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Abstract. A logistic regression model is implemented for
predicting the occurrence of intense/super-intense geomag-
netic storms. A binary dependent variable, indicating the
occurrence of intense/super-intense geomagnetic storms, is
regressed against a series of independent model variables
that define a number of solar and interplanetary properties of
geo-effective CMEs. The model parameters (regression co-
efficients) are estimated from a training data set which was
extracted from a dataset of 64 geo-effective CMEs observed
during 1996–2002. The trained model is validated by pre-
dicting the occurrence of geomagnetic storms from a valida-
tion dataset, also extracted from the same data set of 64 geo-
effective CMEs, recorded during 1996–2002, but not used
for training the model. The model predicts 78% of the ge-
omagnetic storms from the validation data set. In addition,
the model predicts 85% of the geomagnetic storms from the
training data set. These results indicate that logistic regres-
sion models can be effectively used for predicting the occur-
rence of intense geomagnetic storms from a set of solar and
interplanetary factors.

Keywords. Solar physics, astrophysics, and astronomy
(Flares and mass ejections) – Magnetospheric physics (So-
lar wind-magnetosphere interaction)

1 Introduction

The study of terrestrial consequences of earthward-directed
strong CMEs is known as space weather study. It is now
well established that most of the strong geomagnetic storms
have their sources in fast-moving halo CMEs (Gosling et
al., 1990; Srivastava and Venkatakrishnan, 2002). However,
there are exceptional cases where some intense storms can-
not be traced back to a single or a full halo CME, as ob-
served byCane and Richardson(2003); Zhang et al.(2003);
Zhao and Webb(2003); Schwenn et al.(2005). Although the
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space-weather prediction has been facilitated by the launch
of the SoHO (Fleck et al., 1995) and furthermore by ACE
(Hovestadt et al., 1995), it is still difficult to forecast the oc-
currence and intensity of geomagnetic storms. Also, avail-
able prediction techniques often result in false alarms, while
missing some of the super-intense geomagnetic storms. Most
of the available prediction schemes for the strength of the
geomagnetic storms rely on inputs from the interplanetary
sources of the storms and are based on the work ofBurton
et al. (1975). They found that the intensity of the storms
largely depend on two main parameters of the solar wind,
namely the solar wind speed and the southward component
of the IMF. Other prediction schemes are, in fact, real-time
prediction schemes (Feldstein, 1992; Lundstedt, 1992; Wu
and Lundstedt 1996; Fenrich 1998; O’Brien and McPher-
ron, 2000) which use the original formula ofBurton et al.
(1975). While these schemes yield generally accurate pre-
dictions, their prior warnings are only a few hours in ad-
vance of the actual occurrence of the geomagnetic storm,
mainly because they rely on in-situ properties of the solar
wind that can only be measured close to the Earth. For ex-
ample, the ACE measurements which are made upstream at
the L1 point give 30-60 min of warning time. Greater lead
or warning time requires a solar wind monitor further up-
stream (McPherron et al., 2004). For practical applications,
it is necessary to forecast space weather well in advance,
so that precautionary measures can be put in place (Feyn-
man and Gabriel, 2000). This involves prediction of a) the
strength of a geomagnetic storm soon after the launch of
a CME from the Sun, and b) the arrival time of the CME
at the Earth. This type of advance forecasting requires the
identification of key solar parameters that determine the geo-
effectiveness of a CME. Amongst several characteristic fea-
tures, for example, southwardBz, duration, wind speed and
density, Chen et al.(1996, 1997) chose the duration and
the magnitude ofBz as important quantities for predicting
geo-effectiveness. However, the characteristics of the solar
sources of intense/super-intense geomagnetic storms that in-
fluence their interplanetary properties and the mode of their
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influence are not yet well understood. Recently, a number
of studies on solar sources of severe geomagnetic storms
have been carried out to understand the solar-terrestrial rela-
tionship (Feynman and Gabriel, 2000; Plunkett et al., 2001;
Wang et al., 2002; Zhang et al., 2003; Vilmer et al., 2003;
Schwenn et al., 2005; Srivastava, 2005). Such understand-
ing can give us important parameters for forecasting the oc-
currence of intense/super-intense geomagnetic storms well in
advance. Srivastava and Venkatakrishnan (2004) investigated
the relationship between the solar and interplanetary parame-
ters of the geo-effective CMEs that were responsible for pro-
ducing 64 major geomagnetic storms (Dst<−100 nT) at the
Earth, recorded during 1996–2002. Their investigations re-
veal that the intensity of geomagnetic storms is strongly re-
lated to the southward component of the interplanetary mag-
netic fieldBz, followed by initial speeds and the ram pres-
sure of the geo-effective CME. They obtained a high corre-
lation coefficient (0.66) between theDst index and the initial
speeds of the CMEs, which indicates that the initial speed
of a CME can be a useful parameter for predicting the in-
tensity of a strong geomagnetic storm. A similarly high cor-
relation coefficient (0.64) between the ram pressure values
and theDst indices indicates that the ram pressure plays an
important role in the occurrence of an intense/super-intense
geomagnetic storm. They also found that, although an inter-
planetary shock is a good predictor for the arrival of ejecta at
the Earth, the shock speeds are not very reliable for predict-
ing the resulting storm intensity. The study also suggests that
the strength of a geomagnetic storm can be better predicted
soon after the launch of a CME, if one can predict the ram
pressure, because high ram pressure compresses the mag-
netic field of the magnetic cloud and intensifies the south-
ward component ofBz, which is a good predictor of geo-
magnetic storms. This paper builds on the work of Srivastava
and Venkatakrishnan (2004) to implement a statistical model
for predicting the occurrence of intense/super-intense geo-
magnetic storms (Dst<−100 nT) based on the observations
of 64 geo-effective events recorded during 1996–2002. Un-
like previous models, which used only interplanetary mea-
sured variables for predicting the occurrence of a geomag-
netic storm, the present model incorporates both solar and
interplanetary variables, which were identified largely from
the study of Srivastava and Venkatakrishnan (2004), to pre-
dict the occurrence of major storms.

Statistical models use large databases to establish a mathe-
matical relation between solar and interplanetary parameters
and the geomagnetic index (Dst index in the present study).
The choice of parameters used in the prediction scheme is
based on our current knowledge or understanding of physical
processes. In the present study, by introducing solar param-
eters in the prediction scheme it is attempted to improve the
“medium-term” forecasting (McPherron et al., 2004). Also,
by using statistical models, one is able to ascertain the rela-
tive contribution of various parameters used in the predictive
scheme.

In the following sections, we first describe, in brief, the
theoretical background of the statistical model, namely a lo-

gistic regression model, used in this study. The criteria for
development of a viable statistical model has been described.
In subsequent sections, the actual model equation has been
obtained based on both solar and interplanetary observed
variables. Lastly, the testing and validation of the model has
been discussed.

2 Statistical modeling for predicting geomagnetic
storms

A statistical model for predicting geomagnetic storms can be
defined as a highly-simplified, numeric representation of the
relation between solar and interplanetary variables and the
occurrence of geomagnetic storms. A generalized statistical
model can be empirically represented below:

GMS = [f (SPi, IPj ), Pk], (1)

where GMS represents the occurrence of a geomagnetic
storm, SPi (i=I) is the ith solar variable, IPj (j=J) is thej th

interplanetary variable, Pk (k=K) is the kth parameter of the
functionf that relates the solar and interplanetary variables
to the occurrence of a geomagnetic storm, and I, J and K are
the total numbers of solar variables, interplanetary variables
and function parameters, respectively. Based on whether the
relationship is hypothesized to be linear or nonlinear, a vari-
ety of linear and nonlinear functions can be used to approx-
imate the relationship between the variables and the occur-
rence of a geomagnetic storm (Agresti, 1990; Finney, 1971).
Linear/nonlinear dependence of the magnetospheric dynam-
ics have been studied by several workers, for example, John-
son and Wing (2004) and references therein. While models
based on machine learning (for example, artificial neural net-
works and Bayesian network classifiers) use nonlinear func-
tions, several other statistical models, like linear regression
and näıve Bayesian models, use linear functions. Nonlinear
models generally fit the data more efficiently, but many non-
linear models (for example, neural network-based models)
have a black-box type implementation, which means that the
model parameters are difficult to interpret for gaining mean-
ingful insights into the data. However, logistic regression
offers a nonlinear model with the additional benefit that its
parameters can be interpreted for gaining insights into the
data, especially about the relative importance of various vari-
ables in predicting the occurrence of geomagnetic storms.
This can help in understanding the factors that influence the
geo-effectiveness of CMEs. Moreover, logistic regression is
generally considered suitable for predictive modeling of di-
chotomous events that can be represented by a binary-state
variable (Hosmer and Lemeshow, 2000). Such events gen-
erally include the presence/absence or the occurrence/non-
occurrence type of events. In view of the interpretability of
the model parameters and also because the objective in the
present study is to predict the occurrence of a intense/super-
intense geomagnetic storm, a logistic regression model for
modeling the relation in Eq. (1) was selected.
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Table 1. Coded values of dependent and independent variables of the logistic regression model.

Encoding

Names of variables Type of variable Measured Parameter Value Code

Dst index Binary and dependent Dst −200 to−100 nT 0
<−200 nT 1

Halos Binary and independent Full halos 360◦ angular span 1
Partial >140◦ angular span 0
None −1

Location Binary and independent Location-bin Within±40◦ latitude±40◦ longitude 1
Outside±40◦ latitude±40◦ longitude 0

Association with Binary and independent Flare-bin Flares 1
other activity EPs 0

Initial Speeds Numeric and independentVi Value in km s−1
−

Southward IMF Numeric and independentBz Value in nT −

Total IMF Numeric and independent BT Value in nT −

Ram pressure Numeric and independentPR Value in dynes cm−2
−

2.1 Logistic regression

The objective of modeling the relation between the occur-
rence of an intense/super-intense geomagnetic storm (depen-
dent variable) and solar and interplanetary variables (inde-
pendent variables) is to estimate the probability of the former,
given the incidences of the latter. Since the probability of an
event must lie between 0 and 1, it is impractical to model
probabilities with linear regression techniques, because the
linear regression model allows the dependent variable to take
values greater than 1 or less than 0. The logistic regression
model is a type of generalized linear model that extends the
linear regression model by linking the range of real num-
bers to the 0–1 range. Consider the existence of an unob-
served continuous variable, Z, which can be thought of as
the “propensity towards” the occurrence of an intense/super-
intense geomagnetic storm, with larger values of Z corre-
sponding to greater probabilities of the occurrence of an
intense/super-intense geomagnetic storm. Mathematically,

5i =
eZi

1 + eZi
=

1

1 + e−Zi
(2)

Zi = log(
5i

1 − 5i

), (3)

where 5i is the probability of the occurrence of
intense/super-intense geomagnetic, given the ith observa-
tion of the solar and interplanetary variables, andZi is the
value of the continuous variableZ. In the logistic regres-
sion model, the relationship betweenZ and the probability
of the event of interest is described by the above link func-
tion (Eq. (2)). IfZ were observable, a simple linear regres-
sion can be fitted toZ. However, sinceZ is unobserved, the
predictor (or independent) variables have to be related to the

probability of the occurrence of an intense/super-intense ge-
omagnetic storms by substituting forZ as follows (assuming
thatZ is linearly related to the predictors):

Zi = b0 + b1xi1 + b2xi2 + b3xi3 + .... + bjxij (4)

5i =
1

1 + e−Zi
, (5)

where bj (j=0 to J) are the model parameters (known as re-
gression coefficients), xij (i=0 to I; j=0 to J) are the indepen-
dent variables, I and J are the total number of observations.
The regression coefficients are estimated through an itera-
tive maximum likelihood method. In the above equations,
Z is estimated as a natural logarithm of the odds of the oc-
currence of an intense/super-intense geomagnetic storm and,
therefore, logistic regression estimates the probability or suc-
cess over the probability of failure.

2.2 Datasets used

For implementation of logistic regression, we used the
same dataset that was used by Srivastava and Venkatakrish-
nan (2004). It comprises solar sources and interplanetary
data regarding 64 geo-effective CMEs which gave rise to
intense to super-intense geomagnetic storms during 1996–
2002. The dataset was created from observations of SoHO
and ACE, in particular from instruments like EIT, LASCO
and CELIAS aboard SoHO (Brueckner et al., 1995; Delabou-
diniere et al., 1995; Hovestadt et al., 1995), and also observa-
tions from SWEPAM and MAG instruments data aboard the
ACE spacecraft (Stone et al., 1998). The details can be found
in Srivastava and Venkatakrishnan (2004). Out of the 64 geo-
effective events, 9 were not included in the regression analy-
sis because the data values of some of the variables for these



2972 N. Srivastava: Logistic regression model for predicting geomagnetic storms

Table 2. Estimates of the parameters of the model (maximum like-
lihood.)

Variable Estimates Std. dev. χ2 Pr. >χ2

Intercept −4.575 1.871 5.977 0.014

Halo-Bin 0.489 0.786 0.387 0.534

Flare-bin 0.506 1.008 0.252 0.615

Location-bin 0.305 1.170 0.068 0.795

Vi 0.001 0.001 0.922 0.337
BT −0.102 0.092 1.213 0.271
Bz −0.243 0.109 4.937 0.026

PR 2 394 103.2 5 614 666 0.182 0.670

events were missing. The remaining 55 events were divided
into two sets, namely, a training set and a validation set. The
training dataset, comprising of 46 events, which included 16
super-intense storms and 30 intense geomagnetic storms, was
used to train a logistic regression model. The trained model
was validated on the remaining 9 events, which included 4
super-intense and 5 intense geomagnetic storms.

2.3 Model variables

The intensity of the geomagnetic storm associated with each
of the 64 CMEs in the dataset is represented by theDst index,
which is used as the dependent variable in logistic regres-
sion. However, it was converted into a binary variable, using
a Dst index value of−200 nT as the threshold. The geo-
magnetic storms withDst<−200 nT were considered super-
intense and coded as 1, while the storms with−200 nT
<Dst<−100 nT were considered intense and coded as 0 (Ta-
ble 1). The solar properties of the geo-effective CMEs in
the dataset are defined by the following variables: 1) latitude
of the origin of the CME, 2) longitude of the origin of the
CME, 3) flare/prominence association, 4) association with
full/partial/no halo CME, and 5) initial speeds of the CME
(Vi). In order to reduce redundancy, the two locational vari-
ables, namely, latitude and longitude, were combined to gen-
erate a single binary variable termed source location. Simi-
larly, two other solar variables, viz., flare/prominence asso-
ciation and association with full/partial/no halo CME, were
also converted into binary variables. Our study (Srivastava
and Venkatakrishnan, 2004) has shown that a large number
of the intense storms are associated more with flares than
with prominences (75% to 25%). This implies that flares
do play an important role as source regions of intense geo-
magnetic storms. This is also supported by the result that
flares generally occur in active regions and that the magnetic
energy of the source active region dictates, to some extent,
the speed of the ensuing halo CMEs (Venkatakrishnan and
Ravindra, 2003). Thus, the knowledge of the association of
the CME with a flare or eruptive prominence indirectly sug-
gests the magnetic energy involved, as well as the speeds of
the CMEs.

The rules used for generating the binary variables are
given in Table 1. The fourth solar variable, viz., initial speeds
of the CME (Vi), was used as such. In all, four solar variables
were used as independent variables in the logistic regression.

The interplanetary properties of the geo-effective CMEs in
the dataset are described by the following measured and de-
rived variables: 1) shock speeds (VSH ), 2) ram pressure (PR),
3) total value of the IMF (BT ), 4) southward component of
the IMF (Bz), 5) solar wind speeds before and after the shock
(V1 andV2), 6) densities before and after the shock (n1 and
n2), and 7) solar wind-magnetospheric coupling parameter
(V Bz). Out of the above interplanetary variables, only ram
pressure (PR), total value of the IMF (BT ) and southward
component of the IMF (Bz) were used as independent vari-
ables in the logistic regression. Shock speed (VSH ) was not
used because it has a poor Pearson’s correlation coefficient
(0.28) with theDst index (Srivastava and Venkatakrishnan,
2004). Shock speed (VSH ) is dependent on the solar wind
speeds (V1 andV2) and also densities n1 and n2 before and
after the shock and therefore much of the information con-
tained in the variablesV1, V2, n1 and n2 may be considered
redundant. Similarly, ram pressure, which is dependent on
the solar wind speed and density after the shock and shows a
good correlation coefficient with theDst index, was included
in the regression analysis. The solar wind-magnetospheric
coupling parameter (V Bz) is a function of the southward
component of the IMF (Bz), and therefore was considered
redundant for regression analysis.

2.4 Model training

The logistic regression was trained on the training dataset
using XLSTAT software(http://www.xlstat.com). Training
comprised estimation of regression coefficient using an iter-
ative maximum likelihood method. The regression equation
obtained after training the model is given below:

P=
1

(1 + exp(−Z))
, (6)

where

Z = (−4.57+ 0.488×Halo−bin + 0.51×Flare−bin

+0.30×Location−bin + 7.44×E−04×V i

−0.24×Bz−0.10×BT + 2394103.2×PR). (7)

The details of the estimates of regression coefficients and a
number of statistical properties of the model variables are
given in Table 2.

2.5 Model validation

The logistic regression model was validated by using the
regression equation (Eq. (4)) to predict the occurrence of
intense/super-intense geomagnetic storms for the validation
dataset. A threshold value of 0.500 was used to make a clas-
sification: if the predicted value is more than 0.500, the event

(http://www.xlstat.com)
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Table 3. Validation of the logistic regression model.

Data-sets Observed Predicted % Correct
prediction

Super-Intense 16 10 62.5%
Training Intense 30 29 97%

Total 46 39 85%

Super-intense 4 2 50%
Validation Intense 5 5 100%

Total 9 7 77.7%

is classified as a super-intense geomagnetic storm (coded as
1), otherwise as an intense geomagnetic storm (coded as 0).

3 Results and discussion

The results of the classification of the training and valida-
tion events using the trained logistic regression model are
given in Table 3. The results show that the logistic regres-
sion model correctly classifies 62.5% of the training super-
intense geomagnetic storms and 97% of the training intense
geomagnetic storms. Amongst the validation events, the
model correctly classifies 50% of the super-intense geomag-
netic storms and 100% of the intense geomagnetic storms.
The above results indicate that the model is only moderately
successful in predicting super-intense geomagnetic storms.
This indicates that the geo-effective CMEs that give rise to
super-intense geomagnetic storms, have certain distinctive
solar and/or interplanetary characteristics that have not been
properly understood. As discussed in Sect. 1, the characteris-
tics of the solar sources of intense/super-intense geomagnetic
storms that influence their interplanetary properties and the
mode of their influence are not yet well identified. The solar
parameters used in the present model have been identified on
the basis of current understanding, which may not adequately
explain the observed data. More work needs to be done in
order to augment or refine the independent model variables,
especially the solar parameters, for a more accurate predic-
tion of super-intense storms. Nevertheless, prediction rates
of 50 to 60% for super-intense geomagnetic storms indicate
the efficiency of the model in predicting space weather. The
Chi-squared values of the estimates of the regression coef-
ficients for different variables indicate thatBz is the most
significant variable for predicting the occurrence of intense
and super-intense geomagnetic storms, followed byBT and
Vi . The solar variables, in general, contribute relatively less
in the prediction. Amongst the interplanetary variables,Bz is
the most important predictor, followed byBT and ram pres-
sure. Amongst the solar variables,Vi is the most important
predictor followed by full halo association, and association
of flare/prominence.

4 Conclusions

A simple logistic regression model was implemented for pre-
dicting the occurrence of intense/super-intense geomagnetic
storms based on a number of solar and interplanetary vari-
ables. The results indicate that the model can be used for
predicting the occurrence of intense geomagnetic storms, al-
though it is only moderately successful in predicting super-
intense storms. However, to really validate the capability of
the model, the validation data set should also use periods
without any storms, for which more work is needed. The
results also indicate that interplanetary variables are better
predictors of the occurrence of geomagnetic storms, while
the solar variables, in general, contribute relatively less in
the prediction.

Future Research: The estimated logistic regression model
does not predict the magnitude of the storm or theDst index.
Future research will be directed at estimating the strength of
the storms by using more and accurately measured quantities
and also by including the data for events where the strength
of the storms was lower than reported here. It is also aimed
to increase the number of geo-effective events by extending
the dataset up to 2004. This would lead to better forecasting
of space weather prediction.
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