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Abstract. This paper is a further extension of our latest
observations and modeling by Hayakawa et al. (2005a), in
which we discovered the anomalous behavior of Schumann
resonance observed in Japan, in possible association with the
Chi-chi earthquake in Taiwan. Schumann resonance inten-
sity changes associated with a localized decrease in the lower
ionospheric height over the earthquake epicenter are mod-
eled. The knee model of the vertical conductivity profile of
the ionosphere describes the regular Earth-ionosphere cav-
ity, and the modified knee model is introduced for the distur-
bance. The localized ionosphere modification is of a Gaus-
sian radial dependence; it has a 1-Mm radius, and the de-
crease reaches 20 km in the lower ionosphere height over the
epicenter of the earthquake (Taiwan). The diffraction prob-
lem in the Earth-ionosphere cavity with a localized distur-
bance is resolved by using the Stratton-Chu integral equa-
tion. This solution is constructed for the case of natural res-
onance oscillations driven by independent random sources
distributed worldwide. The data of the Optical Transient De-
tector (OTD) are used to introduce the source distribution.
A pronounced increase in the intensity of the Schumann res-
onance is obtained around the fourth mode frequency (up to
20%) when thunderstorms are concentrated in Central Amer-
ica. The worldwide distribution of lightning strokes blurs
and slightly reduces the effect (15% increase in intensity) for
the observer in Japan and the localized nonuniformity posi-
tioned over Taiwan. A clear qualitative similarity is obtained
in relation to the experimental data, indicating that records
collected in Japan may be explained by the impact of a lo-
calized decrease in the lower ionosphere over the epicenter
of the earthquake. It is admitted that the assumed conductiv-
ity decrease could only be caused by a severe change in the
ionization in the middle atmosphere. It is not in the scope
of this paper to discuss the possible mechanism, but rather
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to show that a closer and quantitative agreement with the ex-
periment yields information about the form and size of the
ionospheric modification and about the distribution of global
thunderstorm activity during measurements.

Keywords. Electromagnetics (Electromagnetic theory;
Scattering and diffraction) – Ionosphere (Ionospheric distur-
bances)

1 Review on anomalous Schumann resonance phenom-
ena observed in Japan, in possible association with the
Chi-chi earthquake in Taiwan

Hayakawa et al. (2005a) have found, for the first time, an
anomalous Schumann resonance effect observed in Japan,
associated with the earthquakes in Taiwan. Here we re-
view the essential findings in this paper. The Schumann
resonance phenomena have been monitored at Nakatsugawa
(near Nagoya) in Japan since the beginning of 1999, and due
to the occurrence of a severe earthquake (so-called Chi-chi
earthquake) on 21 September 1999 in Taiwan we have ex-
amined our Schumann resonance data at Nakatsugawa dur-
ing the entire year of 1999. We have found an anoma-
lous effect in the Schumann resonance, possibly associated
with two large land earthquakes: one is the above men-
tioned Chi-chi earthquake and the other one occurred with
a magnitude exceeding 6.0 on 2 November 1999 (Chia-yi
earthquake). Conspicuous effects are observed for the larger
Chi-chi earthquake, so we concentrate on this event. The
anomaly is characterized mainly by an unusual increase in
amplitude of the fourth Schumann resonance mode and a
significant frequency shift of its peak frequency (∼1.0 Hz)
from the conventional value in theBy magnetic field com-
ponent, which is sensitive to the waves propagating in the
NS meridian plane. Anomalous Schumann resonance sig-
nals appeared from about one week to a few days before the
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Fig. 1. Quiet and disturbed conductivity profiles with a scheme of how the propagation parameters are 

obtained.  
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Fig. 1. Quiet and disturbed conductivity profiles with a scheme of
how the propagation parameters are obtained.

main shock. Secondly, the goniometric estimation of the ar-
rival angle of the anomalous signal coincides with the Tai-
wan azimuth (the unresolved dual direction indicates toward
South America). Also, the pulsed signals, such as the Q-
bursts, were simultaneously observed with the “carrier” fre-
quency around the peak frequency of the fourth Schumann
resonance mode. The anomalies were similar for the second
earthquake, the Chia-yi. Most likely due to a smaller mag-
nitude, the anomaly appeared one day before and lasted one
day after the main shock, with a smaller amplitude enhance-
ment at the fourth Schumann resonance mode than in the case
of the Chi-chi earthquake. Yet, the other characteristics were
nearly the same, including the goniometric direction finding,
frequency shift, etc. Although the emphasis of the present
study is on the experimental aspects, a possible generation
mechanism for this anomaly is discussed in terms of the ELF
radio wave scattered by a conducting disturbance, which is
likely to take place in the middle atmosphere over Taiwan.
Model computations show that the South American thunder-
storms (Amazon basin) play the leading role in maintaining
radio signals, leading to the anomaly in the Schumann reso-
nance. The purpose of this paper is to elaborate on the propa-
gation model in our previous paper (Hayakawa et al., 2005a).

2 Models of regular and disturbed ionosphere and rele-
vant propagation constant

When describing radio wave propagation in a uniform Earth-
ionosphere cavity, we apply the most advanced model: the
“knee” model of the vertical conductivity profile of the atmo-
sphere (Mushtak and Williams, 2002). It is a further devel-
opment of the Greifinger and Greifinger (1978) idea of the
ELF propagation depending on two characteristic altitudes
in the ionosphere: the “electric” and “magnetic” heights. As
was demonstrated by Jones and Knott (1999, 2004), the con-

ductivity at intermediate altitudes (so-called “knee” region)
is also important, and the knee model incorporates the prop-
erties of this region into consideration. One may find the
details in Mushtak and Williams (2002).

We show a vertical conductivity profile in Fig. 1, to outline
how the characteristic heights and ELF propagation param-
eter are introduced. The conductivity is shown in the stan-
dard fashion: the argument, the height over the ground sur-
face, is plotted on the ordinate in km, and the conductivity
is shown along the abscissa on logarithmic scale. When ob-
taining the ELF propagation constant, one operates with two
complex parameters,hE andhM , which are found for a given
frequencyf by using the following equations (Mushtak and
Williams, 2002):

hE (f ) = hkn

+za ln (f/fkn) + 1/2(za − zb) ln
[
1 + (f/fkn)

2
]

+i
[
zaπ/2 − (za − zb) tan−1 (fkn/f )

]
(1)

hM (f ) = h∗
m − zm ln

(
f/f ∗

m

)
− izm (f ) π/2. (2)

Here hkn is the “knee” altitude corresponding to the knee
frequencyfkn. The knee altitude and frequency satisfy the
condition: σkn=2πfknε0, whereε0 is the dielectric constant
of vacuum,ε0=8.859×10−12 F/m. We show this particular
height in Fig. 1 with the asterisks.

The following values were used in our computations:
fkn=10 Hz for regular and disturbed profiles, parameter
hkn=55 km in the regular ionosphere andhkn=35 km in the
disturbed ionosphere. Equations (1) and (2) physically mean
that at the given frequencyf the conductivity and the dis-
placement currents are equal at the “electric” altitudehE .
Parametersza andzb are the local “electric” scale heights of
the exponential conductivity profile below and above thehkn,
respectively:za=2.9 km andzb=8.3 km in our computations.
The “magnetic” scale heightzm is a function of frequency in-
troduced as (Kirillov, 1993):zm=z∗

m+bm (1/f −1/f ∗
m), where

z∗
m=4.0 km, b∗

m=20.0 km andfm=8.0 Hz. The upper refer-
ence altitudeh∗

m=96.5 km was accepted based on the follow-
ing equation (Kirillov, 1993; Kirillov et al., 1997; Mushtak
and Williams, 2002):

ω0
(
h∗

m

)
=

{ √
ωνe

1.78 · k

[
1

ze

+
1

zν

]}
. (3)

Here,k=ω/c is the free space wave number,ω is the wave
angular frequency,ω0 is the electron plasma frequency,νe

is the electron collision frequency,ze and zν are the local
scale heights of the electron density and electron collision
frequency profiles.

We apply in the computations the following model pa-
rameters: in the regular ionospherefkn=10 Hz,hkn=55 km,
za=2.9 kmzb=8.3 km,f ∗

m=8 Hz,h∗
m=96.5 km,z∗

m=4 km, and
hkn=35 km in the disturbed ionosphere. Profiles in Fig. 1
present relevant regular and disturbed profiles. The position
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is shown (black dots) of the characteristic heightshE and
hM at the initial 4-Hz frequency used in the Schumann res-
onance studies. Arrows in Fig. 1 indicate how the character-
istic values are connected, and the asterisks mark the knee
altitudes of regular and disturbed profiles. It is obvious from
the above equations that an increase in the signal frequency
f will shift the lower altitudehE upward, while the charac-
teristic altitudehM goes down with the frequency (compare
with Nickolaenko and Hayakawa, 2002).

A frequency dependent ELF radio wave propagation pa-
rameterν(f ) is obtained from the following expression:

ν (ν + 1) =
hM

hE

(ka)2 , (4)

wherea is the Earth’s radius in km. A propagation constant
ν(f ) is used in computations of the field, see below.

We use the above listed parameters in the model when
computing the resonance signals for the Nakatsugawa obser-
vatory (35.45◦ N and 137.3◦ E). Equations (1–4) are similar
to the formulas applied by Greifinger and Greifinger (1978),
Nickolaenko and Rabinowicz (1982, 1987), Sentman (1996),
Fullekrug (2000), Nickolaenko and Hayakawa (2002), ex-
cept for a slight distinction in the procedure of obtaining
the characteristic heights. However, the authors of the knee
model (Mushtak and Williams, 2002) insist that such details
result in the most realistic predictions for the Schumann res-
onance curves, at least for the case of the uniform distribu-
tion of lightning activity over the globe. Therefore, we have
chosen this, the most recent and advanced model, for our
computations.

We analyze the impact of an ionospheric disturbance asso-
ciated with pre-seismic and seismic activity; it is introduced
in the simplest possible way, as in Hayakawa et al. (2005a).
We suppose that modifications are driven by a “terrestrial”
process and affect only the lowest part of the conductivity
profile: they do not penetrate into the lower part of the region
E and higher layers of the ionosphere. Thus, the lower por-
tion of the regular conductivity profile moves downward as a
whole by 20 km, stating from the heights below 80 km. The
resulting profile is marked “Disturbed” in Fig. 1. The model
reduces the real part of the “electric” height, as well as the
“knee-height” by 20 km and leaves the rest of the model pa-
rameters unchanged. We are fully aware that this is a very
severe modification of the middle atmospheric conductiv-
ity earthquake-related process could cause. At present, we
do not know what kind of earthquake-related process could
cause such a severe modification. A discussion of particular
mechanisms and the nature of such a modification is beyond
the scope of this paper. It is our goal to show that the ob-
served changes in the Schumann resonance intensities many
be explained on the basis of such an assumed profile. Diffrac-
tion of the ELF radio wave at such a disturbance is able to
provide modifications similar to those observed experimen-
tally.

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Geometry of the wave scattering from a localized disturbance. 
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Fig. 2. Geometry of the wave scattering from a localized distur-
bance.

3 Impact of a localized disturbance on the field

Consider the scattering of ELF radio waves by a localized
ionospheric disturbance. We use the known solution of the
problem, see Nickolaenko (1984, 1994) and Nickolaenko
and Hayakawa (2002). The vertical electric field component
is treated, since its orientation is independent of the mutual
position of the source, observer, and the disturbance. The
field at an observatory is the sum of the directE1 and scat-
teredE2 waves (see Fig. 2):

E = E1 + E2. (5)

The direct (primary) wave propagates from the source to the
observatory through the uniform cavity, so that it is found
from the following equation:

E1(ω) =
Ids(ω)

4 hEa2ε0

iν (ν + 1)

ω

Pν [cos(π − θH )]

sinπν
. (6)

Here Ids(ω) is the current moment of the source,ν is the
propagation constant given by Eq. (4) for the undisturbed
ionosphere,Pν (x) is the Legendre function, andθH is the
source-observer angular distance.

The normalized field disturbance is found from:

B =
E2

E1
=

∫
sinθdθdϕQiδC

2
ν

4 sinπνPν [cos(π − θH )]
, (7)

where

Qi = ν (ν + 1) Pν [cos(π − γi)] Pν [cos(π − γ )]

−MP 1
ν [cos(π − γi)] P 1

ν [cos(π − γ )] , (8)

where P 1
ν (cosθ) is the associated Legendre function,γ

is the observer-disturbance angular distance,γi is the
distance from the disturbance to the particular source
(i=1, 2, 3). The geometrical parameterM connects
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Fig. 3. Distance dependence of the amplitude of vertical electric field component at the frequency 

of 26Hz. Fig. 4. Scheme of ELF radio propagation in the Earth- ionosphere cavity with a localized 
disturbance placed over the earthquake epicenter.  

 

0 2 4 6 8 10 12 14 16 18 20

Source Distance  Mm

0

2

4

6

8

10

12

14
|E  (D)|r

 

Fig. 3. Distance dependence of the amplitude of the vertical electric
field component at the frequency of 26 Hz.

the propagation paths, and it is found from the rela-
tion M=

∂γi

∂γ
=

sinθi cosγi ·cosαi−sinγi cosθi

sinγ
(Nickolaenko and

Hayakawa, 2002).
We suppose that seismic activity locally modifies the lower

ionosphere height and thus changes the propagation constant
under the disturbance (e.g. Hayakawa et al., 1996; Hayakawa
and Molchanov, 2002). The modification is introduced via a
complex cosine function, which is found in the regular case
from the following relation:

C2
ν = 1 −

ν (ν + 1)

(ka)2
. (9)

The variationδC2
ν is a measure of the deviation of the dis-

turbedνD(f ) from the regularν(f ) value:

δC2
ν = C2

ν |Disturbed − C2
ν

∣∣Regular

=
νD (νD + 1) − ν (ν + 1)

(ka)2
. (10)

Both the regularν(f ) and the disturbedνD(f ) propagation
constants are computed from Eq. (4) with characteristic elec-
tric and magnetic heights relevant to undisturbed (55 km) and
reduced (35 km) knee altitudes. ParameterδC2

ν is assumed to
have a symmetric “Gaussian” radial dependence:

δC2
ν = 1C2

ν exp

(
cosβ − 1

d2

)
, (11)

where1C2
ν is the maximum and central disturbance,β is the

angular distance form the center of ionospheric modification
to the point of integration in Eq. (7), andd is the character-
istic size of the modification measured in radians. We apply
in our computationsd=π /20, which is equivalent to 1 Mm
(1 Mm=1000 km).

One obtains the following formula for the normalized field
disturbance after integrating Eq. (7) in the case of a compact
nonuniformity:

B =
E2

E1
=

πd2

2

1C2
ν · Qi

sin(πν) Pν [cos(π − θH )]
. (12)

In what follows, we show that a localized disturbance over
Taiwan provides a noticeable effect on the field: the impact
has much in common with the experimental results. Some
additional factors must also be addressed.

4 Position of sources and interference with scattered
signals

Let us discuss the general role of the geometry among the
source, observer, and the disturbance, including the possible
influence of the disturbance on the scattered field amplitude.
Initially, we suppose that global thunderstorms are concen-
trated at point source places in Africa, America, or in Asia.
The assumption allows us to separately estimate their rela-
tive contributions to the spectra in the regular and disturbed
Earth-ionosphere cavities.

There is an obvious reason why the South American thun-
derstorms must play an outstanding role in the Schumann
resonance observations performed in Japan; it was addressed
in detail in the Hayakawa et al. (2005a) paper: the lightning
discharges are found close to the antipode of the observa-
tory. We show in Fig. 3 the distance dependence of the am-
plitude of the vertical electric field at the 26-Hz frequency
(the fourth SR mode). The source-observer distance is plot-
ted on an abscissa in Mm and the field amplitude in arbitrary
units is shown on the ordinate. A noticeable increase in the
field amplitude is observed when the source approaches the
antipode of the observatory. Since the geographical coordi-
nates of the Nakatsugawa field site are 35.4◦ N, 137.5◦ E, its
antipode (35.4◦ S, 42.5◦ W) is found close to South America.
Keeping in mind the width of the antipode maximum, we
must expect a prominent contribution from the South Amer-
ican thunderstorms to the Schumann resonance records col-
lected in Japan.

The great amplitude of the direct radio wave suggests that
the amplitude of the wave scattered by a nonuniformity is
also great. The interference pattern of direct and reflected
waves depends on their mutual phase shift; the latter varies
when we alter the positioning of the paths. To illustrate
this property, consider a point source located at: 10◦ N and
105◦ E – Asia, 0◦ N and 25◦ E – Africa, and 10◦ N and 60◦ W
– America. Figure 4 illustrates the geometry of the rel-
evant paths, in which the observer-disturbance distance is
2.4 Mm. Particular propagation distances of direct waves are
equal to 4.3, 12.0, and 14.6 Mm for Asia, Africa, and Amer-
ica, correspondingly. Relevant distances from the source
to disturbance are 2.4, 10.7, and 16.8 Mm. The path pro-
jection parametersMi=∂γi /∂γ are equal to 0.99, 0.68, and

Ann. Geophys., 24, 567–575, 2006 www.ann-geophys.net/24/567/2006/
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Fig. 4 Scheme of ELF radio propagation in the Earth-ionosphere cavity with a localized disturbance placed 

over the earthquake epicenter. 
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Fig. 4. Scheme of ELF radio propagation in the Earth-ionosphere
cavity with a localized disturbance placed over the earthquake epi-
center.

−0.96. Hence, the position of the American source cor-
responds to the backscatter of the radio wave from the ir-
regularity, and the terms are summed in Eq. (8). As a re-
sult, theQi(ν) amplitude increases, and reflections become
more pronounced. An important role of wave backscatter
was described by Nickolaenko (1984, 1994), Nickolaenko
and Hayakawa (2002) and Hayakawa et al. (2005a). Thus,
the role of a localized nonuniformity is enhanced when the
source is found in America, owing to an “optimal” negative
and close-to-unity value of the parameterMi . Physically, the
effect is conditioned by the “co-linearity” of the propagation
paths to the observer and the disturbance, as seen in Fig. 4.

Geometry considerations suggest that American thunder-
storms play a decisive role when treating the ionospheric
irregularity over Taiwan. It is easy to evaluate the fre-
quency where the interference of direct and scattered waves
reaches its maximum. It occurs when the direct and reflected
paths deviate by a quarter of the wavelength. The American
source (see Fig. 4) corresponds to the approximate equality
λ/4=2.4 Mm, so thatλ=9.6 Mm. Since the wavelength of the
basic Schumann resonance mode is equal to the Earth’s cir-
cumference (40 Mm), the above condition corresponds to the
fourth Schumann resonance mode. Thus, we may expect that
a signal arriving from American thunderstorms causes pro-
nounced interference around the frequency of 26 Hz. Similar
considerations show that the combination of the direct and
scattered signals from compact Asian or African sources in-
creases the field significantly at frequencies positioned far
above the Schumann resonance.

We plot in Fig. 5 the results of the computations. The left
frames depict the power spectra at the Nakatsugawa observa-
tory. Black curves refer to the regular waveguide. Spectra are
shown by the curves with black circles in the disturbed cav-

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5. Model Schumann resonance spectra and field disturbance when regular and disturbed Earth – 

ionosphere cavity are excited by a point lightning source in Asia (10°N, 105°E), Africa (0°N, 25°E), 
or America (10°N, 60°W). 

 

5 8 11 14 17 20 23 26 29 32 35 38
Frequency  Hz

0
200
400
600
800

0

200

400

600

Po
w

er
 S

pe
ct

ra
  a

.u
.

0
200
400
600
800

1000
1200

5 8 11 14 17 20 23 26 29 32 35 38
Frequency  Hz

70

80

90

100

110

120

130

140

150

160

170

N
or

m
al

iz
ed

 D
is

tu
rb

an
ce

  %

Disturbed

Regular
Africa

America

Asia

Asia

America

Africa

 

Fig. 5. Model Schumann resonance spectra and field disturbance
when the regular and disturbed Earth-ionosphere cavities are ex-
cited by a point lightning source in Asia (10◦ N, 105◦ E), Africa
(0◦ N, 25◦ E), or America (10◦ N, 60◦ W).

ity. The lower left plot illustrates that the disturbance at Tai-
wan provides a distinct increase in the Schumann resonance
signal around the fourth and fifth modes when the source is
in America.

The right frame of Fig. 5 depicts the frequency variation
of the normalized disturbance defined by Eq. (12). It shows
how strong the relative amplitude modifications might be in
comparison with the regular cavity. The field enhancement
may reach 150% in our model. However, such great effects
occur in the vicinity of 14–17 and 32–40 Hz, where regular
amplitudes are small, owing to the source distances rather
than to large reflections. Moderate deviations from the regu-
lar case in these frequency bands are seen in the left frames
of the figure.

It is clear that the model we use contains the desired prop-
erty, and it is able to explain the experimental data even when
idealistic point source models are applied. The real Schu-
mann resonance signal is driven by many lightning strokes
occurring all over the globe at a rate of 100 events per second.
Thunderstorm activity moves around the planet during the
day, causing variations in the source-observer-disturbance
geometry. The level of thunderstorm activity also varies in
time. Therefore, it is desirable to include all of these fac-
tors into the model by using the time dependent global dis-
tribution of lightning strokes. We exploit here the recently
acquired space-borne optical observations by OTD.

5 Model of the worldwide distribution of thunderstorm
activity and its daily variations

When computing expected power spectra, we apply the Op-
tical Transient Detector (OTD) data presenting the dynam-
ics of lightning strokes worldwide (Christian et al., 2003;
Hayakawa et al., 2005b). The data set contains 24 maps

www.ann-geophys.net/24/567/2006/ Ann. Geophys., 24, 567–575, 2006



572 A. P. Nickolaenko et al.: Model modifications in Schumann resonance intensity

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. Regular and disturbed fields at the Nakatsugawa observatory on particular times of the day. 
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Fig. 6. Regular and disturbed fields at the Nakatsugawa observatory
on particular times of the day.

of spatial distribution of lightning strokes over the globe.
Each map corresponds to a particular hour UT. The flash rate
(in strokes per square km) is given in the cells of 2.5×2.5◦

grid. The flash rate was converted into the number of flashes
within individual cells, and the cells size was extended to a
10×10◦ grid. Such an enlargement is insignificant for the ac-
curacy of the Schumann resonance computations, as the cell
remains much smaller than the wavelength; simultaneously,
the number of elementary sources is substantially reduced,
and the computations are accelerated.

The cell centers have coordinates varying along the lon-
gitude: −175◦, −165◦, . . . , +175◦ (from west to east), and
along the latitude:−85◦, −75◦, . . . , +85◦ (from south to
north). Computations are organized in the following way.
We fix the UT hour and pick the particular map of the stroke
distribution. In computations, every cell is taken, and the dis-
tanceθH is computed from its center to the observer and to
the center of ionospheric disturbanceγi , involved in Eq. (8).
All necessary parameters of propagation paths are also com-
puted, for instance, the current value is found for the deriva-
tive parameterMi .

6 Power spectra expected in uniform and nonuniform
cavities with lightning sources distributed worldwide

Afterwards, we compute the direct wave at the given fre-
quency from Eq. (6). The waveE1 travels from the ele-
mentary source of a unit current momentIds(ω)=1 to the
observer in the uniform Earth-ionosphere cavity. In paral-
lel, the normalized disturbanceB is computed from Eq. (12).
The disturbed fieldED, i.e. the field in the presence of the
nonuniformity is found by

ED = E1 (1 + B)

=
iν (ν + 1)

4hEa2ε0ω

Pν [cos(π − θH )]

sinπν
(1 + B) . (13)

The power spectrum in the uniform cavityP U
i is associated

with the sources within the given cell; it is directly propor-
tional to the number of strokesNi in this cell:

P U
i = Ni

∣∣∣∣ iν (ν + 1)

4hEa2ε0ω

Pν [cos(π − θH )]

sinπν

∣∣∣∣2 . (14)

The same is valid for the nonuniform cavity:

P D
i = P U

i · |1 + B|
2 . (15)

The complete power spectra are computed in the regular and
disturbed cavities by summing up the contributions from sep-
arate cells:

PU (f, UT ) =

∑
i

P U
i (16)

and

PD (f, UT ) =

∑
i

P D
i . (17)

The above computation procedure suggests that the lightning
stroke occurrence is subject to the Poisson law. Therefore,
mutual time delay of individual discharges has an exponen-
tial distribution (the Ehrlang law), so that no pulse interfer-
ence takes place in the frequency domain: only the energies
of elementary excitations are summed in the power spectrum
(Nickolaenko and Hayakawa, 2002). As a result, we obtain
the current power density at a given frequencyf in both uni-
form (Eq. 16) and disturbed (Eq. 17) cavities. Time (UT) is
a parameter. By varying frequency and repeating computa-
tions, we obtain the expected power spectra as functions of
frequency for the fixed time.

7 Results and discussion

We present the results of computations in Fig. 6, where four
pairs of spectra are plotted, each corresponding to a char-
acteristic time of a day: UT=03:00, 09:00, 15:00, or 21:00 h.
The three latter times correspond to a maximum in the global
thunderstorm activity in Asia, Africa, and America, while
UT=03:00 h corresponds to the diurnal minimum in the ac-
tivity. The frequency from 5 to 38 Hz is shown along the
abscissa in each frame, and the power density is shown on
the ordinate in arbitrary units. Black curves correspond to
the spectra in the uniform Earth-ionosphere cavity. Curves
with dots show spectra when the disturbance is present over
Taiwan. Computations predict that the localized depression
of the lower ionosphere tends to increase the amplitude of the
Schumann resonance signal, especially at the fourth and fifth
modes, provided that the observer is placed in Japan. The
intensity of resonance oscillations and spectral pattern vary
during the day, which is caused by a change in the level and
position of the global lightning activity.

Spectra in Fig. 6 must be regarded as a feasible picture
during the earthquake, as we do not know exactly which
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Fig. 7. Normalized effect of intense localized disturbance on the observed field power.  
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Fig. 7. Normalized effect of the intense localized disturbance on the
observed field power.

space-time distribution of thunderstorms was pertinent to a
particular day and at the specific moment of observations,
and the spectral pattern and its modifications depend on the
source position relative to the disturbance and observatory.
The character of modifications becomes more apparent when
we use the normalized modification of the power spectrum
PD(f )
PU (f )

for the fixed times UT shown in Fig. 7.

The ratio of power in the disturbed cavity to that of the
regular duct is shown in Fig. 7 for the same set of time mo-
ments. Here, the ordinate depicts the ratio, and the signal
frequency is shown on the horizontal axis. As we expected
from elementary considerations, a substantial effect (reach-
ing 15%) is observed around the fourth Schumann resonance
mode, conditioned by mutual positioning of the field site
and the disturbance. The worldwide distribution of light-
ning strokes pertinent to any hour of a day blurs the pro-
nounced resonance enhancement exclusively over the fourth
Schumann resonance mode, say, a noticeable increase is also
found around the fifth mode, compare with Fig 5. A “reso-
nance” enhancement is observed when we place the strokes
into a relatively small isolated zone, so that relevant geome-
try conditions are satisfied. Spacious allocation of thunder-
storms causes an increase in the field intensity in a wider fre-
quency band in comparison with the case of a single compact
source. One might expect “up and down” oscillations around
the undisturbed value of 1, but computations show that this

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8. Dynamic spectra in the regular knee model and the disturbance of 1 Mm radius placed over Taiwan 

The left panel refers to the quiet cavity, while the right, disturbed cavity.  
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Fig. 8. Dynamic spectra in the regular knee model and the distur-
bance of a 1-Mm radius placed over Taiwan. The left panel refers
to the quiet cavity, while the right refers to the disturbed cavity.

is not the case for the globally distributed sources. Figures 6
and 7 demonstrate that the general effect of a localized irreg-
ularity depends on the time of observations, as it varies with
the motion of the global lightning activity.

After computing the regular and disturbed spectra for ev-
ery hour of the day, we combine them into the dynamic spec-
tra of Fig. 8. Two frames of this figure present diurnal varia-
tions of the field power in the uniform cavity (the left frame)
and in the cavity with a nonuniformity (the right plot). An
increase in the intensity is apparent at higher Schumann res-
onance modes. Spectral modification is the most pronounced
in the morning hours before the UT noon when Asian thun-
derstorms provide the major contribution to the electromag-
netic signal. Simultaneously, computations show that our
model suggests a moderate enhancement, lower than 20%. A
closer correspondence between the model data and modifica-
tions observed experimentally might be obtained with greater
modifications of the conductivity profile and specific source
distribution.

8 Conclusion

This paper is a further extension our latest paper by
Hayakawa et al. (2005a). The essential improvements of this
paper are (1) the use of a more quantitative knee model for
the vertical conductivity profile, and (2) taking the dynamics
of global lightning activity into consideration.

To model the impact of the seismic process on ELF radio
propagation, we applied the solution of the diffraction prob-
lem in the Earth-ionosphere cavity with the localized iono-
sphere disturbance. The solution of the Schumann resonance
problem in the uniform cavity was based on the knee model
of the lower ionosphere. A severe localized modification of
the ionosphere was introduced as a 20 km depression of the
middle atmospheric conductivity profile. The disturbance
was centered over the Taiwan earthquake. We assumed that
the disturbance had a Gaussian radial dependence of 1 Mm.
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Relevant alterations in the ELF propagation constant were
obtained at different frequencies and used in the solution of
diffraction problem.

Wave scattering from the ionosphere irregularity was
treated with the help of an analytic solution of the Stratton-
Chu integral equation in the Born approximation. The effect
of a disturbance is sensitive to the mutual position of the ob-
server, source, and non-uniformity. The greatest impact of
a disturbance over Taiwan is observed in Japan around the
fourth Schumann resonance mode when sources of electro-
magnetic waves were placed in Central America.

Since the global lightning activity is distributed over the
globe, and it moves around the planet in time, we had to ac-
count for these features. A formal solution was constructed
for the intensity of the Schumann resonance field in the case
of random independent lightning strokes occurring world-
wide. Numerical simulations of ELF experimental data ex-
ploited the source distributions acquired by the Optical Tran-
sient Detector (OTD). We used 24 maps of global lightning
activity, each corresponding to a particular hour UT.

Computations showed a pronounced increase in the in-
tensity of the Schumann resonance oscillations around the
fourth SR mode (up to 20%) when a point source was placed
in Central America. The globally distributed lightning ac-
tivity blurs the effect, reduces its amplitude to 15%, and in-
creases the third mode oscillations. Our treatment showed
that experimental observations of the Schumann resonance in
Japan qualitatively agree with the idea of diffraction and scat-
tering of radio waves by a localized depression of the lower
ionosphere over the epicenter of the Taiwan earthquake. Ad-
ditional information is necessary for obtaining a quantita-
tive reciprocity of the measured and model data, information
about the particular form and size of the ionosphere modifi-
cation and especially concerning the space-time distribution
of the global thunderstorm activity during measurements.

The major characteristics of the present work have sup-
ported our previous conclusion that numerous observations
of distortions in the Schumann resonance recorded in Japan
prior and during the earthquakes in Taiwan may be caused
by the irregularities in the lower ionosphere located over the
shock epicenter.
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