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Abstract. A logistic regression model is implemented for space-weather prediction has been facilitated by the launch
predicting the occurrence of intense/super-intense geomagf the SoHO Fleck et al, 1995 and furthermore by ACE
netic storms. A binary dependent variable, indicating the(Hovestadt et a].1999, it is still difficult to forecast the oc-
occurrence of intense/super-intense geomagnetic storms, @urrence and intensity of geomagnetic storms. Also, avail-
regressed against a series of independent model variablegble prediction techniques often result in false alarms, while
that define a number of solar and interplanetary properties ofmissing some of the super-intense geomagnetic storms. Most
geo-effective CMEs. The model parameters (regression coef the available prediction schemes for the strength of the
efficients) are estimated from a training data set which wasggeomagnetic storms rely on inputs from the interplanetary
extracted from a dataset of 64 geo-effective CMEs observedources of the storms and are based on the woiuofon
during 1996—-2002. The trained model is validated by pre-et al. (1979. They found that the intensity of the storms
dicting the occurrence of geomagnetic storms from a validadargely depend on two main parameters of the solar wind,
tion dataset, also extracted from the same data set of 64 gemamely the solar wind speed and the southward component
effective CMEs, recorded during 1996—2002, but not usedof the IMF. Other prediction schemes are, in fact, real-time
for training the model. The model predicts 78% of the ge- prediction schemes (Feldstein, 1992; Lundstedt, 1992; Wu
omagnetic storms from the validation data set. In addition,and Lundstedt 1996; Fenrich 1998; O’Brien and McPher-
the model predicts 85% of the geomagnetic storms from theon, 2000) which use the original formula Blurton et al.
training data set. These results indicate that logistic regres(1975. While these schemes yield generally accurate pre-
sion models can be effectively used for predicting the occur-dictions, their prior warnings are only a few hours in ad-
rence of intense geomagnetic storms from a set of solar andance of the actual occurrence of the geomagnetic storm,
interplanetary factors. mainly because they rely on in-situ properties of the solar
Keywords. Solar physics, astrophysics, and astronomyWind that can only be measured cl(_)se to the Earth. For ex-
(Flares and mass ejections) — Magnetospheric physics (Soqmple, th? AC.E measurer_nents Wh'.Ch are made upstream at
lar wind-magnetosphere interaction) the L1 pomt.glve 30—50 min of warning t|mel. Greater lead
or warning time requires a solar wind monitor further up-
stream McPherron et a).2004). For practical applications,
it is necessary to forecast space weather well in advance,
1 Introduction so that precautionary measures can be put in place (Feyn-

. . man and Gabriel, 2000). This involves prediction of a) the
The study of terrestrial consequences of earthward-d|rectegtrength of a geomagnetic storm soon after the launch of

strong CM_ES is known as space weather study. I_t IS NOW, C\E from the Sun, and b) the arrival time of the CME
well established that most of the strong geomagnetic storms ihe Earth. This type of advance forecasting requires the

have the.ir sources in fast-moving _halo CMEs (Gosling et;jentification of key solar parameters that determine the geo-
al., 1990; Srivastava and Venkatakrishnan, 2002). Howeverete tiveness of a CME. Amongst several characteristic fea-

there are exceptional cases where some intense storms Calliies. for example, southwatgl, duration, wind speed and

not be traced back to a single or a full halo CME, as 0b- density, Chen et al.(1996 1997 chose the duration and
served byCane and Richardsq@003; Zhang et al(2003; the magnitude of3, as important quantities for predicting

Zhao and Webl2003; Schwenn et al2005. Although the geo-effectiveness. However, the characteristics of the solar
Correspondence ta\. Srivastava sources of intense/super-intense geomagnetic storms that in-
(nandita@prl.ernet.in) fluence their interplanetary properties and the mode of their
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influence are not yet well understood. Recently, a numbemgistic regression model, used in this study. The criteria for
of studies on solar sources of severe geomagnetic stormdevelopment of a viable statistical model has been described.
have been carried out to understand the solar-terrestrial reldn subsequent sections, the actual model equation has been
tionship (Feynman and Gabriel, 2000; Plunkett et al., 2001;0btained based on both solar and interplanetary observed
Wang et al., 2002; Zhang et al., 2003; Vilmer et al., 2003; variables. Lastly, the testing and validation of the model has
Schwenn et al., 2005; Srivastava, 2005). Such understanddeen discussed.
ing can give us important parameters for forecasting the oc-
currence of intense/super-intense geomagnetic storms well in
advance. Srivastava and Venkatakrishnan (2004) investigated Statistical modeling for predicting geomagnetic
the relationship between the solar and interplanetary parame- storms
ters of the geo-effective CMEs that were responsible for pro-
ducing 64 major geomagnetic storm3,{<—100nT) atthe A statistical model for predicting geomagnetic storms can be
Earth, recorded during 1996-2002. Their investigations re-defined as a highly-simplified, numeric representation of the
veal that the intensity of geomagnetic storms is strongly re-relation between solar and interplanetary variables and the
lated to the southward component of the interplanetary magoccurrence of geomagnetic storms. A generalized statistical
netic field B,, followed by initial speeds and the ram pres- model can be empirically represented below:
sure of the geo-effective CME. They obtained a high corre-
lation coefficient (0.66) between tli&, index and the initial GMS = [f(SP;, 1 P}), P], D
speeds of the CMEs, which indicates that the initial speed
of a CME can be a useful parameter for predicting the in- where GMS represents the occurrence of a geomagnetic
tensity of a strong geomagnetic storm. A similarly high cor- storm, SP (i=l) is the i"* solar variable, IR (j=J) is the j”
relation coefficient (0.64) between the ram pressure valueinterplanetary variable,;Rk=K) is the K" parameter of the
and theDy; indices indicates that the ram pressure plays anfunction f that relates the solar and interplanetary variables
important role in the occurrence of an intense/super-intens¢o the occurrence of a geomagnetic storm, and I, J and K are
geomagnetic storm. They also found that, although an interthe total numbers of solar variables, interplanetary variables
planetary shock is a good predictor for the arrival of ejecta atand function parameters, respectively. Based on whether the
the Earth, the shock speeds are not very reliable for predictrelationship is hypothesized to be linear or nonlinear, a vari-
ing the resulting storm intensity. The study also suggests thagty of linear and nonlinear functions can be used to approx-
the strength of a geomagnetic storm can be better predicteninate the relationship between the variables and the occur-
soon after the launch of a CME, if one can predict the ramrence of a geomagnetic storidresti 199Q Finney, 1977).
pressure, because high ram pressure compresses the mdgnear/nonlinear dependence of the magnetospheric dynam-
netic field of the magnetic cloud and intensifies the south-ics have been studied by several workers, for example, John-
ward component oB,, which is a good predictor of geo- son and Wing (2004) and references therein. While models
magnetic storms. This paper builds on the work of Srivastavabased on machine learning (for example, artificial neural net-
and Venkatakrishnan (2004) to implement a statistical modelvorks and Bayesian network classifiers) use nonlinear func-
for predicting the occurrence of intense/super-intense geotions, several other statistical models, like linear regression
magnetic stormslf;;, <—100nT) based on the observations and ndve Bayesian models, use linear functions. Nonlinear
of 64 geo-effective events recorded during 1996—2002. Un-models generally fit the data more efficiently, but many non-
like previous models, which used only interplanetary mea-linear models (for example, neural network-based models)
sured variables for predicting the occurrence of a geomaghave a black-box type implementation, which means that the
netic storm, the present model incorporates both solar andnodel parameters are difficult to interpret for gaining mean-
interplanetary variables, which were identified largely from ingful insights into the data. However, logistic regression
the study of Srivastava and Venkatakrishnan (2004), to preoffers a nonlinear model with the additional benefit that its
dict the occurrence of major storms. parameters can be interpreted for gaining insights into the
Statistical models use large databases to establish a mathdata, especially about the relative importance of various vari-
matical relation between solar and interplanetary parameterables in predicting the occurrence of geomagnetic storms.
and the geomagnetic inde®(, index in the present study). This can help in understanding the factors that influence the
The choice of parameters used in the prediction scheme igeo-effectiveness of CMEs. Moreover, logistic regression is
based on our current knowledge or understanding of physicafjenerally considered suitable for predictive modeling of di-
processes. In the present study, by introducing solar paramchotomous events that can be represented by a binary-state
eters in the prediction scheme it is attempted to improve thevariable (Hosmer and Lemeshow, 2000). Such events gen-
“medium-term” forecastingNlcPherron et a).2004. Also, erally include the presence/absence or the occurrence/non-
by using statistical models, one is able to ascertain the relaeccurrence type of events. In view of the interpretability of
tive contribution of various parameters used in the predictivethe model parameters and also because the objective in the
scheme. present study is to predict the occurrence of a intense/super-
In the following sections, we first describe, in brief, the intense geomagnetic storm, a logistic regression model for
theoretical background of the statistical model, namely a lo-modeling the relation in Eg. (1) was selected.
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Table 1. Coded values of dependent and independent variables of the logistic regression model.

Encoding
Names of variables  Type of variable Measured Parameter  Value Code
Dy; index Binary and dependent Dy —200to—-100nT 0
<—=200nT 1
Halos Binary and independent Full halos 3&hgular span 1
Partial >140° angular span 0
None -1
Location Binary and independent Location-bin Withid O° latitude+40° longitude 1
Outsidet40° latitude440° longitude 0
Association with Binary and independent Flare-bin Flares 1
other activity EPs 0
Initial Speeds Numeric and independentV; Value in km s71 —
Southward IMF Numeric and independentB; Value innT —
Total IMF Numeric and independent By Value innT —
Ram pressure Numeric and independen®g Value in dynes cm? —
2.1 Logistic regression probability of the occurrence of an intense/super-intense ge-

omagnetic storms by substituting f@ras follows (assuming
The objective of modeling the relation between the occur-that 7 is linearly related to the predictors):
rence of an intense/super-intense geomagnetic storm (depen-
dent variable) and solar and interplanetary variables (indeZ; = bo + byx;1 + boxi2 + baxiz + ... + bjx;; 4)
pendent variables) is to estimate the probability of the former,
given the incidences of the latter. Since the probability of anp. _ 1
event must lie between 0 and 1, it is impractical to model Y1t

probabilities with linear regression techniques, because th(\?vhere b (=0 to J) are the model parameters (known as re-

e bl 1 ression coeficients) (=010 010 are e deper:
9 ) g 9 ent variables, | and J are the total number of observations.

H:]Zifl rI(Se ?etzgi% sfmgigg[at?z?% ILIirs\eatrhzoriil t:ffegsrgimerhe regression coefficients are estimated through an itera-
9 y 9 9 tive maximum likelihood method. In the above equations,

bers to the 0-1 range. Consider the existence of an unobz is estimated as a natural logarithm of the odds of the oc-

served continuous variable, Z, which can be thought of a%urrence of an intense/super-intense geomagnetic storm and,

fche propensity towe_1rds the occurrence ofan Intense/Sljperfherefore, logistic regression estimates the probability or suc-
intense geomagnetic storm, with larger values of Z corre-
sponding to greater probabilities of the occurrence of an

intense/super-intense geomagnetic storm. Mathematically, 5 » patasets used

®)

cess over the probability of failure.

P = e” — 1 2) For implementation of logistic regression, we used the
1+e%  14e 4 same dataset that was used by Srivastava and Venkatakrish-
. nan (2004). It comprises solar sources and interplanetary
Z = 108(1_ IH'), €) data regarding 64 geo-effective CMEs which gave rise to
1

intense to super-intense geomagnetic storms during 1996—
where II; is the probability of the occurrence of 2002. The dataset was created from observations of SoHO
intense/super-intense geomagnetic, given ffieobserva- and ACE, in particular from instruments like EIT, LASCO
tion of the solar and interplanetary variables, &dis the  and CELIAS aboard SoH@fueckner et a].1995 Delabou-
value of the continuous variablg. In the logistic regres- diniere et al. 1995 Hovestadt et a]1995, and also observa-
sion model, the relationship betwe&nand the probability tions from SWEPAM and MAG instruments data aboard the
of the event of interest is described by the above link func-ACE spacecraft (Stone et al., 1998). The details can be found
tion (Eq. (2)). If Z were observable, a simple linear regres- in Srivastava and Venkatakrishnan (2004). Out of the 64 geo-
sion can be fitted t&. However, since is unobserved, the effective events, 9 were not included in the regression analy-
predictor (or independent) variables have to be related to thsis because the data values of some of the variables for these
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Table 2. Estimates of the parameters of the model (maximum like- .The. rules used for generating the bine_lry .v:fufiables are
lihood.) givenin Table 1. The fourth solar variable, viz., initial speeds

of the CME (V;), was used as such. In all, four solar variables

Variable Estimates  Std. dev. x2 Pr.>y2 were u§ed as independent vgriables in the Iogist?c regressi'on.
The interplanetary properties of the geo-effective CMEs in

Intercept —4.575 1871 5.977 0.014 the dataset are described by the following measured and de-
Halo-Bin 0.489 0.786 0.387 0.534 rived variables: 1) shock speed&(;), 2) ram pressureHy),
Flare-bin 0.506 1008 0252 0.615 3) total value of the IM_F Br), 4) southward component of

. . the IMF (B;), 5) solar wind speeds before and after the shock
Location-bin 0.305 1170 0068 0795 (v, andVs), 6) densities before and after the shock &md
Vi 0.001 0.001 0.922 0.337 ny), and 7) solar wind-magnetospheric coupling parameter
Br —0.102 0.092 1.213 0.271 (VB;). Out of the above interplanetary variables, only ram
B, —0.243 0.109 4.937  0.026  pressure P), total value of the IMF §7) and southward
PR 2394103.2 5614666 0.182 0.670 component of the IMF R,) were used as independent vari-

ables in the logistic regression. Shock speggy) was not
used because it has a poor Pearson’s correlation coefficient
events were missing. The remaining 55 events were divided0-28) with theDy, index (Srivastava and Venkatakrishnan,
into two sets, namely, a training set and a validation set. The?004). Shock speed/(y;) is dependent on the solar wind
training dataset, comprising of 46 events, which included 165P€€ds 1 and V) and also densities;rand rp before and
super-intense storms and 30 intense geomagnetic storms, waier the shock and therefore much of the information con-
used to train a logistic regression model. The trained modefained in the variables1, V2, n; and . may be considered
was validated on the remaining 9 events, which included 4rédundant. Similarly, ram pressure, which is dependent on

super-intense and 5 intense geomagnetic storms. the solar wind speed and density after the shock and shows a
good correlation coefficient with the,; index, was included
2.3 Model variables in the regression analysis. The solar wind-magnetospheric

coupling parameterYB;) is a function of the southward
The intensity of the geomagnetic storm associated with eacltomponent of the IMF g,), and therefore was considered
of the 64 CMEs in the dataset is represented byiheandex, redundant for regression analysis.
which is used as the dependent variable in logistic regres-
sion. However, it was converted into a binary variable, using2-4 Model training
a Dy, index value of—200nT as the threshold. The geo-

magnetic storms witlD;, <—200 nT were considered super- A 9
using XLSTAT software(http://www.xIstat.com) Training

intense and coded as 1, while the storms wiB00nT ’ O A e . .
<D,,<—100nT were considered intense and coded as 0 (Tagompnsed estimation of regression coefficient using an iter-
s

ble 1). The solar properties of the geo-effective CMEs in ative maximum likelihood method. The regression equation
the dataset are defined by the following variables: 1) latitudePPtained after training the model is given below:
of the origin of the CME, 2) longitude of the origin of the 1

The logistic regression was trained on the training dataset

CME, 3) flare/prominence association, 4) association Witthm, (6)
full/partial/no halo CME, and 5) initial speeds of the CME exp

(V;). In order to reduce redundancy, the two locational vari-\where

ables, namely, latitude and longitude, were combined to gen-

erate a single binary variable termed source location. Simi-

larly, two other solar variables, viz., flare/prominence asso-Z = (—4.57 + 0.488xHalo—bin + 0.51x Flare-bin
ciation and asspciatiqn with fL!II/partiaI/no halo CME, were 1+0.30x Location-bin + 7.44x E—04x V;

also converted into binary variables. Our study (Srivastava _0.24x B.—0.10x By + 23941032x Pg). )

and Venkatakrishnan, 2004) has shown that a large number

of the intense storms are associated more with flares thajpg getails of the estimates of regression coefficients and a

with prominences (75% to 25%). This implies that flares  mper of statistical properties of the model variables are
do play an important role as source regions of intense geogen in Table 2.

magnetic storms. This is also supported by the result tha

flares generally occur in active regions and that the magnetio 5 Model validation

energy of the source active region dictates, to some extent,

the speed of the ensuing halo CMEs (Venkatakrishnan and’he logistic regression model was validated by using the

Ravindra, 2003). Thus, the knowledge of the association ofegression equation (Eq. (4)) to predict the occurrence of

the CME with a flare or eruptive prominence indirectly sug- intense/super-intense geomagnetic storms for the validation
gests the magnetic energy involved, as well as the speeds afataset. A threshold value of 0.500 was used to make a clas-
the CMEs. sification: if the predicted value is more than 0.500, the event


(http://www.xlstat.com)
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Table 3. Validation of the logistic regression model. 4 Conclusions
A simple logistic regression model was implemented for pre-
Data-sets Observed Predicted % Correctdicting the occurrence of intense/super-intense geomagnetic
prediction  Storms based on a number of solar and interplanetary vari-
ables. The results indicate that the model can be used for
Super-Intense 16 10 62.5% L . .
Training Intense 30 29 97% predlct|r_19_ the occurrence of intense geo_magne_tlc_storms, al-
Total 46 39 85% _though it is only moderately successft_;l in predicting super-
intense storms. However, to really validate the capability of
the model, the validation data set should also use periods
without any storms, for which more work is needed. The
results also indicate that interplanetary variables are better
predictors of the occurrence of geomagnetic storms, while
the solar variables, in general, contribute relatively less in
the prediction.
is classified as a super-intense geomagnetic storm (coded as Future ResearchThe estimated logistic regression model
1), otherwise as an intense geomagnetic storm (coded as O)does not predict the magnitude of the storm orEhgindex.
Future research will be directed at estimating the strength of
the storms by using more and accurately measured quantities
and also by including the data for events where the strength
of the storms was lower than reported here. It is also aimed
to increase the number of geo-effective events by extending
The results of the classification of the training and valida-the dataset up to 2004. This would lead to better forecasting
tion events using the trained logistic regression model aref space weather prediction.
given in Table 3. The results show that the logistic regres-

sion model correctly classifies 62.5% of the training SUPer-pcknowledgementsie acknowledge the LASCO/EIT and
intense geomagnetic storms and 97% of the training intens@ gL IAS operational teams on SoHO and ACE for the data used in
geomagnetic storms. Amongst the validation events, thehis paper. The author also acknowledges the support of European
model correctly classifies 50% of the super-intense geomage0ST724 action for providing partial financial support to present
netic storms and 100% of the intense geomagnetic stormshis work at the first European Space Weather week held during
The above results indicate that the model is only moderatelyNovember 2004 at ESTEC, The Netherlands.

successful in predicting super-intense geomagnetic storms. Topical Editor T. Pulkkinen thanks D. F. Webb and another
This indicates that the geo-effective CMEs that give rise toreferee for their help in evaluating this paper.

super-intense geomagnetic storms, have certain distinctive

solar and/or interplanetary characteristics that have not been

properly understood. As discussed in Sect. 1, the characteri®keferences

tics of the solar sources of intense/super-intense geomagnetic

storms that influence their interplanetary properties and thetdresti, A.: Categorical data analysis, John Wiley and Sons, New
mode of their influence are not yet well identified. The solar York, 1990.

parameters used in the present model have been identified cﬁ{llj_eCka‘ Gl E Howard, R'C':A" and Koim?_rksl\é'g";tlal';;he
the basis of current understanding, which may not adequately 122925984%2pfgg;)sc°p'c oronagraph, ( ) SolarPhys.,
explain the observed d‘_'ﬂa' Mo_re work needs to be dpne IrBurton,, R. K., M,cPherron, R. L., and Russell, C. T.: An empiri-
order to augment or refine the independent model variables, ¢4 rejationship between interplanetary conditions @ng , J.
especially the solar parameters, for a more accurate predic- Geophys. Res., 80, 14 204-14 214, 1975.

tion of super-intense storms. Nevertheless, prediction rategane, H. V. and Richardson, I. G.: Interplanetary coronal mass ejec-
of 50 to 60% for super-intense geomagnetic storms indicate tions in the near-Earth solar wind during 1996-2002, J. Geophys.
the efficiency of the model in predicting space weather. The Res., 108, 1156, doi:10.1029/2002JA009817, 2003.
Chi-squared values of the estimates of the regression coefchen, J., Cargill, P. J., and Palmadesso, P. J.: Real-time identifi-
ficients for different variables indicate th&t is the most cation and prediction of geoeffective solar wind structures, Geo-
significant variable for predicting the occurrence of intense _ Phys- Res. Lett,, 23, 625-628, 1996. n _
and super-intense geomagnetic storms, followedpyand Chen, J., Cargill, P. J and Palmadesso, P. J.: Predicting solar wind
V;. The solar variables, in general, contribute relatively less structures and their geoeffectiveness, J. Geophys. Res., 102(A7),

. - : . . 14701-14720, 1997.
in the prediction. Amongst the interplanetary variablgsis Delaboudiniere, J.-P., Artzner, G. E., and Brunaud, J., et al.: Ex-

the most important predictor, followed B and ram pres- treme Ultraviolet Imaging telescope for the SoHO mission, Solar
sure. Amongst the solar variabldsg, is the most important Phys., 162, 291-312, 1995.

predictor followed by full halo association, and association Feldstein, Y. I.: Modelling of the magnetic field, Space Sci. Rev.,
of flare/prominence. 59, 83-165, 1992.

Super-intense 4 2 50%
Validation Intense 5 5 100%
Total 9 7 77.7%

3 Results and discussion
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