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Abstract. Recent spectroscopic observations of Jupiter’s
“main oval” auroras indicate that the primary auroral elec-
tron beam is routinely accelerated to energies of∼100 keV,
and sometimes to several hundred keV, thus approaching the
relativistic regime. This suggests the need to re-examine the
classic non-relativistic theory of auroral electron acceleration
by field-aligned electric fields first derived by Knight (1973),
and to extend it to cover relativistic situations. In this paper
we examine this problem for the case in which the source
population is an isotropic Maxwellian, as also assumed by
Knight, and derive exact analytic expressions for the field-
aligned current density (number flux) and kinetic energy flux
of the accelerated population, for arbitrary initial electron
temperature, acceleration potential, and field strength be-
neath the acceleration region. We examine the limiting be-
haviours of these expressions, their regimes of validity, and
their implications for auroral acceleration in planetary mag-
netospheres (and like astrophysical systems). In particular,
we show that for relativistic accelerating potentials, the cur-
rent density increases as the square of the minimum potential,
rather than linearly as in the non-relativistic regime, while the
kinetic energy flux then increases as the cube of the potential,
rather than as the square.

Keywords. Ionosphere (Particle acceleration) – Magne-
tospheric physics (Auroral phenomena; Magnetosphere-
ionosphere interactions; Current systems)

1 Introduction

The exchange of momentum between a magnetised conduct-
ing body and its outer plasma envelope via the magnetic
field requires the establishment of large-scale electric cur-
rent systems flowing between them. Stresses are exerted
by the cross-field currents flowing in the central body and
in the magnetospheric plasma, while the current circuit is
closed by field-aligned currents flowing between these re-
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gions (see e.g. the review by Cowley, 2000, and references
therein). The upward-directed field-aligned currents flowing
away from the body are generally dominantly carried by pre-
cipitating hot magnetospheric electrons, rather than by up-
flowing cold ionospheric ions. However, for a near-isotropic
magnetospheric electron population, the current density that
can be carried to the ionosphere by these particles is lim-
ited tojmax≈eN vth, wheree is the electron charge,N is the
electron number density, constant along a field line for an
isotropic population, andvth is the electron thermal speed.
In the terrestrial magnetosphere, for example, the limiting
current density is∼0.1µA m−2 for a typical outer plasma
sheet electron distribution with a density of∼0.1 cm−3 and
a temperature of∼1 keV, whilst the current densities implied
by the magnetic field perturbations observed in the auroral
ionosphere are often more than an order of magnitude larger
(e.g. Paschmann et al., 2002, and references therein). When
the required current density exceeds the above maximum, an
electrostatic potential must develop along the magnetic field
lines which accelerates the magnetospheric electrons towards
the ionosphere, thereby increasing the current.

The relationship that exists between the field-aligned cur-
rent carried by precipitating electrons and the field-aligned
potential was first studied theoretically by Knight (1973),
who showed that under certain simplifying assumptions the
minimum electrostatic potential energy required to drive a
current which is a factorF times the above maximum,
is roughly a factorF times the electron thermal energy.
Knight (1973) thus found an approximately linear depen-
dence of the current density on the accelerating potential.
Subsequently, Lundin and Sandahl (1978) also showed that
the precipitating energy flux of the accelerated electron pop-
ulation is then amplified by roughly a factor ofF 2 com-
pared with the unaccelerated population, thus leading to ma-
jor enhancements in electron energy input to the ionosphere,
and consequently also to auroral output. Knight’s (1973)
theory has subsequently been extensively applied to ter-
restrial studies of “inverted-V” electron precipitation and
substorm-related auroras (e.g. Antonova and Tverskoy, 1975;
Lyons, 1980, 1981; Bosqued et al., 1986; Shiokawa et
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al., 1990; Lu et al., 1991; Olsson et al., 1996, 1998;
Schriver et al., 2003), as well as to auroras in the day-
side cusp (Korth et al., 2004), and in the polar cap (Carl-
son and Cowley, 2005). Field-aligned potentials of∼1–
10 kV are typically required in upward-directed auroral cur-
rent regions in the terrestrial case, whose effects are rou-
tinely observed in the particle distributions on auroral field
lines (e.g. Paschmann et al., 2002). Knight’s (1973) theo-
retical formulation has also subsequently been extended be-
yond the isotropic Maxwellian velocity distributions he con-
sidered, to also include bi-Maxwellian and kappa distribu-
tions (Fridman and Lemaire, 1980; Pierrard, 1996; Janhunen
and Olsson, 1998; Dors and Kletzing, 1999). However, the
results obtained do not differ qualitatively from those found
previously by Knight (1973).

The most recent application of Knight’s (1973) theory
has been to the current systems and auroras of the plan-
ets Jupiter and Saturn (Cowley and Bunce, 2001; Cowley et
al., 2004, 2005; Nichols and Cowley, 2004). In the case of
Jupiter’s magnetosphere (but not Saturn’s), the principal cur-
rent system is that associated with the transfer of planetary
angular momentum to the magnetospheric plasma, rather
than with the solar wind interaction as at Earth. This cur-
rent system is associated with a narrow and intense ring of
upward-directed field-aligned current surrounding the mag-
netic pole, whose current density at ionospheric heights,
∼0.1 to∼0.5µA m−2, considerably exceeds the maximum
that can be carried by unaccelerated magnetospheric elec-
trons,∼0.01µA m−2. Consequently, the electrons must be
strongly accelerated along the field lines from a few keV to
energies of∼100 keV and above, as indicated both by theory
(e.g. Cowley et al., 2003), and by observations of the spectra
of the resulting intense “main oval” UV auroras (Gustin et
al., 2004). Indeed, on some occasions, the accelerated elec-
tron energies are deduced by these means to reach to at least
a few hundred keV, thus approaching the relativistic regime.

These observations suggest the need to extend
Knight’s (1973) theory to encompass relativistic situa-
tions, in which the plasma electrons are either very energetic
initially, or become so due to the presence of field-aligned
potentials which are comparable with or exceed the electron
rest energy (∼511 keV). Such field-aligned potentials are not
implausible in Jupiter’s magnetosphere, for example, since
the total cross-field potential across the outer and middle
magnetosphere region is of order∼10 MV (e.g. Nichols
and Cowley, 2005; Cowley et al., 2005). In addition, a
number of applications to astrophysical systems have also
been proposed which clearly require a relativistic treatment
(e.g. Ergun et al., 2000; Haerendel, 2001; Begelman et
al., 2005). In this paper we thus present a relativistic for-
mulation of Knight’s (1973) kinetic theory, and derive exact
analytic expressions for the field-aligned current density
(number flux) and kinetic energy flux of the accelerated
particles, for arbitrary initial temperature, accelerating
potential, and magnetic field strength beneath the voltage
drop.

2 Theory

We consider a situation in which magnetospheric electrons
move along magnetic field lines toward a magnetised planet,
such that the field strength at the particle is steadily increas-
ing. At some point where the field strength isBo the electrons
encounter a region of field-aligned electric field which is as-
sumed compact along the field lines, such that they are accel-
erated along the field towards the planet. Beneath the voltage
drop the field strength continues to grow such that the ac-
celerated electron population becomes modified by magnetic
mirroring. Here we wish to calculate the current density and
kinetic energy flux of the accelerated electrons, in terms of
the unaccelerated electron parameters, for arbitrary acceler-
ating potential and magnetic field strength relative toBo. The
calculation consists of three steps. We first consider the mo-
tion of single particles in the above fields, to determine the
relationship between the momentum components before and
after acceleration. Second, we use this information to de-
termine the properties of the accelerated particle distribution
function in terms of the unaccelerated distribution, using Li-
ouville’s theorem. Third, we then obtain the current density
and kinetic energy flux by integration of the appropriate mo-
ments over the distribution function. Here we now consider
each of these steps in turn.

2.1 Single particle motion

The motion of particles in the above fields is governed by
conservation of two invariant quantities. The first is the total
energyE+qφ, whereφ is the electrostatic potential,q is the
particle charge, andE is the relativistic energy of the particle
given by

E =

√
p2c2 + m2c4 , (1)

wherep is the magnitude of the relativistic momentum of the
particle,m is its rest mass, andc the speed of light. The to-
tal energy is an exact invariant of the motion for static fields,
as considered here, as is readily shown by direct integration
of the relativistic equation of motion (e.g. Clemmow and
Dougherty, 1969). The second is the magnetic moment in-
variant associated with the gyration of particles around the
field lines, which can be written asp2

⊥

/
B, wherep⊥ is the

momentum component perpendicular to the magnetic field,
andB is the magnetic field strength. This is an adiabatic in-
variant which is preserved provided that the scale length of
field variation is large compared with the particle gyroradius,
as will be assumed here. We also define the pitch angle of
the particleα to be the angle between the momentum vector
and the magnetic field, such that the perpendicular compo-
nent of the momentum can be written asp⊥=p sinα, while
the parallel component isp||=p cosα.

Let us consider an electron whose energy and pitch an-
gle just before impinging on the acceleration region at field
strengthBo areEo (corresponding to momentumpo through
Eq. 1) andαo, respectively. After passing through the accel-
eration region and reaching a point on the field line where
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the field strength isB, conservation of total energy and the
first adiabatic invariant then show that the particle energyE
(corresponding to momentump) and pitch angleα are deter-
mined by

E = Eo + e8 (2a)

or equivalently√
p2c2 + m2c4 =

√
p2

oc
2 + m2c4 + e8 , (2b)

and

p2 sin2 α

B
=

p2
o sin2 αo

Bo

, (3)

where8 is the total potential drop along the field lines, ande

is the electron charge (taken to be a positive quantity). Equa-
tion (2) determines the relationship between the energiesEo

and E above and below the voltage drop (or equivalently
between the magnitudes of the momentapo andp), while
Eq. (3) then determines the relationship between the pitch an-
gles. Since all the distribution functions we consider are as-
sumed gyrotropic around the field direction, these equations
are then sufficient to map the electron distribution function
from above to below the acceleration region.

2.2 Mapping the distribution function

In general the particle distribution functionf is defined
such that the number of particles in phase space volume
d3r d3p at position vectorr and momentum vectorp at
time t is f (r, p, t) d3r d3p. The distribution function is
then mapped in phase space using Liouville’s theorem, which
states thatf is constant on a particle trajectory (e.g. Clem-
mow and Dougherty, 1969). Here we consider a steady state
in which the only spatial variation is along the magnetic field
lines. The accelerated distribution functionf and the unac-
celerated distribution functionfo are then simply related by

f (p, α) = fo (po, αo) , (4a)

wherep andα are related topo andαo by Eqs. (2b) and (3).
Equation (4a) thus directly determines the accelerated distri-
bution function below the voltage drop in terms of the distri-
bution function immediately above it. Here for simplicity we
only consider unaccelerated distributions that are isotropic,
and hence independent of position along the field line above
the voltage drop, in which case we have simply

f (p) = fo (po) or equivalently f (E) = fo (Eo) , (4b)

wherep andpo, or equivalentlyE andEo, are related through
Eq. (2).

Although any isotropic distribution can be considered in
principle, here we also assume for simplicity that the unac-
celerated distribution is Maxwellian in form, thus following
the formulation employed originally by Knight (1973), and
used in most of the applications cited in the introduction. We
thus take the unaccelerated population to be given by

fo (Eo) = fo exp

(
−

(
Eo − mc2

)
kT

)
, (5)

wherefo is a constant to be defined (in the following section)
in terms of the unaccelerated electron density,T is the elec-
tron temperature, andk is Boltzmann’s constant. We note
thatWo=Eo−mc2 is the initial particle kinetic energy. From
Eqs. (2a) and (4b), the accelerated distribution function is
then given simply by

f (E) = fo exp

(
−

(
E − e8 − mc2

)
kT

)
. (6)

Care must be exercised in interpreting these expressions,
however, since in general not all of the momentum space
of the accelerated distribution is populated by particles from
the unaccelerated distribution to give the values indicated in
Eqs. (4) or (6). The populated volume corresponds only to
those particles which move along the field line in the ap-
propriate direction in the region above the voltage drop to
impinge on the acceleration region from above, the limiting
case being that of particles which are locally mirroring at 90◦

pitch angle at field strengthBo. Settingαo=90◦ in Eq. (3)
and eliminatingpo between Eqs. (2) and (3) then yields the
following quadratic expression for the limiting energyEL (α)

below which the accelerated distribution is unpopulated at
pitch angleα

E2
L (α) −

2e8(
1 −

Bo

B
sin2 α

)EL (α)

− m2c4
+

(e8)2(
1 −

Bo

B
sin2 α

) = 0 . (7a)

The physically acceptable root of this expression which re-
duces toEL (α) →mc2 for all α whene8→0 (i.e. the limit-
ing kinetic energyWL (α)=EL (α) −mc2 goes to zero at all
pitch angles in this limit as required) is

EL (α) =
e8(

1−
Bo

B
sin2 α

)+

√√√√√m2c4+

Bo

B
sin2 α (e8)2(

1−
Bo

B
sin2 α

)2
. (7b)

The limiting energy for particles moving exactly along the
field direction withα=0 is thusEL (0) =e8+mc2 for all B,
as expected (i.e. the limiting kinetic energy along the field
direction is just the electrostatic potential energye8). Lim-
iting energyEL (α) (and kinetic energyWL (α)) then in gen-
eral increase monotonically with the pitch angle for givenB,
reaching the value

EL

(π

2

)
=

e8(
1 −

Bo

B

) +

√√√√√m2c4 +

Bo

B
(e8)2(

1 −
Bo

B

)2
, (7c)

at 90◦. However, in the limit thatB becomes very large
compared withBo, we then findEL (α) →e8+mc2 for all
α (i.e. WL (α) →e8), due to the magnetic mirroring of the
accelerated particles beneath the voltage drop. The “hole” in
the distribution function at low energies then becomes spher-
ical in momentum space in this limit.
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Fig. 1. Cuts through momentum space in the
(
p⊥, p||

)
plane, showing contours of constant distribution function (solid and dotted circles) for

an initially Maxwellian distribution with non-relativistic temperature such that
(
mc2

/
kT
)

=20 which is accelerated through field-aligned

potentials of
(
e8
/

mc2
)

=0.1, 1, and 10 in panels(a), (b), and(c), respectively. The solid circle in each plot represents the inner limit of the

distribution (for
(
B
/
Bo

)
→∞), while the inner and outer dotted circles show the surfaces where the distribution function falls to factors of

0.1 and 0.01 of the value on the solid circle, respectively (given by Eq. 6 combined with Eq. 1). These dotted contours can only just be seen
outside the solid circle in case (c). The dot-dashed and dashed lines then show where these distributions are truncated in momentum space for
finite

(
B
/
Bo

)
beneath the voltage drop, given by Eq. (7b), the full surfaces being obtained by revolution about thep|| axis. The dot-dashed

line in each plot corresponds to
(
B
/
Bo

)
=1 directly beneath the voltage drop, while the two dashed lines correspond to

(
B
/
Bo

)
=2 and 5.

The solid line shows the limiting surface for
(
B
/
Bo

)
→∞, such that the accelerated distribution then becomes fully isotropic.

We note that the non-relativistic limit of Eq. (7b), in which(
e8
/
mc2

)
�1 such that the square root on the RHS reduces

to mc2, is then given by

WL (α) = EL (α) − mc2
≈

e8(
1 −

Bo

B
sin2 α

) , (8)

such that the “hole” in the distribution function is then gen-
erally an ellipsoid of revolution about the field direction, re-
ducing to a sphere in the limit

(
B
/
Bo

)
→∞ as above. In the

opposite limit where
(
B
/
Bo

)
→1, directly beneath the accel-

eration region, Eq. (8) becomesWL (α) cos2 α≈e8, i.e. the
surface of the “hole” in the non-relativistic case is simply the

planev||L=

√
2e8

/
m, wherev|| is the field-aligned compo-

nent of the particle velocity.
Some examples of the limiting surfaces obtained from

Eq. (7b) (and Eq. 1) are illustrated in Fig. 1. Here we show
cuts through momentum space, withp|| plotted on the hori-
zontal axis andp⊥ on the vertical axis, with momentum val-
ues being normalised tomc. The limiting surfaces are sur-
faces of revolution about thep|| axis, shown by lines in the
plane of the cut. In each diagram the dot-dashed line indi-
cates the limiting surface for

(
B
/
Bo

)
=1, directly beneath

the accelerating voltage, while the solid line (a circle) shows
the surface for

(
B
/
Bo

)
=∞. The dashed lines between then

show the surfaces for
(
B
/
Bo

)
=2 and 5. (The dotted lines

will be discussed below.) The “hole” in the distribution func-
tion for a particular value of

(
B
/
Bo

)
then corresponds to

the volume bounded by these surfaces, containing the ori-
gin of momentum space. In Fig. 1a we show the surfaces
for

(
e8
/
mc2

)
=0.1 (i.e. an accelerating potential of∼50 kV

for electrons), such that in this case we approach the non-
relativistic regime. It can be seen that the limiting surface
for

(
Bo

/
B
)
=1 is close to a plane at fixedp|| as anticipated

above, though the curve is perceptibly convex with respect
to the origin. At higher values of

(
B
/
Bo

)
the curves then

approach the ellipsoidal forms indicated by Eq. (8), eventu-
ally becoming circular as

(
B
/
Bo

)
→∞. Figures 1b and c

correspond to relativistic cases in which
(
e8
/
mc2

)
=1 and

10, respectively, i.e. to accelerating potentials for electrons
of ∼500 kV and∼5 MV. In these cases the convex nature of
the curves for small

(
B
/
Bo

)
and small pitch angle becomes

considerably more accentuated, and the curves approach cir-
cularity less rapidly with increasing

(
B
/
Bo

)
than in the non-

relativistic case.
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We now consider the accelerated Maxwellian distri-
bution given by Eq. (6) in relation to these surfaces.
We note that at zero pitch angle the limiting energy is
EL (0)=e8+mc2 as indicated above, equal toEL (α) for all
α when

(
B
/
Bo

)
→∞. Substitution into Eq. (6) then shows

that the accelerated distribution function has its maximum
value at this energy, corresponding to

(
f
/
fo

)
=1. Thus the

accelerated distribution function has its maximum value on
the surface of the limiting spherical “hole” which is present
when

(
B
/
Bo

)
→∞, shown by the solid circle in Fig. 1, and

falls in value exponentially at larger energies, on scalekT .
As an illustration, the dotted lines in Fig. 1 show surfaces
of constant distribution function (spheres) of the accelerated
population for a particular case in which

(
mc2

/
kT
)
=20,

corresponding to a non-relativistic unaccelerated electron
population of thermal energy∼25 keV. The distribution func-
tion then has the value

(
f
/
fo

)
=1 on the solid circle as just

indicated, but falls to
(
f
/
fo

)
=0.1 and 0.01, respectively,

on the inner and outer dotted lines illustrated in each panel.
It can be seen that the accelerated population becomes an
increasingly thin shell in momentum space as the acceler-
ating potential is increased. The relationship between these
dotted contours and the lines showing the limiting surfaces
in these panels then also graphically illustrates how the ac-
celerated population is increasingly focussed along the field
direction in momentum space as the accelerating potential
increases, and is then spread in pitch angle by the increas-
ing field strength. It is evident, however, that the increase
in field strength required to render the distribution function
near-isotropic in Fig. 1c is much larger than that required at
lower accelerating potential in Fig. 1a.

2.3 Bulk parameters

The bulk parameters associated with the unaccelerated and
accelerated distributions are determined by obtaining suit-
able moments of the distribution function. Those of particu-
lar interest here are the number densityN , the field-aligned
current densityj|| (the field-aligned number flux times the
charge), and the field-aligned kinetic energy fluxW||. These
are given by

N =

∫
f d3p , (9a)

j|| = e

∫
v|| f d3p , (9b)

and

W|| =

∫
v||

(
E − mc2

)
f d3p , (9c)

wherev|| is the field-aligned particle velocity, and the parti-
cle charge has simply been written ase. To obtain a suitable
relativistic expression forv||, we note that the particle rela-
tivistic momentum isp=Mv, wherev is the particle velocity,
andM is the relativistic mass (as opposed to the rest massm

employed above). We also haveE=Mc2, so that in terms of
p andE

v|| =
pc2 cosα

E
. (10)

The volume element in momentum space in spherical polar
(p , α) co-ordinates is

d3p = 2πp2 sinα dp dα =
2πpE

c2
sinα dE dα , (11)

where we have integrated in azimuth around the field di-
rection assuming a gyrotropic distribution as above, and the
second form involving integration over relativistic energyE
rather than momentump follows from Eq. (1). Substituting
Eqs. (10) and (11) into Eq. (9) then yields the general forms

N =
2π

c3

∫
dα sinα

∫
dE

√
E2 − m2c4 E f , (12a)

j||=
2πe

c2

∫
dα sinα cosα

∫
dE

(
E2

−m2c4
)

f , (12b)

and

W||=
2π

c2

∫
dα sinα cosα

∫
dE
(
E2

−m2c4
) (
E−mc2

)
f .(12c)

We first apply these expressions to the unaccelerated pop-
ulation whose distribution function is given by Eq. (5). Sub-
stituting into Eq. (12a) and integrating over the whole of mo-
mentum space (frommc2 to infinity in E , and 0 toπ in α),
then yields the density as

No = 4πfo (mc)3 exp(µ ) K2 (µ)

µ
, (13)

where K2 is the modified Bessel function of the second kind
of order 2, and for simplicity of notation we have written the
dimensionless ratio of the rest energy to the thermal energy
asµ, i.e.

µ =
mc2

kT
. (14)

The constantfo in the distribution function is thus obtained
in terms of the density as

fo =
No

4π (mc)3

µ

exp(µ) K2 (µ)
. (15)

The non-relativistic limit is given by puttingµ�1, and not-
ing that the asymptotic form for the Bessel function for large

z is ez Kν (z) ≈

√
π
/

2z, we thus recover the non-relativistic
result

fo ≈
No

m3

( m

2πkT

)3/2
. (16)

Substitution of Eq. (5) into Eqs. (12b) and (12c) then yields
the field-aligned current density and kinetic energy flux of
the unaccelerated distribution for one hemisphere of momen-
tum space only as

j||o =
2πefo (kT )3

c2 (µ + 1) , (17a)
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and

W||o =
2πfo (kT )4

c2 (2µ + 3) , (17b)

wherefo is given by Eq. (15). These expressions correspond
to the fluxes of particles moving in one direction only along
the field, e.g. toward the planet and the acceleration region,
such that the integral overα is from 0 to π

/
2 only. We

also note that because the unaccelerated population is as-
sumed isotropic, these quantities (and the particle number
density) are constant along the field lines above the voltage
drop. In the non-relativistic limit, substitution of Eq. (16)
into Eq. (17) then yields the familiar expressions (e.g. Cow-
ley et al., 2003)

j||o ≈ eNo

(
kT

2πm

)1/2
, (18a)

and

W||o ≈ 2NokT

(
kT

2πm

)1/2
. (18b)

Equation (18a) is essentially justj||≈eN vth as indicated in
the introduction.

We now similarly obtain the required expressions for the
field-aligned current density and kinetic energy flux of the
accelerated population, depending on the initial thermal en-
ergykT, the accelerating potential energye8, and the mag-
netic field ratio

(
B
/
Bo

)
. Again for simplicity of notation we

write related dimensionless ratios as

ϕ =
e8

kT
(19)

and

β =
B

Bo

. (20)

We first examine the field-aligned current density, obtained
by substituting Eq. (6) into Eq. (12b), and integrating from
the limiting energyEL (α) given by Eq. (7b) to infinity inE ,
and from 0 toπ

/
2 in α. Performing the energy integral first

yields

(
j||

j||o

)
=

1

(µ + 1)

π/2∫
0

dα sinα cosα F (εL (α))

× exp(− (εL (α) − ϕ − µ)) , (21a)

where the dimensionless ratio

εL (α) =
EL (α)

kT
, (21b)

functionF (εL (α)) is given by

F (εL (α)) = ε2
L (α) + 2(εL (α) + 1) − µ2 , (21c)

and where we have normalizedj|| to the corresponding cur-
rent densityj||o of the unaccelerated population given by

Eq. (17a), thus eliminatingfo proportional to the unaccel-
erated densityNo. The integration over pitch angle can then
most easily be accomplished by transforming the integration
variable fromα to εL (α) using Eq. (7a), such that

sinα cosα dα = ϕ β

(
ε2
L − ϕ εL + µ2

)(
ε2
L − µ2

)2 dεL . (22)

Integration then yields the relativistic general result(
j||

j||o

)
=β

1−
ϕ F̃

(
εL

(
π
2

))
exp

(
−
(
εL

(
π
2

)
−ϕ−µ

))
(µ+1)

(
εL

(
π
2

)2
−µ2

)
 ,(23a)

where

F̃
(
εL

(π

2

))
=ε2

L

(π

2

)
−εL

(π

2

)
(ϕ−2) +

(
µ2

−ϕ
)

, (23b)

and εL

(
π
2

)
is given by Eqs. (7c) and (21b). The non-

relativistic limit is obtained by putting

εL

(π

2

)
≈

ϕβ

(β − 1)
+ µ

from Eq. (8), and retaining only the highest order terms inµ.
Equation (23) then reduces to(

j||

j||o

)
≈ β − (β − 1) exp

(
−

ϕ

(β − 1)

)
, (24)

which is the result derived previously by Knight (1973) and
subsequent authors.

The related relativistic expressions for the field-aligned ki-
netic energy flux of the accelerated electrons, also normal-
ized to the value for the unaccelerated population, obtained
from Eqs. (6), (12c), and (17b), are as follows. Integrating
first in energy, as above, yields

(
W||

W||o

)
=

1

(2µ + 3)

π/2∫
0

dα sinα cosα G (εL (α))

× exp(− (εL (α) − ϕ − µ)) , (25a)

where

G (εL (α)) = ε3
L (α) − ε2

L (α) (µ − 3)

− (εL (α) + 1)
(
µ2

+ 2µ − 6
)

+ µ3 . (25b)

Transforming the pitch angle integral according to Eq. (22)
and integrating, we then find the relativistic general result(
W||

W||o

)
= β

[
1 +

ϕ(µ+1)
(2µ+3)

−
ϕ G̃(εL( π

2 )) exp(−(εL( π
2 )−ϕ−µ))

(2µ+3)
(
ε2
L(

π
2 )−µ2

) ]
,

(26a)

where

G̃
(
εL

(π

2

))
= ε3

L

(π

2

)
− ε2

L

(π

2

)
(µ + ϕ − 4)

+εL

(π

2

)
(µ (µ − 2) + ϕ (µ − 3) + 6)

+

(
ϕ (µ − 3) − µ2 (µ − 2)

)
. (26b)
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Fig. 2. Plots showing the variation of(a) the normalised field-aligned current density
(
j||
/
j||o

)
(or equivalently the number flux) and(b) the

normalised field-aligned kinetic energy flux
(
W||

/
W||o

)
of the accelerated population, versus

(
B
/
Bo

)
beneath the voltage drop, for fixed

values of the accelerating potential8 and thermal energykT of the unaccelerated population. The fluxes are normalized in each case to the

corresponding values for the unaccelerated population, given by Eq. (17). All curves are for
(
mc2

/
kT
)

=20 (corresponding tokT∼25 keV

for electrons), while the lower, middle, and upper curves in each panel are for
(
e8
/
kT
)
=2, 20, and 200 (corresponding toe8∼50, 500, and

5000 keV for electrons), respectively, such that
(
e8
/

mc2
)

=0.1, 1, and 10. The solid lines in each panel show the relativistic values given

by Eq. (23) for the current density and Eq. (26) for the kinetic energy flux, while the dotted lines show the non-relativistic approximations
given by Eqs. (24) and (27). The dashed lines show the limiting behaviours for small and large

(
B
/
Bo

)
, given by Eqs. (28) and (29) for

small
(
B
/
Bo

)
, and Eqs. (33) and (34) for large

(
B
/
Bo

)
. The transition from one dashed line limit to the other has been taken to occur at(

B
/
Bo

)
=
(
B
/
Bo

)
lim A−B

given by Eq. (37), at which point a solid dot is shown on the solid lines, marking the transition between these
limiting behaviours.

The non-relativistic limit, obtained in the same way as for the
current density above, is(
W||

W||o

)
≈β

(
1+

ϕ

2

)
−

(
ϕβ

2
+ (β−1)

)
exp

(
−

ϕ

(β−1)

)
, (27)

which is the result found previously by Lundin and San-
dahl (1978).

3 Results

The relativistic expressions given by Eqs. (23) and (26) for
the current density and kinetic energy flux of the accelerated
population for arbitrary initial thermal energykT, accelera-
tion energye8, and field strength ratio

(
B
/
Bo

)
beneath the

voltage drop, constitute the principal results derived in this
paper. In this section we now evaluate these expressions for
some representative situations and discuss their behaviour,
derive some limiting cases, and compare the results with the
non-relativistic approximations given by Eqs. (24) and (27).

In Fig. 2 we first show how the current density and ki-
netic energy flux vary with the field strength beneath the
voltage drop, for a given temperature of the unacceler-
ated population and various fixed accelerating potentials.
Specifically we have chosenµ=

(
mc2

/
kT
)
=20, the same

value as used in Fig. 1 corresponding to an initial tem-
perature of∼25 keV for electrons, and accelerating poten-
tials given byϕ=

(
e8
/
kT
)
=2, 20, and 200, correspond-

ing to 8 values of∼50, ∼500, and∼5000 kV for elec-
trons. These accelerating potentials can therefore also be

written asϕ
/
µ=

(
e8
/
mc2

)
=0.1, 1, and 10, thus spanning

the range from the non-relativistic to the fully relativistic
regimes, and corresponding to the momentum-space plots
shown in Figs. 1a to 1c. Results are shown for the normalised
current density and kinetic energy flux versusβ=

(
B
/
Bo

)
in

the log-log plots in Figs. 2a and b, where the solid lines show
values derived from the relativistic general expressions given
by Eqs. (23) and (26), while the dotted lines correspond to
the non-relativistic approximations given by Eqs. (24) and
(27). From the bottom to the top of each plot, the lines shown
correspond to

(
e8
/
kT
)
=2, 20, and 200, respectively, or

equivalently to
(
e8
/
mc2

)
=0.1, 1, and 10. It can be seen

that the relativistic values closely follow the non-relativistic
approximations in the lower curves for which

(
e8
/
kT
)
=2

(or equivalently
(
e8
/
mc2

)
=0.1), as expected. However, in-

creasing deviations occur in the large
(
B
/
Bo

)
regime as the

potential increases, with the relativistic values being increas-
ingly larger than those of the non-relativistic approximations.

Examining these curves in more detail, it can be seen that
each displays an initial rise which is linear in

(
B
/
Bo

)
(i.e. a

rise with unit slope in the log-log plot), followed by an ap-
proach to a constant value as

(
B
/
Bo

)
becomes large. Phys-

ically, the initial rise is due simply to conservation of par-
ticles on the magnetic flux tubes as the field strength rises
and their cross-sectional area correspondingly falls. Beneath
the voltage drop, the accelerated particle distributions are
beamed increasingly along the field direction as the poten-
tial rises compared with the particle thermal energy perpen-
dicular to the field (as seen in Fig. 1), such that an initial
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B
/
Bo

)
regime occurs in which mirroring is insignificant. In

this case conservation of particles implies thatj||A≈constant
andW||A≈ constant for the accelerated distribution, where
A is the cross-sectional area of the flux tube, and since also
BA≈ constant from magnetic flux conservation, this implies
j||

/
B≈ constant andW||

/
B≈ constant. We can thus write

j||

/
B≈j ′

||

/
Bo andW||

/
B≈W ′

||

/
Bo, wherej ′

||
andW ′

||
cor-

respond to the values for the accelerated population immedi-
ately beneath the voltage drop whereB=Bo. The values of
these latter quantities, in terms of the values for the unaccel-
erated population, follow directly from the requirements of
conservation of particles and energy. First, it is clear that the
flux of particles across the acceleration region is preserved,
so thatj ′

||
=j||o. Second, from Poynting’s theorem, the kinetic

energy flux of the particles across the acceleration region is
increased by the volume integral ofj.E on the flux tube, so
thatW ′

||
=W||o+j||o8. For sufficiently small

(
B
/
Bo

)
we thus

have(
j||

j||o

)
lim A

=

(
B

Bo

)
, (28)

independent of the accelerating potential, and(
W||

W||o

)
lim A

=

(
B

Bo

) (
1 +

j||o8

W||o

)

=

(
B

Bo

) 1 +

(
e8
kT

) ((
mc2

kT

)
+ 1

)
(
2
(

mc2

kT

)
+ 3

)
 , (29)

where we have employed the expressions forj||o andW||o

given in Eq. (17), and have written out the expressions in
full for ease of comprehension. Mathematically, these lim-
iting behaviours for sufficiently small

(
B
/
Bo

)
follow from

Eqs. (23) and (26) in the limit that(
εL

(π

2

)
− ϕ − µ

)
� 1 , (30)

such that the terms containing the exponentials can be ne-
glected. Equations (23) and (26) then reduce identically to
Eqs. (28) and (29). Neglect of the corresponding exponential
terms in the non-relativistic expressions Eqs. (24) and (27)
then similarly yields(

j||

j||o

)
lim A

≈

(
B

Bo

)
(31a)

and(
W||

W||o

)
lim A

≈

(
B

Bo

)(
1 +

1

2

(
e8

kT

))
, (31b)

which are the same as Eqs. (28) and (29) whenµ�1. The
physical meaning of the inequality in Eq. (30) is that the
value of the accelerated distribution function given by Eq. (6)
at the limiting energy at 90◦ pitch angle,EL

(
π
2

)
, is much

less than the maximum valuefo, i.e. thatf
(
EL

(
π
2

))/
fo�1,

such that the flux of locally mirroring particles is negligible,
in conformity with the above physical discussion. The limit-
ing expressions given by Eqs. (28) and (29) are shown by the

sloping dashed lines on the left-hand sides of Figs. 2a and b,
respectively, and can be seen to correspond very closely to
the full expressions shown by the solid lines for sufficiently
small

(
B
/
Bo

)
.

At larger
(
B
/
Bo

)
, however, the curves in Fig. 2 are seen

to asymptote to constant values which increase with the ac-
celerating potential. This corresponds to the regime in which
the field strength has become large enough that the acceler-
ated population is rendered essentially isotropic by particle
mirroring, and hence independent of

(
B
/
Bo

)
. This limit is

reached when(
εL

(π

2

)
− ϕ − µ

)
� 1 , (32)

such that the value off at the limiting energyEL

(
π
2

)
at 90◦

pitch angle is close to the maximum valuefo, and hence
is so at all pitch angles. The limiting values of the current
density and kinetic energy flux can then be found directly
from Eqs. (23) and (26) by expanding theRH sides for small
1
/
β=

(
Bo

/
B
)

and retaining up to terms linear in the latter
parameter, or, more simply, by puttingεL (α) ≈ ϕ+µ for all
α directly into the integral forms Eqs. (21) and (25), and car-
rying through the resulting trivial pitch angle integrals. The
results in either case, which we again write out in full, are(

j||

j||o

)
lim B

= 1 +

(
e8

kT

)
+

1

2

(
e8
kT

)2((
mc2

kT

)
+ 1

) , (33)

and(
W||

W||o

)
lim B

=1+

(
e8

kT

)
+

1

2

(
e8

kT

)2

+
1

2

(
e8
kT

)3(
2
(

mc2

kT

)
+ 3

) , (34)

such that in the limit
(
B
/
Bo

)
→∞ the current density and

kinetic energy flux vary monotonically as simple polynomi-
als of the accelerating potential. The corresponding non-
relativistic limits, which can be obtained for large

(
B
/
Bo

)
from Eqs. (24) and (27), are(

j||

j||o

)
lim B

≈ 1 +

(
e8

kT

)
(35a)

and(
W||

W||o

)
lim B

≈ 1 +

(
e8

kT

)
+

1

2

(
e8

kT

)2

(35b)

thus corresponding to Eqs. (33) and (34) with the last terms
on theRH sides eliminated, in the limit that

(
mc2

/
kT
)
�1.

In this case the limiting current density increases linearly
with the potential, and the limiting kinetic energy flux as the
square of the potential, these being the well-known results
obtained previously by Knight (1973) and Lundin and San-
dahl (1978), respectively. In the relativistic regime, however,
it can be seen that the additional term results in the current
density increasing as the square of the potential, and the ki-
netic energy flux as the cube, such that the relativistic val-
ues increasingly exceed the non-relativistic approximations
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as the potential increases, as seen in Fig. 2. The relativistic
limits given by Eqs. (33) and (34) are shown in Figs. 2a and
b, respectively, by the horizontal dashed lines on the right-
hand sides of the figures, where they are seen to correspond
closely to the full expressions shown by the solid lines for
sufficiently large

(
B
/
Bo

)
.

The origins of the above dependencies of the current den-
sity and kinetic energy flux of the accelerated and mirrored
particles on the accelerating potential in the non-relativistic
and relativistic regimes can be understood by considering
the properties of the accelerated particle shell in momentum
space, as depicted in Fig. 1. In the non-relativistic regime the
radius of the shell in momentum space increases as the square
root of the potential (assumed large compared with

(
kT
/
e
)
),

while its thickness varies inversely with the square root of
the potential. Consequently, the volume of momentum space
occupied by the accelerated mirrored particles, and hence the
density, increases overall as the square root of the potential.
The mean speed of the particles along the field lines also in-
creases as the square root of the potential, so the current den-
sity overall increases in direct proportion to the potential, and
the kinetic energy flux as the square, as in Eq. (35). In the
relativistic regime, however, the radius of the shell in mo-
mentum space increases in direct proportion to the potential,
while its thickness tends to the constant value∼

(
kT
/
c
)
. The

density of the accelerated mirrored particles in this case thus
increases as the square of the potential. The mean speed of
the particles along the field lines also tends to the constant
value

(
c
/

2
)
, so that overall, the current density increases as

the square of the potential, and the kinetic energy flux as the
cube, as in Eqs. (33) and (34).

Summarising, then, the results shown in Fig. 2, we note
that the current density and the kinetic energy flux follow the
limiting forms given by Eqs. (28) and (29) for sufficiently
small

(
B
/
Bo

)
(limit “A”), while following the limiting forms

given by Eqs. (33) and (34) for sufficiently large
(
B
/
Bo

)
(limit “B”). The former limit applies when the inequality in
Eq. (30) is satisfied, while the latter applies when the oppo-
site inequality in Eq. (32) is satisfied. It thus seems appropri-
ate to take the condition which separates the two regimes to
be given by(

εL

(π

2

)
− ϕ − µ

)
= 1 , (36)

such that the distribution function given by Eq. (6)
at the limiting energy at 90◦ pitch angle is given by
f
(
EL

(
π
2

))/
fo=1

/
e. Then introducing the expression for

EL

(
π
2

)
given by Eq. (7c) and solving for

(
B
/
Bo

)
for given

ϕ=
(
e8
/
kT
)
, yields the limiting value

(
B

Bo

)
lim A−B

= 1 +

(
e8

kT

) (( e8
kT

)
+ 2

(
mc2

kT

)
+ 2

)
(
2
(

mc2

kT

)
+ 1

) . (37)

The limits given by Eqs. (28) and (29) then ap-
ply when

(
B
/
Bo

)
�
(
B
/
Bo

)
lim A−B

, while the oppo-
site limits given by Eqs. (33) and (34) apply when

(
B
/
Bo

)
�
(
B
/
Bo

)
lim A−B

. The limiting values of
(
B
/
Bo

)
given by Eq. (37) are marked by the solid dots on the solid
curves in Fig. 2, showing that they do indeed mark the tran-
sition between the two regimes of behaviour. The transition
between the limiting values shown by the dashed lines in the
figure has also been taken to occur at

(
B
/
Bo

)
lim A−B

for
each accelerating potential, the resulting lines showing that
the limiting value of

(
B
/
Bo

)
given by Eq. (37) occurs es-

sentially at the point of intersection between the correspond-
ing dashed lines, as may be expected. For the lower curves
in Fig. 2 corresponding to

(
e8
/
kT
)
=2, the transition oc-

curs near
(
B
/
Bo

)
∼3, consistent with the momentum-space

limiting lines and distribution function contours shown in
Fig. 1a. For the upper curves in Fig. 2 with

(
e8
/
kT
)
=20

and 200, however, the transitions occur at increasingly large
values of

(
B
/
Bo

)
, near∼30 and∼1000, respectively, con-

sistent with Figs. 1b and c. Although values
(
B
/
Bo

)
∼1000

may seem rather large, we note that for the dipole field of
a planetary body it simply represents the ratio between the
field strength near the surface and that at a point at a distance
of ∼10 planetary radii, which for one of the giant planets
represents a point well inside the magnetospheric cavity.

Further insight into the physical significance of these
results may be obtained by plotting the current density
and kinetic energy flux versus the accelerating potential at
fixed

(
B
/
Bo

)
, as shown in Fig. 3. As in Figs. 1 and 2,

we have chosen
(
mc2

/
kT
)
=20, corresponding to a non-

relativistic unaccelerated population with an initial temper-
ature of∼25 keV for electrons, and show the variations of
the normalized fluxes versus

(
e8
/
kT
)

over the range from
0.1 to 104, corresponding to potentials from∼2.5 kV to
250 MV. This range thus spans the non-relativistic and fully
relativistic regimes, with

(
e8
/
mc2

)
=
(
e8
/
kT
)/

20 vary-
ing between 0.005 and 500. The transition between these
regimes (for an initially non-relativistic population), corre-
sponding to

(
e8
/
mc2

)
=1, thus occurs at

(
e8
/
kT
)
=20,

near the middle of each plot. The lower, middle, and up-
per solid lines in each panel then show the relativistic val-
ues of the normalised current density and kinetic energy flux
for

(
B
/
Bo

)
=10, 100, and 1000, respectively, obtained from

Eqs. (23) and (26), while the dotted lines show the corre-
sponding non-relativistic approximations given by Eqs. (24)
and (27). The long-dashed lines also show the limiting val-
ues for

(
B
/
Bo

)
→∞ given by Eqs. (33) and (34), while the

short-dashed lines show the non-relativistic approximations
given by Eqs. (35a, b).

We first consider the results for the current density shown
in Fig. 3a. For small accelerating potentials on the left-
hand side of the figure, the value of

(
B
/
Bo

)
is suffi-

cient in each case to result in near-isotropy in the acceler-
ated population beneath the voltage drop (i.e. the inequal-
ity in Eq. (32) is satisfied), such that the curves closely ap-
proximate the

(
B
/
Bo

)
→∞ limit given by Eq. (33) (limit

“B”), shown by the long-dashed line. For
(
e8
/
kT
)
�1

the current density thus increases linearly with the poten-
tial in the non-relativistic regime, and as the square of the
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Fig. 3. Plots showing the variation of(a) the normalised field-aligned current density
(
j||
/
j||o

)
(or number flux), and(b) the normalised

field-aligned kinetic energy flux
(
W||

/
W||o

)
of the accelerated population, plotted versus normalised acceleration potential

(
e8
/
kT
)

for
fixed values of the magnetic field ratio

(
B
/
Bo

)
beneath the voltage drop. The fluxes are normalised to the corresponding values for the

unaccelerated population in each case, given by Eq. (17). The three pairs of solid and dotted lines in each plot correspond to the relativistic
values and non-relativistic approximations, respectively, for

(
B
/
Bo

)
=10, 100, and 1000, from the bottom to the top of each plot. These

curves are given by Eqs. (23) and (24) for the current density, and Eqs. (26) and (27) for the kinetic energy flux. As in previous figures, all

curves are for a non-relativistic unaccelerated population satisfying
(
mc2

/
kT
)

=20, corresponding tokT∼25 keV for electrons. Relativistic

accelerations satisfying
(
e8
/

mc2
)

≥1 thus correspond to
(
e8
/
kT
)
≥20. The long- and medium-dashed lines correspond to the relativistic

value and the non-relativistic approximation, respectively, of the limiting fluxes for
(
B
/
Bo

)
→ ∞ (limit “B”), given by Eqs. (33) and (35a)

for the current density, and Eqs. (34) and (35b) for the kinetic energy flux. The solution curves in each case follow this limiting behaviour for
sufficiently small

(
e8
/
kT
)
, before asymptoting to the opposite limit (limit “A”) given by Eqs. (28) and (29) at sufficiently large

(
e8
/
kT
)
.

The transition between these two limiting regimes on each solid curve is shown by the solid dot, whose position is determined by the
condition given by Eq. (36), specifically by Eq. (38).

potential in the relativistic regime. Eventually, however, as(
e8
/
kT
)

increases, the given value of
(
B
/
Bo

)
becomes

insufficient to maintain isotropy, so that a transition takes
place to the opposite limit (limit “A”) in which local mirror-
ing is insignificant, such that

(
j||o

/
j||

)
≈
(
B
/
Bo

)
, as given

by Eq. (28). Each solid curve thus eventually ceases to in-
crease with

(
e8
/
kT
)
, and asymptotes to its corresponding

limiting value of
(
j||

/
j||o

)
lim A

=
(
B
/
Bo

)
. The dotted curves

showing the non-relativistic behaviour asymptote to the same
values even in the fully relativistic regime, since this lim-
iting value is determined only by conservation of the par-
ticle number flux. The transition between the two regimes
occurs near the point where Eq. (36) is satisfied, yielding
a quadratic equation for

(
e8
/
kT
)
lim A−B

at fixed
(
B
/
Bo

)
which is equivalent to Eq. (37), given by(

e8

kT

)
lim A−B

=√((
mc2

kT

)
+ 1

)2

+

(
B

Bo

− 1

)(
2

(
mc2

kT

)
+ 1

)
−

((
mc2

kT

)
+ 1

)
. (38)

As in Fig. 2, this point is shown by the solid dots on each
solid line, and marks the transition between the two regimes
of behaviour in each case.

Turning now to the curves for the kinetic energy flux
shown in Fig. 3b, it can be seen that their behaviour follows
expectations based on the above discussion. For sufficiently
small

(
e8
/
kT
)

the curves follow the
(
B
/
Bo

)
→∞ limiting

behaviour (limit “B”) for a near-isotropic accelerated pop-
ulation given by Eq. (34), increasing (when

(
e8
/
kT
)
�1)

as the square of the potential in the non-relativistic regime,
and as the cube of the potential in the relativistic regime.
However, in the vicinity of the potential shown by the
solid dot on each curve, given again by Eq. (38), a transi-
tion takes place to the opposite regime of behaviour (limit
“A”) for sufficiently large

(
e8
/
kT
)
, given by Eq. (29),

determined by conservation of kinetic energy flux along
the magnetic flux tubes beneath the voltage drop. When(
mc2

/
kT
)
�1 and

(
e8
/
kT
)
�1, Eq. (29) becomes approx-

imately
(
W||

/
W||o

)
≈

1
2

(
B
/
Bo

) (
e8
/
kT
)
, such that the ki-

netic energy flux is proportional to the field ratio
(
B
/
Bo

)
and

increases linearly with the potential, as seen on theRH side
of Fig. 3b.

4 Implications for auroral voltages

Let us now consider explicitly the implications of the results
shown in Fig. 3 for the flow of electric current along the mag-
netic field lines between some central planetary body and its
external magnetosphere. Suppose that the magnetosphere-
ionosphere coupling current circuit requires the flow of an



S. W. H. Cowley: Relativistic field-aligned acceleration of auroral electrons 335

upward-directed current of magnitudej|| just above the iono-
sphere, where the field strength isB, to be carried by mag-
netospheric electrons, and that this is larger than the max-
imum current that the latter unaccelerated population can
carry,j||o, depending on the magnetospheric number density
No and the temperatureT through Eq. (17a). The range of
solutions of the normalised accelerating potential

(
e8
/
kT
)

and acceleration region height (or equivalently the field ratio(
B
/
Bo

)
) that will produce the required current density at the

required field strength in the ionosphere is then determined
by the solution curves such as those shown in Fig. 3a (for(
mc2

/
kT
)
=20 in that case) which pass through the hori-

zontal line representing the required value of the current ratio(
j||

/
j||o

)
. Consideration of the form of the curves in Fig. 3a

then shows that the range of potentials varies from a mini-
mum value given by the solution to Eq. (33), upwards to in-
finity, with a range of corresponding

(
B
/
Bo

)
values varying

downwards from infinity to
(
B
/
Bo

)
=
(
j||

/
j||o

)
.

Paraphrasing this discussion, therefore, in order to carry a
current

(
j||

/
j||o

)
>1, the minimum height of the acceleration

region is given by the condition
(
B
/
Bo

)
=
(
j||

/
j||o

)
, corre-

sponding to an infinite accelerating potential, such that the
total flux of down-going electrons at that altitude is acceler-
ated into the ionosphere to produce current densityj|| at field
strengthB. Assuming a dipole magnetic field in which the
field strength falls along the polar field lines approximately
as the cube of the radial distance from the planetary centre,
the minimum radial distance of the acceleration regionRo is
then given by(

Ro

R

)
min

≈

(
j||

j||o

)1/3
, (39)

whereR is the radial distance of the ionosphere, usually es-
sentially equal to the radius of the body concerned. This is
the same limit as employed in previous studies e.g. by Cow-
ley et al. (2003, 2004, 2005), since it depends only on particle
flux conservation and is independent of relativistic consider-
ations. For acceleration regions located increasingly above
this minimum height, however, the required potential falls to
a minimum value as the field strengthBo falls to low values
(strictly to zero), determined by the solution of the quadratic
expression in Eq. (33). The corresponding relativistic expres-
sion for the minimum value of the particle kinetic energy flux
is then given by Eq. (34).

It is important to note, however, that the acceleration re-
gion does not generally have to be located far above the
minimum height for the required potential to fall to values
comparable with the lower limit given by Eq. (33). Exam-
ples are given in Fig. 4, where we show the variation of
the normalised accelerating potential

(
e8
/
kT
)

versus the
field ratio

(
B
/
Bo

)
required to produce fixed normalised cur-

rent densities, for
(
mc2

/
kT
)
=20 (thus corresponding to

Fig. 3a and other figures). From bottom to top in the fig-
ure, the solid lines show results for

(
j||

/
j||o

)
=50, 100, and

200. For each curve the corresponding horizontal dashed
line shows the limiting minimum potential for

(
B
/
Bo

)
→∞
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Fig. 4. Plot showing the normalized accelerating potential(
e8
/
kT
)

required to produce a fixed normalised field-aligned cur-
rent density

(
j||
/
j||o

)
, versus the field ratio

(
B
/
Bo

)
, for a fixed un-

accelerated population with temperature given by
(
mc2

/
kT
)

=20

(as in Figs. 1–3). From bottom to top the three solid lines are for(
j||
/
j||o

)
=50, 100, and 200, respectively. For each curve, the cor-

responding horizontal dashed line shows the minimum accelerating
potential given by the solution to Eq. (33), which applies in the limit(
B
/
Bo

)
→∞ (limit “B”). The vertical dashed lines show the min-

imum possible value of
(
B
/
Bo

)
(equal to

(
j||
/
j||o

)
in each case),

where the required potential diverges to infinity (limit “A”). It can
be seen that the required voltages drop rapidly toward the minimum
value for

(
B
/
Bo

)
values only modestly larger than the minimum,

by factors of two or three.

given by the solution to Eq. (33). Each corresponding ver-
tical dashed line also marks the minimum possible value of(
B
/
Bo

)
for that normalised current density (just given by(

B
/
Bo

)
=
(
j||

/
j||o

)
), corresponding to the minimum height

where the required acceleration potential diverges to infin-
ity. It can be seen that the required acceleration potential
falls rapidly for larger

(
B
/
Bo

)
values towards the minimum

value given by Eq. (33), and is close to the latter value for
field strength ratios that are factors of only two or three larger
than the minimum value. Consequently, it seems appropriate
to take the minimum value as a reasonable measure of the
acceleration potential that will form in practice for a given
field-aligned current, given by Eq. (33), as has been routinely
assumed in previous work using the non-relativistic approx-
imations. The corresponding minimum value of the precipi-
tating kinetic energy flux is then that given by Eq. (34).

In Figs. 5a and b we thus finally show the variations of the
field-aligned current density and kinetic energy flux, respec-
tively, normalised to the corresponding values for the unac-
celerated population, plotted versus the minimum accelera-
tion potential energy over the range from 1 keV to 100 MeV,
as given by Eqs. (33) and (34). The upper, middle, and lower
solid lines in each figure show the flux values given by these
equations for thermal energies of the unaccelerated popula-
tion given bykT=1, 10, and 100 keV, respectively. The dotted
lines show the corresponding values for the non-relativistic
approximations given by Eqs. (35a, b). It can be seen that the
solid lines follow these approximations in the non-relativistic
regime fore8<mc2

≈511 keV, the current density increasing
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Fig. 5. Plots showing the variation of(a) the normalised field-aligned current density
(
j||
/
j||o

)
(or number flux), and(b) the normalized

field-aligned kinetic energy flux
(
W||

/
W||o

)
, versus the minimum acceleration potential energye8 in keV, given by Eqs. (33) and (34),

respectively. The fluxes are normalised to the corresponding values for the unaccelerated population in each case, given by Eq. (17). The
upper, middle, and lower solid lines in each panel show the relativistic flux values forkT =1, 10, and 100 keV, respectively, while the non-
relativistic approximations given by Eqs. (35a, b) are shown by the corresponding dotted lines. The long-dashed lines show the final term
only on theRH sides of Eqs. (33) and (34), plotted in the relativistic region wheree8≥mc2

≈511 keV.

linearly with the potential, and the kinetic energy flux as the
square, in the regime wheree8>kT for each curve. How-
ever, the relativistic flux values increasingly diverge to larger
values in the relativistic regime wheree8>mc2. In this
regime the normalised flux values are dominated by the fi-
nal term on theRH sides of Eqs. (33) and (34), as indi-
cated by the long-dashed lines in Fig. 5, which show the
final terms alone for acceleration potential energies above
mc2

≈511 keV. Under these relativistic conditions we thus
find that the current density increases as the square of the
potential, or equivalently that the potential increases as the
square root of the current density, and that the kinetic energy
flux increases as the cube of the potential, or equivalently as
the current density to the three-halves power.

5 Summary

Large-scale current systems flowing between the magneto-
spheres and ionospheres of planetary bodies are set up when-
ever they exchange momentum via the magnetic field that
links them. The forces are exerted via the cross-field currents
flowing in these bodies of plasma, while the current circuit
is completed by upward- and downward-directed currents
flowing along the linking field lines. The upward-directed
field-aligned currents are of special significance, since they
are generally dominantly carried by downward-precipitating
electrons from the hot, tenuous magnetospheric plasma. The
current that such particles can carry is, however, subject to
strict limitation, and when the requirement for current by the
circuit exceeds this limit, field-aligned voltages must appear
along the field lines which accelerate the magnetospheric
electrons into the ionosphere, thereby increasing both the
current (number flux) and the kinetic energy flux of the pre-
cipitating particles. Knight (1973) originally calculated the
current-voltage relationship for hot precipitating electrons in

the non-relativistic limit, assuming an isotropic Maxwellian
source population, and found that for an acceleration region
at sufficient altitude (for which the required accelerating po-
tential is a minimum), the current (assumed well above the
limiting value) increases linearly with the voltage. Lundin
and Sandahl (1978) subsequently calculated the precipitat-
ing energy flux on the same basis, and found that it increases
as the square of the potential, or equivalently as the square
of the current density. These results have subsequently been
extended by a number of authors to include other forms for
the source distribution, and have been applied extensively to
the auroral acceleration process in the terrestrial system.

The non-relativistic approximation is indeed well satisfied
in the terrestrial system, where accelerating potentials are
typically in the range∼1–10 kV, such that the energy of the
accelerated particles is much less than the electron rest mass
of ∼511 keV. Indeed, the total voltage associated with the so-
lar wind interaction across the whole magnetosphere, repre-
senting the maximum possible potential in the static case, is
only ∼50–100 kV. However, observations of the “main oval”
auroras in the jovian system indicate that electrons are rou-
tinely accelerated along the field to energies of∼100 keV,
sometimes reaching several hundred keV, these values com-
paring with cross-field voltages in the outer and middle mag-
netosphere of order∼10 MV. Such observations thus suggest
the need to consider the relativistic regime in this case. Re-
lated processes in astrophysical systems have also been dis-
cussed in which electrons are accelerated to highly relativis-
tic energies.

In this paper we have therefore considered the relativis-
tic problem of the field-aligned acceleration of auroral elec-
trons through an arbitrary field-aligned potential, assuming
for simplicity, and in keeping with Knight (1973) and many
previous works, that the source population is an isotropic
Maxwellian, of arbitrary temperature. We have mapped the



S. W. H. Cowley: Relativistic field-aligned acceleration of auroral electrons 337

particle distribution function across the voltage drop into the
region of increasing magnetic field strength on the other side
using Liouville’s theorem, together with conservation of to-
tal energy and the magnetic moment invariant, assuming for
simplicity that the acceleration region is sufficiently com-
pact along the field that magnetic mirroring within it can
be neglected. By integration of suitable moments over the
accelerated particle distribution, we have then obtained ex-
act analytic expressions for the field-aligned current density
(number flux) and kinetic energy flux of the accelerated par-
ticles (Eqs. 23 and 26), as functions of the temperature and
density of the source plasma, the accelerating potential, and
the field strength beneath the acceleration region. We have
also shown that these expressions reduce to the well-known
non-relativistic results of Knight (1973) and Lundin and San-
dahl (1978) in the appropriate limit (Eqs. 24 and 27).

We have then examined the nature of the solutions, which,
as in the non-relativistic case, show two limiting behaviours
with a transition between them. The first limit occurs for
sufficiently small magnetic field strength relative to that in
the acceleration region for a fixed accelerating potential (or
equivalently for a sufficiently high accelerating potential rel-
ative to the initial temperature for a fixed field strength), such
that particle mirroring from the accelerated population is es-
sentially negligible. In this case the current density and ki-
netic energy flux are simply governed by conservation of
particles and energy, increasing linearly with the magnetic
field strength (Eqs. 28 and 29). The second limit then occurs
for sufficiently large magnetic field strength relative to that
in the acceleration region for a fixed accelerating potential
(or equivalently for a sufficiently small accelerating potential
relative to the initial temperature for a fixed field strength),
such that the accelerated population becomes fully isotropic
due to magnetic mirroring. In this case the current density
and the kinetic energy flux become independent of the mag-
netic field strength, and instead vary as simple polynomials
of the accelerating potential, a quadratic for the current den-
sity, and a cubic for the kinetic energy flux (Eqs. 33 and 34).
The condition which separates these two limiting behaviours
has also been obtained, given by Eq. (37) for the limiting
field ratio for a given accelerating potential (or equivalently
Eq. 38 for the limiting accelerating potential for a given field
ratio).

We have also briefly discussed the implications of these
results for auroral electron acceleration in regions of upward-
directed field-aligned current. For any given value of the
field-aligned current density at the top of the ionosphere,
larger than the maximum value for the unaccelerated pop-
ulation, a range of possible solutions exist, depending on the
height of the acceleration region above the ionosphere (and
hence the field strength relative to the ionospheric value), and
the consequent accelerating potential required. However, the
first of the above limits (limit “A”) requires from number flux
conservation that the acceleration region should lie above
a minimum distance (given approximately by Eq. 39 for a
dipole field), at which the required accelerating potential be-
comes infinite. Above this height, however, the required ac-

celerating potential falls rapidly to a minimum value given by
the second of the above limits (limit “B”), which can thus be
taken as a reasonable estimate of the potential likely to occur
in practice. When the required current density considerably
exceeds the maximum for the unaccelerated population, the
current density depends linearly on the accelerating potential
in the non-relativistic regime in this limit, and the kinetic en-
ergy flux as the square, as found previously by Knight (1973)
and Lundin and Sandahl (1978). However, when the acceler-
ating potential energy exceeds the electron rest energy in the
relativistic regime, we find that the current density instead
increases as the square of the potential, or in other words that
the potential increases as the square root of the required cur-
rent. In the same limit, the kinetic energy flux increases as
the cube of the potential, or equivalently as the three-halves
power of the current density.
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Wilson, F. J.: A simple axi-symmetric model of magnetosphere-
ionosphere coupling currents in Jupiter’s polar ionosphere, J.
Geophys. Res., 110, A11209, doi:10.1029/2005JA011237, 2005.



338 S. W. H. Cowley: Relativistic field-aligned acceleration of auroral electrons

Dors, E. E. and Kletzing, C. A.: Effects of suprathermal tails on au-
roral electrodynamics, J. Geophys. Res., 104, 6783–6796, 1999.

Ergun, R. E., Carlson, C. W., McFadden, J. P., Delory, G. T.,
Strangeway, R. J., and Pritchett, P. L.: Electron-cyclotron maser
driven by charged particle acceleration from magnetic field-
aligned electric fields, Ap. J., 538, 456–466, 2000.

Fridman, M. and Lemaire, J.: Relationship between auroral electron
fluxes and field aligned electric potential differences, J. Geophys.
Res., 85, 664–670, 1980.
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