. 2, 3, 4 and
5 the histogram of the absolute differences between the ac-
tual and the estimated values on the test set, as well as the
plot of the actual and the predicted values for a short time

6We note that the same value ford is taken if we consider the
time delayT to be equal to 26 (see previous footnote).
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Table 1. Fifteen-minute ahead prediction. The table shows the mean square error on the training set and on the test set for the linear
predictor, the 2LFNN predictor with 4 nodes in the hidden layer, the persistence predictor and thek-nearest neighbor predictor, fork=12. In
parentheses the standard deviation of the squared errors for each predictor on the test set is shown.

Linear 2LFNN predictor Persistence k-nearest neighbor
predictor (nodes=4) predictor predictor (k=12)

Training set 0.1599 0.1462 0.1780 0.1311

Test set 0.1105 0.1050 0.1253 0.1272
(0.3041) (0.2879) (0.3144) (0.3165)
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Figure 2:

Fig. 2. One-step ahead (15 min) prediction, with the linear predictor.(a) The histogram of the absolute differences of the computed and the
actual outputs, for the test set.(b) The actual (solid line) and the computed (dotted line) outputs for a short time interval of the test set.

interval, are given for each of the four predictors. It is noted
that various 2LFNN architectures with different numbers
of hidden layer nodes have been examined. Specifically,
2LFNNs with up tom=50 nodes in the hidden layer have
been considered. However, the best performance was ob-
tained form=4 nodes. We also note that the mean square
error (MSE) value for the 2LFNNs, shown in Table 1, is
the average of the MSEs of 10 networks, withm=4 hidden
nodes, that have been trained with the Levenberg-Marquardt
algorithm starting from different initial values for the param-
eters. Also, for thek-nearest neighbor predictor, the results
for k=1, 2, . . . , 30 have been considered. Here, only the best
results are provided.

As can be seen from the results shown in Table 1 (and sup-
ported by Figs. 2, 3, 4 and 5), all predictors seem to exhibit
more or less a similar performance. However, in order to
quantify the significance of the differences among the mean
square errors (MSE) produced by any pair of the above clas-
sifiers when they are applied on the test set, we use thet-test
statistic (see, e.g. Mendenhall et al., 1995). The choice of
this test is justified by the fact that the errors produced by

the predictors are independent, since each one of the predic-
tors follows a different prediction strategy from all the oth-
ers. More specifically, for any two of the above predictors,
P1 andP2, we test the hypothesis

H0 : MSE1 − MSE2 = 0

against

H1 : MSE1 − MSE2 > 0,

where MSEi is the mean square error (MSE) forPi , i=1, 2.
Denoting the sample MSE forPi (as it is given in Table 1)
by MSEi and assuming thatMSE1>MSE2, we compute the
quantity

z =
MSE1 − MSE2√

s2
1+s2

2
n

, (12)

wheresi is the sample data deviation of the squared errors
produced byPi , andn is the number of samples (in our case
n=25605). The values ofz for all pairs of predictors are
shown in Table 2. Setting the level of significancea equal to
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Table 2. Fifteen-minute ahead prediction. The table shows the values of thet-test that quantify the significance of the differences in the
mean square error produced by two predictors when the test set is considered.

Linear 2LFNN Persistence k-nearest neighbor
predictor (nodes=4) predictor predictor (k=12)

Linear predictor 2.1016 5.4143 6.0883
2LFNN predictor 7.6197 8.3027
Persistence pred. 0.6815
k-nearest neigh.
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Fig. 3. One-step ahead (15 min) prediction, with the 2LFNN model with 4 nodes.(a) The histogram of the absolute differences of the
computed and the actual outputs, for the test set.(b) The actual (solid line) and the computed (dotted line) outputs for a short time interval
of the test set.

0.01 and taking into account the above value ofn, the value
za for the t-test is 2.326. Recalling that theH0 hypothesis
is rejected whenz>za , the values in the table lead to the
following conclusions:

– At significance level 0.01, there is not enough sufficient
evidence to reject the hypothesis that the MSE for the
linear predictor and neural network predictor are equal7.

– At significance level 0.01, there is not enough sufficient
evidence to reject the hypothesis that the MSE for the
persistence predictor andk-nearest neighbor predictor
are equal.

– At significance level 0.01, the MSEs for the non-
parametric predictors differ significantly from the MSEs
for the parametric predictors.

Adopting the Occam’s razor principle, that is seeking for
the simplest model that best describes the observed data and

7However, at significance level 0.05 theH0 hypothesis is re-
jected, sincez0.05=1.645.

taking into account the above analysis, a linear model seems
to be sufficient for one-step ahead predictions.

Focusing on the performance of the various predictors on
the training set, we notice that thek-nearest neighbor predic-
tor exhibits the best performance. The fact that this predictor
exhibits the worst performance on the test set may be taken
as an indication that thek-nearest neighbor predictor exhibits
some degree of overfitting on the training set8. On the con-
trary, no such conclusion is supported from the above results
for the other three classifiers.

5 Concluding remarks and future directions

In this paper we considered the problem of performing one-
step ahead predictions on thef oF2 parameter, using time

8We say that a predictoroverfitsthe training data, if it learns all
the peculiarities of the specific training set (in other words, it mem-
orizes the specific training set), instead of learning only its general
structure. As a consequence, such a predictor does not behave well
on data sets different from the one used for training.
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Fig. 4. One-step ahead (15 min) prediction, with the persistence predictor.(a) The histogram of the absolute differences of the computed and
the actual outputs, for the test set.(b) The actual (solid line) and the computed (dotted line) outputs for a short time interval of the test set.
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Fig. 5. One-step ahead (15 min) prediction, with the 9 nearest neighbor predictor.(a) The histogram of the absolute differences of the
computed and the actual outputs, for the test set.(b) The actual (solid line) and the computed (dotted line) outputs for a short time interval
of the test set.

series forecasting methods. Specifically, assuming thatn de-
notes the current time slot, the purpose is to estimatex(n+1)

based onx(n), . . . , x(n−(d−1)), where{x(n)} denotes the
f oF2 time series. Our first concern was to estimate the value
of d, the dimension of the space where the dynamical sys-
tem that generates the observedf oF2 measurements is em-
bedded. This was carried out by applying the false nearest
neighbor method. Then, based on the estimated value ofd,
we generated the appropriate training and test sets for the
training and the evaluation of the performance of four well-
known predictors: the linear predictor, the two-layer, feed-

forward neural network predictor, the persistence predictor
and thek-nearest neighbor predictor.

The results show that the parametric predictors work sig-
nificantly better than the non-paramtric ones. In addition,
the performance of the linear predictor does not vary signifi-
cantly from the neural network predictor. The latter fact may
be taken as an indication that a linear model suffices for one-
step ahead prediction off oF2. In addition, it seems that the
k-nearest neighbor predictor exhibits some degree of overfit-
ting on the training set.
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Below, we briefly give some future guidelines for further
investigation. First, we intend to apply nonlinearity tests on
the observed data series, in order to gain some further insight
on the nature of the process that produces the observedf oF2
measurements (see, e.g. Schreiber and Schmitz, 2000).

Furthermore, an interesting variation during the training
of the predictor would be to supply additional information
related to the presence or the absence of a disturbance.

In addition, it seems interesting to see how the above pre-
dictors can be adapted in a time-varying environment. In
such an environment the time series at hand exhibits signif-
icant variations in time and, thus, the predictor has to adapt
its parameters in order to be able to follow these changes. In
this case we say that we deal with adaptive predictors. In
the prediction of thef oF2, the above idea may be utilized as
follows: first, we use the data of a short time period to train
a specific predictor. Then, this predictor is used with the cur-
rent parameter values for prediction for a short time period
in the future. Then, its parameters are re-evaluated in light of
the new observations and the procedure is repeated.

Finally, an obvious extension of the above work is the
multi-step ahead prediction, where, of course, the error esti-
mate is expected to increase, compared to that of the one-step
ahead prediction. It should be noted however, that allowing
the time delayT to take values other than 1, interesting re-
sults may be obtained in this direction. For example, if we set
T =26 (which corresponds to 6.5 h, since the sampling rate
for the data set at hand is 15 min), the predictions exhibits a
mean square error slightly greater than 1 MHz.

Acknowledgements.A preliminary version of this work was pre-
sented in the first European Space Weather week as a contribution
to the COST724 European action. Part of this work was funded
by the DIAS project, sponsored by the eContent programme of the
European Commission. The authors would like to thank the two
reviewers for their constructive comments.

Topical Editor M. Pinnock thanks E. Tulunay and another ref-
eree for their help in evaluating this paper.

References

Anderson, D. N., Buonsanto, M. J., Codrescu, M., Decker, D., Fe-
sen, C. G., Fuller-Rowell, T. J., Reinisch, B. W., Richards, P. G.,
Roble, R. G., Schunk, R. W., and Sojka, J. J.: Intercomparison of
physical models and observations of the ionosphere, J. Geophys.
Res., 103, 2179–2192, 1998.

Fuller-Rowell, T. J., Codrescu, M. V., and Araujo-Pradere, E.: Cap-
turing the storm-time F-region ionospheric response in an empir-
ical model, AGU Geophysical Monograph, 125, 393–402, 2001.

Haykin, S.: Neural Networks: A comprehensive foundation,
McMillan, 1994.

Hegger, R., Kantz, H., and Schreiber, T.: Practical implementation
of nonlinear time series methods: The TISEAN package, Chaos,
9, 413–440, 1999.

Kennel, B. K., Brown, R. and Abarbanel, H. D. I.: Determining
embedding dimension for phase-space reconstruction using a ge-
ometrical construction, Physical Review A, 45(6), 3403–3411,
1992.

McKinnell, L. A. and Poole, A. W. V.: The development of a neural
network based short term foF2 forecast program, Phys. Chem.
Earth, Part C, 25(4), 287–290, 2000.

Mendenhall, W. and Sincich, T.: Statistics for engineering and the
sciences, Prentice Hall, 4th edition, 1995.

Muhtarov, P. and Kutiev, I.: Autocorrelation method for temporal
interpolation and short-term prediction of ionospheric data, Ra-
dio Science, 34(2), 459–464, 1999.

Muhtarov, P., Kutiev, I., and Cander, L.: Geomagnetically corre-
lated autoregression model for short-term prediction of ionopsh-
eric parameters, Inverse Problems, 18, 49–65, 2002.

Pao, Y.-H.: Adaptive pattern recognition and neural networks,
Addison-Wesley, 1989.

Rumelhart, D. E. and McClelland, J. L.: Parallel distributed pro-
cessing: Explorations in the microstructure of cognition. Vol. 1:
Foundations, Cambridge, MA: MIT Press, 1986.

Schreiber, T. and Schmitz, A.: Surrogate time series, Physica D,
142, 4092–4120, 2000.

Theodoridis, S. and Koutroumbas, K.: Pattern Recognition (2nd
edition), Academic Press, 2003.

Tsonis, A. A.: Chaos: From theory to applications, Plenum Press,
1992.

Tulunay, Y., Tulunay, E., and Senalp, E. T.: The neural network
technique – 1: a general exposition, Adv. Space Res., 33, 983–
987, 2004a.

Tulunay, Y., Tulunay, E., and Senalp, E. T.: The neural network
technique – 2: an ionospheric example illustrating its application,
Adv. Space Res., 33, 988–992, 2004b.

Wintoft, P. and Cander, L. R.: Twenty-four hour predictions of foF2
using time delay neural networks, Radio Science, 35, 2, 395–
408, March–April 2000.


