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Abstract. Recent spectroscopic observations of Jupiter'sgions (see e.g. the review by Cowley, 2000, and references
“main oval” auroras indicate that the primary auroral elec- therein). The upward-directed field-aligned currents flowing
tron beam is routinely accelerated to energies-@D0keV,  away from the body are generally dominantly carried by pre-
and sometimes to several hundred keV, thus approaching theipitating hot magnetospheric electrons, rather than by up-
relativistic regime. This suggests the need to re-examine thélowing cold ionospheric ions. However, for a near-isotropic
classic non-relativistic theory of auroral electron accelerationmagnetospheric electron population, the current density that
by field-aligned electric fields first derived by Knight (1973), can be carried to the ionosphere by these patrticles is lim-
and to extend it to cover relativistic situations. In this paperited to jmax~eN v;,, Wheree is the electron chargey is the

we examine this problem for the case in which the sourceelectron number density, constant along a field line for an
population is an isotropic Maxwellian, as also assumed byisotropic population, and,;, is the electron thermal speed.
Knight, and derive exact analytic expressions for the field-In the terrestrial magnetosphere, for example, the limiting
aligned current density (number flux) and kinetic energy flux current density is~0.1xAm~2 for a typical outer plasma

of the accelerated population, for arbitrary initial electron sheet electron distribution with a density-eD.1 cnm2 and
temperature, acceleration potential, and field strength bea temperature of 1 keV, whilst the current densities implied
neath the acceleration region. We examine the limiting be-by the magnetic field perturbations observed in the auroral
haviours of these expressions, their regimes of validity, andonosphere are often more than an order of magnitude larger
their implications for auroral acceleration in planetary mag- (e.g. Paschmann et al., 2002, and references therein). When
netospheres (and like astrophysical systems). In particulathe required current density exceeds the above maximum, an
we show that for relativistic accelerating potentials, the cur-electrostatic potential must develop along the magnetic field
rent density increases as the square of the minimum potentialines which accelerates the magnetospheric electrons towards
rather than linearly as in the non-relativistic regime, while the the ionosphere, thereby increasing the current.

kinetic energy flux then increases as the cube of the potential

' The relationship that exists between the field-aligned cur-
rather than as the square.

rent carried by precipitating electrons and the field-aligned
Keywords. lonosphere (Particle acceleration) — Magne- potential was first studied theoretically by Knight (1973),
tospheric physics (Auroral phenomena; Magnetospherewho showed that under certain simplifying assumptions the
ionosphere interactions; Current systems) minimum electrostatic potential energy required to drive a
current which is a factorF times the above maximum,
is roughly a factorF times the electron thermal energy.
Knight (1973) thus found an approximately linear depen-
dence of the current density on the accelerating potential.

The exchange of momentum between a magnetised conducpuPseduently, Lundin and Sandahl (1978) also showed that
ing body and its outer plasma envelope via the magneticthe precipitating energy flux of the accelerated electron pop-

. . .pe 2
field requires the establishment of large-scale electric curylation is then amplified by roughly a factor @f* com-
red with the unaccelerated population, thus leading to ma-

rent systems flowing between them. Stresses are exerteldft ) . ;
by the cross-field currents flowing in the central body angiC" €nhancements in electron energy input to the ionosphere,
in the magnetospheric plasma, while the current circuit is2Nd consequently also to auroral output. Knight's (1973)

closed by field-aligned currents flowing between these reN€0ry has subsequently been extensively applied to ter-
restrial studies of “inverted-V” electron precipitation and
Correspondence tdS. W. H. Cowley substorm-related auroras (e.g. Antonova and Tverskoy, 1975;

(swhcl@ion.le.ac.uk) Lyons, 1980, 1981; Bosqued et al., 1986; Shiokawa et

1 Introduction
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al.,, 1990; Lu et al.,, 1991; Olsson et al., 1996, 1998;2 Theory

Schriver et al., 2003), as well as to auroras in the day-

side cusp (Korth et al., 2004), and in the polar cap (Carl-We consider a situation in which magnetospheric electrons
son and Cowley, 2005). Field-aligned potentials~ef— move along magnetic field lines toward a magnetised planet,
10kV are typ|Ca||y required in upward-directed auroral cur- such that the field strength at the particle is steadily increas-
rent regions in the terrestrial case, whose effects are rouind. Atsome pointwhere the field strengthisthe electrons
tinely observed in the particle distributions on auroral field €ncounter a region of field-aligned electric field which is as-
lines (e.g. Paschmann et al., 2002). Knight's (1973) theo-sumed compact along the field lines, such that they are accel-
retical formulation has also subsequently been extended beerated along the field towards the planet. Beneath the voltage
yond the isotropic Maxwellian velocity distributions he con- drop the field strength continues to grow such that the ac-
sidered, to also include bi-Maxwellian and kappa distribu- celerated electron population becomes modified by magnetic
tions (Fridman and Lemaire, 1980; Pierrard, 1996; Janhunefirroring. Here we wish to calculate the current density and
and Olsson, 1998; Dors and Kletzing, 1999). However, thekinetic energy flux of the accelerated electrons, in terms of

results obtained do not differ qualitatively from those found the unaccelerated electron parameters, for arbitrary acceler-
previously by Knight (1973). ating potential and magnetic field strength relativ$o The
o ) calculation consists of three steps. We first consider the mo-
The most recent application of Knight's (1973) theory o of single particles in the above fields, to determine the
has been to the current systems and auroras of the plang|ationship between the momentum components before and
ets Jupiter and Saturn (Cowley and Bunce, 2001; Cowley ebfter acceleration. Second, we use this information to de-

al., 2004, 2005; Nichols and Cowley, 2904)' In the case Ofigrmine the properties of the accelerated particle distribution
Jupiter's magnetosphere (but not Saturn's), the principal curnction in terms of the unaccelerated distribution, using Li-
rent system is that associated with the trar_lsfer of planem%uville’s theorem. Third, we then obtain the current density
angular momentum to the magnetospheric plasma, rathefnq kinetic energy flux by integration of the appropriate mo-

than with the solar wind interaction as at Earth. This Cur- ments over the distribution function. Here we now consider
rent system is associated with a narrow and intense ring of5ch of these steps in turn.

upward-directed field-aligned current surrounding the mag-

netic pole, whose current density at ionospheric heights2 1  Single particle motion

~0.1 to~0.54A m~2, considerably exceeds the maximum

that can be carried by unaccelerated magnetospheric eled-he motion of particles in the above fields is governed by
trons,~0.01xA m—2. Consequently, the electrons must be conservation of two invariant quantities. The first is the total
strongly accelerated along the field lines from a few keV toenergyé+q¢, where¢ is the electrostatic potentiaj,is the
energies 0f~100 keV and above, as indicated both by theory particle charge, anél is the relativistic energy of the particle
(e.g. Cowley et al., 2003), and by observations of the spectraiven by

of the resulting intense “main oval” UV auroras (Gustin et

al., 2004). Indeed, on some occasions, the accelerated ele€-= / p2c? + m2c*, (1)
tron energies are deduced by these means to reach to at leav%ere is th itude of the relativisti N fih
a few hundred keV, thus approaching the relativistic regime. p1s the magnitude ot Ine relafivistic momentum otthe

particle,m is its rest mass, andthe speed of light. The to-
These observations suggest the need to extendal energy is an exactinvariant of the motion for static fields,
Knight's (1973) theory to encompass relativistic situa- as considered here, as is readily shown by direct integration
tions, in which the plasma electrons are either very energetiof the relativistic equation of motion (e.g. Clemmow and
initially, or become so due to the presence of field-alignedDougherty, 1969). The second is the magnetic moment in-
potentials which are comparable with or exceed the electrorvariant associated with the gyration of particles around the
rest energy{511 keV). Such field-aligned potentials are not field lines, which can be written asi/B wherep is the
implausible in Jupiter's magnetosphere, for example, sincenomentum component perpendicular to the magnetic field,
the total cross-field potential across the outer and middleand B is the magnetic field strength. This is an adiabatic in-
magnetosphere region is of orderlOMV (e.g. Nichols variant which is preserved provided that the scale length of
and Cowley, 2005; Cowley et al., 2005). In addition, a field variation is large compared with the particle gyroradius,
number of applications to astrophysical systems have alsas will be assumed here. We also define the pitch angle of
been proposed which clearly require a relativistic treatmenthe particlex to be the angle between the momentum vector
(e.g. Ergun et al., 2000; Haerendel, 2001; Begelman etnd the magnetic field, such that the perpendicular compo-
al., 2005). In this paper we thus present a relativistic for-nent of the momentum can be written@as=p sin«, while
mulation of Knight's (1973) kinetic theory, and derive exact the parallel component igj=p cosa.
analytic expressions for the field-aligned current density Let us consider an electron whose energy and pitch an-
(number flux) and kinetic energy flux of the accelerated gle just before impinging on the acceleration region at field
particles, for arbitrary initial temperature, accelerating strengthB, are&, (corresponding to momentysg through
potential, and magnetic field strength beneath the voltagdeq. 1) andx,,, respectively. After passing through the accel-
drop. eration region and reaching a point on the field line where
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the field strength i, conservation of total energy and the wheref, is a constant to be defined (in the following section)
first adiabatic invariant then show that the particle engfgy in terms of the unaccelerated electron denditys the elec-
(corresponding to momentum and pitch anglex are deter-  tron temperature, ank is Boltzmann’s constant. We note
mined by that W,=&,—mc? is the initial particle kinetic energy. From
Egs. (2a) and (4b), the accelerated distribution function is

E=E+ed (22) then given simply by
or equivalently
(5 —ed — mcz)
\/pzc2 + m2ct = \/pgcz + m2c* +ed (2b) f&) = foexp - xr |- (6)
and

” 5 Care must be exercised in interpreting these expressions,
psinfa _ Do sirf o, 3) however, since in general not all of the momentum space

B B B, ' of the accelerated distribution is populated by particles from
where® is the total potential drop along the field lines, and the unaccelerated distribution to give the values indicated in
is the electron charge (taken to be a positive quantity). EquaEds. (4) or (6). The populated volume corresponds only to
tion (2) determines the relationship between the eneggies those particles which move along the field line in the ap-
and & above and below the voltage drop (or equivalently Propriate direction in the region above the voltage drop to
between the magnitudes of the momeptaand p), while impinge on the acceleration region from above, the limiting
Eq. (3) then determines the relationship between the pitch ancase being that of particles which are locally mirroring &t 90
gles. Since all the distribution functions we consider are as-Pitch angle at field strength,. Settinga,=90" in Eq. (3)
sumed gyrotropic around the field direction, these equationgnd eliminatingp, between Egs. (2) and (3) then yields the
are then sufficient to map the electron distribution function following quadratic expression for the limiting energly (o)

from above to below the acceleration region. below which the accelerated distribution is unpopulated at
pitch anglex
2.2 Mapping the distribution function
5 2¢d
. . . . . SL () — & (a)
In general the particle distribution functioyi is defined (1_ %sinza)
such that the number of particles in phase space volume ,
d3r d3p at position vector and momentum vectop at _ 2t 4 (e®) _0 (7a)
time r is f (r, p, t) d°r d®p. The distribution function is (1 A sinza) '

then mapped in phase space using Liouville’s theorem, which
states thatf is constant on a particle trajectory (e.g. Clem- The physically acceptable root of this expression which re-
mow and Dougherty, 1969). Here we consider a steady statduces toS; («) —mc? for all « whene®—0 (i.e. the limit-

in which the only spatial variation is along the magnetic field ing kinetic energyW; (o) =&, (o) —mc? goes to zero at all
lines. The accelerated distribution functignand the unac-  pitch angles in this limit as required) is

celerated distribution functiori, are then simply related by

f(p, o) = fo(po, o) , (461) Er (@) ZLJ’_ m2c4+ 5
wherep andw are related tgp, ande, by Egs. (2b) and (3). ( —% sinza) (1—% sir? a)
Equation (4a) thus directly determines the accelerated distri-

bution function below the voltage drop in terms of the distri- The limiting energy for particles moving exactly along the
bution function immediately above it. Here for simplicity we field direction withaw=0 is thus€;, (0) =e®+mc? for all B,
only consider unaccelerated distributions that are isotropicas expected (i.e. the limiting kinetic energy along the field
and hence independent of position along the field line abovedirection is just the electrostatic potential eneegy). Lim-

the voltage drop, in which case we have simply iting energy&;. () (and kinetic energyv; («)) then in gen-
F(p)=f,(po) orequivalently (&) =f, (), (4b) eral increase monotonically with the pitch angle for giv&n

reaching the value
wherep andp,, or equivalenth€ and¢,, are related through

Bo i 2
Po Sirf o (e®) (7b)

Eq. (2). 7 ed o4 2 (e®)?
Although any isotropic distribution can be considered in 2 (E) 1_ B T mect+ 2 \2’ (70)
principle, here we also assume for simplicity that the unac- ( N 7) 1- Fu)

celerated distribution is Maxwellian in form, thus following . o
the formulation employed originally by Knight (1973), and &t 90. However, in the limit that8 becomes very large
used in most of the applications cited in the introduction. Wecompared withB,, we then findf; (o) —e®-+mc* for all

thus take the unaccelerated population to be given by a (i.e. Wi (a) —e®), due to the magnetic mirroring of the
accelerated particles beneath the voltage drop. The “hole” in

_ _ (50 — mcz) the distribution function at low energies then becomes spher-
fo (&) = foexp| ———— . () R
kT ical in momentum space in this limit.
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Fig. 1. Cuts through momentum space in (bq p||) plane, showing contours of constant distribution function (solid and dotted circles) for
an initially Maxwellian distribution with non-relativistic temperature such t(mtz/kT) =20 which is accelerated through field-aligned

potentials of(ed)/mcz) =0.1, 1, and 10 in panel@), (b), and(c), respectively. The solid circle in each plot represents the inner limit of the
distribution (for(B/Bo) —00), while the inner and outer dotted circles show the surfaces where the distribution function falls to factors of

0.1 and 0.01 of the value on the solid circle, respectively (given by Eqg. 6 combined with Eq. 1). These dotted contours can only just be seen
outside the solid circle in case (c). The dot-dashed and dashed lines then show where these distributions are truncated in momentum space f

finite (B/BU) beneath the voltage drop, given by Eq. (7b), the full surfaces being obtained by revolution ahgusttie. The dot-dashed
line in each plot corresponds {® / B,) =1 directly beneath the voltage drop, while the two dashed lines correspdiy/#,) =2 and 5.
The solid line shows the limiting surface f(JB/Bo) — 00, such that the accelerated distribution then becomes fully isotropic.

We note that the non-relativistic limit of Eq. (7b), in which the accelerating voltage, while the solid line (a circle) shows
(e®/mc?) «1 such that the square root on the RHS reducesthe surface fo(B /B,) =cc. The dashed lines between then
to mc2, is then given by show the surfaces fofB /B,) =2 and 5. (The dotted lines

will be discussed below.) The “hole” in the distribution func-

ed (®) tion for a particular value of B/B,) then corresponds to

(1 _ %sin%) ’ the volume bounded by these surfaces, containing the ori-

gin of momentum space. In Fig. 1a we show the surfaces
such that the “hole” in the distribution function is then gen- T (e®/mc?) =0.1 (i.e. an accelerating potential ©50 kv
erally an ellipsoid of revolution about the field direction, re- fOr €lectrons), such that in this case we approach the non-
ducing to a sphere in the Iim('rB/Bo) — 00 as above. Inthe  relativistic regime. It can be seen th.at the I|m|t|pg surface
opposite limitwherd B / B,) — 1, directly beneath the accel- 10" (B,/B)=1is close to a plane at fixed as anticipated
eration region, Eq. (8) becomd¥, («) cof ared, i.e. the above, though the curve is perceptibly convex with respect

ol i S to the origin. At higher values ofB/B,) the curves then
surface of the “hole” in the non-relativistic case is simply the approach the ellipsoidal forms indicated by Eq. (8), eventu-

planev .=,/ 2¢® /m, wherev); is the field-aligned compo- ally becoming circular a§B /B,) —oco. Figures 1b and c
nent of the particle velocity. correspond to relativistic cases in whi@d /mc?) =1 and
Some examples of the limiting surfaces obtained from10, respectively, i.e. to accelerating potentials for electrons
Eq. (7b) (and Eq. 1) are illustrated in Fig. 1. Here we showof ~500kV and~5MV. In these cases the convex nature of
cuts through momentum space, wjtf plotted on the hori-  the curves for smal(B / B,) and small pitch angle becomes
zontal axis angp | on the vertical axis, with momentum val-  considerably more accentuated, and the curves approach cir-

ues being normalised tmc. The limiting surfaces are sur-  cularity less rapidly with increasin@?/B,,) than in the non-
faces of revolution about thg axis, shown by lines in the relativistic case.

plane of the cut. In each diagram the dot-dashed line indi-
cates the limiting surface fofB /B,) =1, directly beneath

Wi (@) = &L () — mc? ~
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We now consider the accelerated Maxwellian distri- employed above). We also hage-Mc?, so that in terms of
bution given by Eg. (6) in relation to these surfaces. p and&
We note that at zero pitch angle the limiting energy is
&1 (0) =ed+mc? as indicated above, equal £ («) for all v =
a when(B/B,) —oc. Substitution into Eq. (6) then shows &
that the accelerated distribution function has its maximumThe volume element in momentum space in spherical polar
value at this energy, corresponding(tp/ f,) =1. Thusthe  (p , @) co-ordinates is
accelerated distribution function has its maximum value on _ 2upE
the surface of the limiting spherical “hole” which is present d>p = 27 p?sina dp do = 2 S dé da, (11)

when (B /B,) — o0, shown by the solid circle in Fig. 1, and _ _ _ _ _
falls in value exponentially at larger energies, on sadle where we have integrated in azimuth around the field di-

As an illustration, the dotted lines in Fig. 1 show surfaces€Ction assuming a gyrotropic distribution as above, and the
of constant distribution function (spheres) of the accelerated®®cond form involving integration over relativistic enedy
population for a particular case in whic(mcz/kT) —20, rather than momeqtum follows from Eq. (). Substituting
corresponding to a non-relativistic unaccelerated electrordds- (10) and (11) into Eq. (9) then yields the general forms
population of thermal energy25 keV. The distribution func- 2 . 5

tion then has the valugf / f,) =1 on the solid circle as just N=-=3 / do. Sina /dE E2—m?ctE f (122)
indicated, but falls to( f / f,) =0.1 and 0.01, respectively,

on the inner and outer dotted lines illustrated in each paneljnzﬂze/da sina cosa /dé: (52_m264> £, (12b)

It can be seen that the accelerated population becomes an ¢

increasingly thin shell in momentum space as the acceleryq

ating potential is increased. The relationship between these .

dotted contours and the lines showing the limiting surfaceswuz—z/da sina cowfds (52—m264) (5—mc2> f (12¢)

in these panels then also graphically illustrates how the ac-

celerated population is increasingly focussed along the field We first apply these expressions to the unaccelerated pop-
direction in momentum space as the accelerating potentia¥lation whose distribution function is given by Eq. (5). Sub-
increases, and is then spread in pitch angle by the increagtituting into Eq. (12a) and integrating over the whole of mo-
ing field strength. It is evident, however, that the increasementum space (fromc? to infinity in £, and 0 torr in a),

in field strength required to render the distribution function then yields the density as

2¢o
pecose (10)

near-isotropic in Fig. 1c is much larger than that required at 3 5 exp(u) Ka(w)
lower accelerating potential in Fig. 1a. Ny = 4n f, (mc) , (13)
2.3 Bulk parameters where K is the modified Bessel function of the second kind

of order 2, and for simplicity of notation we have written the
The bulk parameters associated with the unaccelerated arimensionless ratio of the rest energy to the thermal energy
accelerated distributions are determined by obtaining suitasi, i.€.
able moments of the distribution function. Those of particu- me?
lar interest here are the number dengitythe field-aligned u« = T (14)
current densityj;; (the field-aligned number flux times the _ o o _
charge), and the field-aligned kinetic energy flox. These The constantf, in the distribution function is thus obtained

are given by in terms of the density as
No I
= . 15
N = / fd3p, (9a) % 4 (mc)3 exp(u) Kz (1) (15)

The non-relativistic limit is given by putting>>1, and not-

) 3 ing that the asymptotic form for the Bessel function for large
J||=€/U||fdp, (9b) . o
zise* K, ()~ n/2z, we thus recover the non-relativistic
result
and N 32
m
fo ~ _g . (16)
Wi = /UII (5 —mcz) fdp, (9c) ™ (Z”kT>

Substitution of Eq. (5) into Egs. (12b) and (12c) then yields
the field-aligned current density and kinetic energy flux of
the unaccelerated distribution for one hemisphere of momen-
tum space only as

wherev is the field-aligned particle velocity, and the parti-
cle charge has simply been written«asTo obtain a suitable
relativistic expression fop), we note that the particle rela-
tivistic momentum igp=Mv, wherev is the particle velocity, 2nef, (kT)3

andM is the relativistic mass (as opposed to the rest mass Jilo = —— 5 (u+1) . (17a)
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and Eqg. (17a), thus eliminating, proportional to the unaccel-
5 erated densityV,. The integration over pitch angle can then
Wio = ”ff’— Cu+3) , (17b) most easily be accomplished by transforming the integration
C

variable froma to ¢, («) using Eq. (7a), such that
wheref, is given by Eq. (15). These expressions correspond
to the fluxes of particles moving in one direction only along sine cosa do = ¢ (SL P EL +2“ )
the field, e.g. toward the planet and the acceleration region, ( 2 _ MZ)
such that the integral over is from 0 to 71/2 only. We
also note that because the unaccelerated population is as
sumed isotropic, these quantities (and the particle number, . ~ z _ o
density) are constant along the field lines above the voltag ol )—ﬁ [1—(p Few (3)) el (SZL () M))} .(23a)
drop. In the non-relativistic limit, substitution of Eq. (16) Jle (n+1) (EL (%) —Mz)
into Eqg. (17) then yields the familiar expressions (e.g. Cow-
ley et al., 2003)

der, . (22)

Integratlon then yields the relativistic general result

where

o (§) et (5) e (5) w2 (-v) . 230

kT \ Y2
Jllo = €N, ( ) , (18a) -
2rm and ¢, (%) is given by Egs. (7c) and (21b). The non-
and relat|V|st|c limit is obtained by putting
T vp
KT \ 12 er (X)) ~
Wio & 2N kT (E) . (8p) - <2> G- "

from Eq. (8), and retaining only the highest order termg.in
Equation (18a) is essentially jugt~eN v, as indicated in  Equation (23) then reduces to

the introduction.

We now similarly obtain the required expressions for the <J_) ~B—(B—1) exp(— % ) 7 (24)
field-aligned current density and kinetic energy flux of the \Jjijo B—-1

accelerated population, depending on the initial thermal enyhich is the result derived previously by Knight (1973) and
ergy kT, the accelerating potential energg, and the mag- subsequent authors.

netic field ratio(B / B,). Again for simplicity of notation we The related relativistic expressions for the field-aligned ki-
write related dimensionless ratios as netic energy flux of the accelerated electrons, also normal-
ed ized to the value for the unaccelerated population, obtained

¢ = kT (19) from Egs. (6), (12c), and (17b), are as follows. Integrating
first in energy, as above, yields
and
B /2
=4 (20) (W”> /d sine cose G
B, e (2u 5 | de sina (e (@)

We first examine the field-aligned current density, obtained ox (_( @) — 0 — 1) (25a)
by substituting Eq. (6) into Eq. (12b), and integrating from < expl=leL (o) =@ =)
the limiting energy¢;. () given by Eqg. (7b) to infinity irf, where
and from O to;r/2 in «. Performing the energy integral first 3 )
yields GeL (@) =¢} (@~ € (@) (=3

" — L@+ (1?+21—6)+ 4. (25b)

J
( ! ) m / da sina cosa F (g () Transforming the pitch angle integral according to Eq. (22)
o and integrating, we then find the relativistic general result
X exp(— (sL (@) —¢—p) . (21a) (D)
. . . (W_u> =P [1+ @3
where the dimensionless ratio 0 G (e (3)) exp(— (e (%) —p— u))} (26a)
B ut3)
- (O() _ EL (Ol) 7 (Zlb) I ( L( ) H )
kT where
function F (e, («)) is given by ~ TN _.3(%\_ 2(T _
) ) G(ee(3)) =et (3) et (3) wro-

F (e (@) = e (@) +2(er (@) +1) — p=, (21c)

b
+er (5) (n(e—2)+¢ (-3 +6)
and where we have normalizgg to the corresponding cur- )
rent densityjj, of the unaccelerated population given by + (<p (n—3) —pu(u— 2)) . (26b)
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Fig. 2. Plots showing the variation ¢&) the normalised field-aligned current dens(ijy[/jn(,) (or equivalently the number flux) arfd) the
normalised field-aligned kinetic energy fl{kV;; /WV;,) of the accelerated population, versus/ B,) beneath the voltage drop, for fixed
values of the accelerating potentibland thermal energkT of the unaccelerated population. The fluxes are normalized in each case to the
corresponding values for the unaccelerated population, given by Eq. (17). All curves émr?o/kT) =20 (corresponding t&T~25 keV

for electrons), while the lower, middle, and upper curves in each panel a(n£<Ii¢V<T) =2, 20, and 200 (correspondingd®~50, 500, and

5000 keV for electrons), respectively, such tha® mc?) =0.1, 1, and 10. The solid lines in each panel show the relativistic values given

by Eq. (23) for the current density and Eq. (26) for the kinetic energy flux, while the dotted lines show the non-relativistic approximations
given by Egs. (24) and (27). The dashed lines show the limiting behaviours for small ancﬂBq/rgg), given by Egs. (28) and (29) for

small (B/B,)), and Eqgs. (33) and (34) for Iarg(eB/B(,). The transition from one dashed line limit to the other has been taken to occur at
(B/Bo)=(B/Bs)jim 4_p 9iven by Eq. (37), at which point a solid dot is shown on the solid lines, marking the transition between these
limiting behaviours.

The non-relativistic limit, obtained in the same way as for the written asp / u= (e®/mc?) =0.1, 1, and 10, thus spanning
current density above, is the range from the non-relativistic to the fully relativistic
regimes, and corresponding to the momentum-space plots
(ﬂ) ~p <1+f) - <%+ (ﬂ_1)> exp(— ¢ ) , (27)  showninFigs. lato 1c. Results are shown for the normalised
Wio 2 2 B-1) current density and kinetic energy flux vergiis (B/Bo) in
which is the result found previously by Lundin and San- the log-log plots in Figs. 2a and b, where the solid lines show
dahl (1978). values derived from the relativistic general expressions given
by Egs. (23) and (26), while the dotted lines correspond to
the non-relativistic approximations given by Egs. (24) and
3 Results (27). From the bottom to the top of each plot, the lines shown
correspond to(e® /kT) =2, 20, and 200, respectively, or
The relativistic e.xpressio.ns given by Egs. (23) and (26) forequivalently to(ed>/mc2) —0.1, 1, and 10. It can be seen
the current density and kinetic energy flux of the acceleratedpa; the relativistic values closely follow the non-relativistic
population for arbitrary initial thermal enerdgf, accelera- approximations in the lower curves for Whi0§hd>/kT) -2
tion energye®, and field strength Fa“(’B /Bo) beneath the (or equivalently(e® /mc?) =0.1), as expected. However, in-
voltage drop, constitute the principal results derived in thlsCreasing deviations occur in the IargB/B,,) regime as the

paper. In this section we now evaluate these expressions fo?otential increases, with the relativistic values being increas-

some represe_:nt_a_tlve situations and discuss their beh_awou ngly larger than those of the non-relativistic approximations.
derive some limiting cases, and compare the results with the

non-relativistic approximations given by Egs. (24) and (27). Examining these curves in more detail, it can be seen that
In Fig. 2 we first show how the current density and ki- each displays an initial rise which is Iinear(iB/B(,) (i.,e.a

netic energy flux vary with the field strength beneath therise with unit slope in the log-log plot), followed by an ap-
voltage drop, for a given temperature of the unacceler-proach to a constant value éB/BO) becomes large. Phys-
ated population and various fixed accelerating potentialsically, the initial rise is due simply to conservation of par-
Specifically we have chosen= (mcz/kT) =20, the same ticles on the magnetic flux tubes as the field strength rises
value as used in Fig. 1 corresponding to an initial tem-and their cross-sectional area correspondingly falls. Beneath
perature of~25keV for electrons, and accelerating poten- the voltage drop, the accelerated particle distributions are
tials given byp= (ecb/kT) =2, 20, and 200, correspond- beamed increasingly along the field direction as the poten-
ing to ® values of~50, ~500, and~5000kV for elec- tial rises compared with the particle thermal energy perpen-
trons. These accelerating potentials can therefore also bdicular to the field (as seen in Fig. 1), such that an initial
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(B/Bo) regime occurs in which mirroring is insignificant. In sloping dashed lines on the left-hand sides of Figs. 2a and b,
this case conservation of particles implies tf)ypt~constant  respectively, and can be seen to correspond very closely to
and WA=~ constant for the accelerated distribution, where the full expressions shown by the solid lines for sufficiently
A is the cross-sectional area of the flux tube, and since alssmall(B/B,).

B A~ constant from magnetic flux conservation, this implies At larger (B / B,), however, the curves in Fig. 2 are seen
jii/ B~ constant and¥|; / B~ constant. We can thus write to asymptote to constant values which increase with the ac-
j||/B%j"‘/Bo and W||/B%W|’| B,, wherej"‘ and W"‘ cor- celerating potential. This corresponds to the regime in which

respond to the values for the accelerated population immediEhe field strength has become large enough that the acceler-

ately beneath the voltage drop whee-B,. The values of ated population is rendered essentially isotropic by particle

these latter quantities, in terms of the values for the unaccelgggrg;g\'lvﬁgg hence mdependent(di/Bo). This fimit is
erated population, follow directly from the requirements of
conservation of particles and energy. First, it is clear that the(sL (l) —p— M) <1, (32)
flux of particles across the acceleration region is preserved,
o) thatj@:juo. Second, from Poynting's theorem, the kinetic g|,ch that the value of at the limiting energyt; (%) at 90
energy flux of the particles across the acceleration region i%)itch angle is close to the maximum valyg, and hence
increased by the volume integral gt on the flux tube, so s 5o at all pitch angles. The limiting values of the current
that W/=W) o+, ®. For sufficiently smal(B /B,) we thus  gensity and kinetic energy flux can then be found directly
have from Egs. (23) and (26) by expanding tRéi sides for small
(ﬂ) _ <£) 29) 1/B=(B,/B) and retaining up to terms linear in the latter
Jilo ) im A B,) parameter, or, more simply, by puttiag (o) ~ ¢+u for all
) . i «a directly into the integral forms Eqs. (21) and (25), and car-
independent of the accelerating potential, and rying through the resulting trivial pitch angle integrals. The
<m> B <£> (1 N M) results in either case, which we again write out in full, are

Wi B, Wit . L (2)?
o\ ((me 1) <J—> =1+<£>+—";, (33)
() Lk (o R IR v SV C AT (C Y
b (2 (’Z_CT) + 3) and
where we have employed the expressions jigrand Wy, 5 i3
given in Eq. (17), and have written out the expressions in(M) -1 <eq)> + 1 <£> + 1 (&7) , (34)

full for ease of comprehension. Mathematically, these lim- \Wio /ims  \KT /) = 2 \kT 2 (2 (%) +3>
iting behaviours for sufficiently sma(lB /B,) follow from

lim A

Egs. (23) and (26) in the limit that such that in the limit( B /B,) —oo the current density and
e kinetic energy flux vary monotonically as simple polynomi-
<8L (5) 2 M) >1, (30) als of the accelerating potential. The corresponding non-

o _ relativistic limits, which can be obtained for larg& /B,)
such that the terms containing the exponentials can be neg, Egs. (24) and (27), are

glected. Equations (23) and (26) then reduce identically to

Egs. (28) and (29). Neglect of the corresponding exponential (" ji, ~1 ed 35
terms in the non-relativistic expressions Egs. (24) and (27) ﬁ im B FL kT (352)
then similarly yields

_ 5 and

2, (3) z
()~ () e (22) 1 1(22) -
and Wio / lim kT )~ 2 \kT

W, B 1/ed thus corresponding to Eqgs. (33) and (34) with the last terms

- Al — )1+ = , 31b i imi i imi 2
(W”0>”mA (Bo> ( +3 (kT)) (31b)  on theRH sides eliminated, in the limit thginc? /kT) 1.

In this case the limiting current density increases linearly
which are the same as Egs. (28) and (29) whexl. The  with the potential, and the limiting kinetic energy flux as the
physical meaning of the inequality in Eq. (30) is that the square of the potential, these being the well-known results
value of the accelerated distribution function given by Eq. (6) obtained previously by Knight (1973) and Lundin and San-
at the limiting energy at 90pitch angle,&; (%), is much  dahl (1978), respectively. In the relativistic regime, however,
less than the maximum valyg, i.e. thatf (£, (%))/ fo<1, it can be seen that the additional term results in the current
such that the flux of locally mirroring particles is negligible, density increasing as the square of the potential, and the ki-
in conformity with the above physical discussion. The limit- netic energy flux as the cube, such that the relativistic val-
ing expressions given by Egs. (28) and (29) are shown by theles increasingly exceed the non-relativistic approximations
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as the potential increases, as seen in Fig. 2. The relativisti¢B /B,) > (B /B,);,., 4_z- The limiting values of( B/ B,)
limits given by Egs. (33) and (34) are shown in Figs. 2a andgiven by Eq. (37) are marked by the solid dots on the solid
b, respectively, by the horizontal dashed lines on the right-curves in Fig. 2, showing that they do indeed mark the tran-
hand sides of the figures, where they are seen to corresporgition between the two regimes of behaviour. The transition
closely to the full expressions shown by the solid lines for between the limiting values shown by the dashed lines in the
sufficiently large(B / B,). figure has also been taken to occur(&/B,)., ,_, for

The origins of the above dependencies of the current deneach accelerating potential, the resulting lines showing that
sity and kinetic energy flux of the accelerated and mirroredthe limiting value of(B/Bo) given by Eq. (37) occurs es-
particles on the accelerating potential in the non-relativisticsentially at the point of intersection between the correspond-
and relativistic regimes can be understood by consideringng dashed lines, as may be expected. For the lower curves
the properties of the accelerated particle shell in momentunin Fig. 2 corresponding t¢e® /kT) =2, the transition oc-
space, as depicted in Fig. 1. In the non-relativistic regime thecurs neal(B/BO) ~3, consistent with the momentum-space
radius of the shellin momentum space increases as the squaliiting lines and distribution function contours shown in
root of the potential (assumed large compared \{4th /¢)), Fig. 1a. For the upper curves in Fig. 2 withd /kT) =20
while its thickness varies inversely with the square root of and 200, however, the transitions occur at increasingly large
the potential. Consequently, the volume of momentum spacealues of(B/B,), near~30 and~1000, respectively, con-
occupied by the accelerated mirrored particles, and hence thgstent with Figs. 1b and c. Although vaIu@B/Bo) ~1000
density, increases overall as the square root of the potentiamay seem rather large, we note that for the dipole field of
The mean speed of the particles along the field lines also ina planetary body it simply represents the ratio between the
creases as the square root of the potential, so the current defield strength near the surface and that at a point at a distance
sity overall increases in direct proportion to the potential, andof ~10 planetary radii, which for one of the giant planets
the kinetic energy flux as the square, as in Eq. (35). In therepresents a point well inside the magnetospheric cavity.
relativistic regime, however, the radius of the shell in mo-

mentum space increases in direct proportion to the pOtem'alresults may be obtained by plotting the current density

while its thickness tends to the constant valugT /c). The 14 yinetic energy flux versus the accelerating potential at
density of the accelerated mirrored patrticles in this case thuﬁxed (B/B ) as shown in Fig. 3. As in Figs. 1 and 2
o) . . . y

increases as the square of the potential. The mean speed of

2 _ i -
the particles along the field lines also tends to the constan\{ve ha.ve. choser@mc /kT) =20, c_orres.pondln.g.t.o a non
relativistic unaccelerated population with an initial temper-

value(c/z), so that overall, the current density increases as

: o ature of~25keV for electrons, and show the variations of
the square of the potential, and the kinetic energy flux as thefhe normalized fluxes versi(s® /kT) over the range from
cube, as in Egs. (33) and (34).

Summarising, then, the results shown in Fig. 2, we noteo'1 to 10, corresponding to potentials from2.5kV to

that the current density and the kinetic energy flux follow the 250 MV .Thls range thqs spans tge non-relativistic and fully
limiting forms given by Egs. (28) and (29) for sufficiently relativistic regimes, with(e® /me )=(ed>_/_kT)/20 vary”
small(B / B,) (limit“A”), while following the limiting forms "9 between 0.005 and 500. The transition between these
given by Egs. (33) and (34) for sufficiently Iarg(sB/Bo) regimes (for an mmglly non-relativistic population), corre-
(limit “B"). The former limit applies when the inequality in  SP°"ding to(e®/mc?) =1, thus occurs afed /kT) =20,

Eq. (30) is satisfied, while the latter applies when the oppo-near th.e mlddlg of each plot. The lower, m|ddle_, 'ar?d up-
site inequality in Eq. (32) is satisfied. It thus seems appropri-per solid lines in each panel then show the relativistic val-

ate to take the condition which separates the two regimes t es of the normalised current density and kinetic energy flux
be given by or (B/B,) =10, 100, and 1000, respectively, obtained from

Egs. (23) and (26), while the dotted lines show the corre-
" sponding non-relativistic approximations given by Eqs. (24)
“Y_ o — =1

<8L <2) ¢ M) ’ (36) and (27). The long-dashed lines also show the limiting val-

such that the distribution function given by Eqg. (6) ure]s fo(;(Br/]B&’)l__’oo ?]iven ﬁy Egs. (?;3)_a_nc_i (34),wh_i|e the
at the limiting energy at 90 pitch angle is given by short-dashed lines show the non-relativistic approximations

(€L (3))/ fo=1/e. Then introducing the expression for given by Egs. (35a, b).

Further insight into the physical significance of these

&r (%) given by Eq. (7c) and solving fqu/Bo) for given We first consider the results for the current density shown
¢=(e® /kT), yields the limiting value in Fig. 3a. For small accelerating potentials on the left-
hand side of the figure, the value ¢B/B,) is suffi-
B b ((%) 42 (nlz_cT) n 2) cient in each_ case to result in near isotropy in the gcceler
<_> =1+ (_) . (37) ated population beneath the voltage drop (i.e. the inequal-
Bo Jima-B kT (2 (’Z—‘Tz) + 1) ity in Eq. (32) is satisfied), such that the curves closely ap-

proximate the(B /B,) — oo limit given by Eq. (33) (limit
The limits given by Eqgs. (28) and (29) then ap- “B”), shown by the long-dashed line. Fc(ecb/kT) >1
ply when (B/B,) < (B/B.), 5 While the oppo- the current density thus increases linearly with the poten-
site limits given by Egs. (33) and (34) apply when tial in the non-relativistic regime, and as the square of the
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Fig. 3. Plots showing the variation ¢f) the normalised field-aligned current dens@}n /jllo) (or number flux), andb) the normalised
field-aligned kinetic energy flugW;; /W,) of the accelerated population, plotted versus normalised acceleration pofedtjai7’) for

fixed values of the magnetic field rat((B/Bo) beneath the voltage drop. The fluxes are normalised to the corresponding values for the
unaccelerated population in each case, given by Eq. (17). The three pairs of solid and dotted lines in each plot correspond to the relativistic
values and non-relativistic approximations, respectively,(lb/B,,) =10, 100, and 1000, from the bottom to the top of each plot. These
curves are given by Egs. (23) and (24) for the current density, and Egs. (26) and (27) for the kinetic energy flux. As in previous figures, all

curves are for a non-relativistic unaccelerated population satis(ymﬁ/kT) =20, corresponding tkT~25 keV for electrons. Relativistic

accelerations satisfyinébe/mcz) >1 thus correspond t(IzCD/kT) >20. The long- and medium-dashed lines correspond to the relativistic

value and the non-relativistic approximation, respectively, of the limiting quxeéEq!rBo) — oo (limit “B”), given by Egs. (33) and (35a)

for the current density, and Egs. (34) and (35b) for the kinetic energy flux. The solution curves in each case follow this limiting behaviour for
sufficiently small(e® /kT), before asymptoting to the opposite limit (limit “A”) given by Eqs. (28) and (29) at sufficiently lerde/kT).

The transition between these two limiting regimes on each solid curve is shown by the solid dot, whose position is determined by the
condition given by Eq. (36), specifically by Eqg. (38).

potential in the relativistic regime. Eventually, however, as Turning now to the curves for the kinetic energy flux
(e®/kT) increases, the given value ¢B/B,) becomes shown in Fig. 3b, it can be seen that their behaviour follows
insufficient to maintain isotropy, so that a transition takesexpectations based on the above discussion. For sufficiently
place to the opposite limit (limit “A”) in which local mirror-  small(e® /kT) the curves follow thg B / B,) — oo limiting

ing is insignificant, such tha(tho/jH) ~ (B/Bo), as given  behaviour (limit “B”) for a near-isotropic accelerated pop-
by Eqg. (28). Each solid curve thus eventually ceases to inulation given by Eq. (34), increasing (wheénCD/kT) >1)
crease with(e® /kT), and asymptotes to its corresponding as the square of the potential in the non-relativistic regime,
limiting value of (ji / jiio)m 4 = (B/Bo). The dotted curves  and as the cube of the potential in the relativistic regime.
showing the non-relativistic behaviour asymptote to the samédHowever, in the vicinity of the potential shown by the
values even in the fully relativistic regime, since this lim- solid dot on each curve, given again by Eq. (38), a transi-
iting value is determined only by conservation of the par-tion takes place to the opposite regime of behaviour (limit
ticle number flux. The transition between the two regimes*A”) for sufficiently large (e®/kT), given by Eq. (29),
occurs near the point where Eq. (36) is satisfied, yieldingdetermined by conservation of kinetic energy flux along
a quadratic equation fofe® /kT') at fixed (B/B,)  the magnetic flux tubes beneath the voltage drop. When

lim A—B
which is equivalent to Eq. (37), gil\r/nen by (mc?/kT) >1and(e® /kT) 1, Eqg. (29) becomes approx-
imately (W, /Wj,,) ~3 (B/B,) (e® /kT), such that the ki-
<Q) _ netic energy flux is proportional to the field rafi / B,) and
kT J\im a—B increases linearly with the potential, as seen onRkkside
of Fig. 3b.
N ) (B ) (2 41 ’
kT B, kT
2 4 Implications for auroral voltages
() +1 (38)
kT Let us now consider explicitly the implications of the results

shown in Fig. 3 for the flow of electric current along the mag-
As in Fig. 2, this point is shown by the solid dots on each netic field lines between some central planetary body and its
solid line, and marks the transition between the two regimesxternal magnetosphere. Suppose that the magnetosphere-
of behaviour in each case. ionosphere coupling current circuit requires the flow of an
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upward-directed current of magnituglgjust above the iono- e/kT
sphere, where the field strengthBs to be carried by mag-
netospheric electrons, and that this is larger than the max-
imum current that the latter unaccelerated population can
carry, jjj», depending on the magnetospheric number density w |
N, and the temperaturg through Eq. (17a). The range of
solutions of the normalised accelerating poter(tm/kT)
and acceleration region height (or equivalently the field ratio *¢
(B/B,)) that will produce the required current density atthe |
required field strength in the ionosphere is then determined
by the solution curves such as those shown in Fig. 3a (for
(mc?/kT) =20 in that case) which pass through the hori-
zontal line representing the required value of the current ratio
(fll/jllo)- Consideration of the form of the curves in Fig. 3a Fig. 4. Plot_ showing the nqrmalized a_ccele.rating_ potential
then shows that the range of potentials varies from a mini-(¢®/kT) required to produce a fixed normalised field-aligned cur-
mum value given by the solution to Eq. (33), upwards to in- rent density( i /jjj0), versus the field rati¢B / B, ), for a fixed un-
finity, with a range of correspondin@ / B,) values varying ~ accelerated population with temperature giver(lwz / kT) =20
downwards from infinity ta B / B,) = (ji| / jijo)- (as in Figs. 1-3). From bottom to top the three solid lines are for

Paraphrasing this discussion, therefore, in order to carry dJi/Jilo) =50, 100, and 200, respectively. For each curve, the cor-
cuten(y/ ) >3, th inmumheightof the accsleston 'S ol e ons WS
region is given by the conditio Bo) = i1/ jilo), corre- e T ! ; .
spg(])ndinggto an i)rQﬁnite accelesﬁég |)30te(g1|t|iéllj,”s)uch that the(B/B") -~ (limit *B7). The vertical daSh.ed !lne; show the min-

. _ _ imum possible value of B/ B,) (equal to(jjj/jjj») in each case),

total flux of down-going electrons at that altitude is acceler-

. . . where the required potential diverges to infinity (limit “A”). It can
ated into the ionosphere to produce current dengigtfield  pe seen that the required voltages drop rapidly toward the minimum

strengthB. Assuming a dipole magnetic field in which the vajue for (B/B,) values only modestly larger than the minimum,
field strength falls along the polar field lines approximately by factors of two or three.

as the cube of the radial distance from the planetary centre,
the minimum radial distance of the acceleration regigris
then given by given by the solution to Eqg. (33). Each corresponding ver-
tical dashed line also marks the minimum possible value of
R, il Y 39 B/BO) for that normalised current density (just given by
( R )min ~ <j||0> ’ (39) B/B,)=(jii/jie)). corresponding to the minimum height
where the required acceleration potential diverges to infin-
whereR is the radial distance of the ionosphere, usually es-ity. It can be seen that the required acceleration potential
sentially equal to the radius of the body concerned. This isfalls rapidly for Iarger(B/Bo) values towards the minimum
the same limit as employed in previous studies e.g. by Cowvalue given by Eq. (33), and is close to the latter value for
ley et al. (2003, 2004, 2005), since it depends only on particlefield strength ratios that are factors of only two or three larger
flux conservation and is independent of relativistic consider-than the minimum value. Consequently, it seems appropriate
ations. For acceleration regions located increasingly aboveg take the minimum value as a reasonable measure of the
this minimum height, however, the required potential falls to acceleration potential that will form in practice for a given
a minimum value as the field strenghh falls to low values  field-aligned current, given by Eq. (33), as has been routinely
(strictly to zero), determined by the solution of the quadratic assumed in previous work using the non-relativistic approx-
expression in Eq. (33). The corresponding relativistic expresimations. The corresponding minimum value of the precipi-
sion for the minimum value of the particle kinetic energy flux tating kinetic energy flux is then that given by Eq. (34).
is then given by Eq. (34). In Figs. 5a and b we thus finally show the variations of the
It is important to note, however, that the acceleration re-field-aligned current density and kinetic energy flux, respec-
gion does not generally have to be located far above theively, normalised to the corresponding values for the unac-
minimum height for the required potential to fall to values celerated population, plotted versus the minimum accelera-
comparable with the lower limit given by Eq. (33). Exam- tion potential energy over the range from 1 keV to 100 MeV,
ples are given in Fig. 4, where we show the variation of as given by Egs. (33) and (34). The upper, middle, and lower
the normalised accelerating potent{@kb /kT) versus the  solid lines in each figure show the flux values given by these
field ratio(B /B, ) required to produce fixed normalised cur- equations for thermal energies of the unaccelerated popula-
rent densities, for(mcz/kT) =20 (thus corresponding to tion given bykT=1, 10, and 100 keV, respectively. The dotted
Fig. 3a and other figures). From bottom to top in the fig- lines show the corresponding values for the non-relativistic
ure, the solid lines show results f()jH/jHO) =50, 100, and approximations given by Egs. (35a, b). It can be seen that the
200. For each curve the corresponding horizontal dashedolid lines follow these approximations in the non-relativistic
line shows the limiting minimum potential f§B /B,) ~oo  regime fore®<mc?~511 keV, the current density increasing
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Fig. 5. Plots showing the variation &) the normalised field-aligned current densﬁm /j”(,) (or number flux), andb) the normalized
field-aligned kinetic energy fIUJ@WH/WHO), versus the minimum acceleration potential ener@yin keV, given by Egs. (33) and (34),
respectively. The fluxes are normalised to the corresponding values for the unaccelerated population in each case, given by Eq. (17). The
upper, middle, and lower solid lines in each panel show the relativistic flux valuégfef, 10, and 100 keV, respectively, while the non-
relativistic approximations given by Egs. (35a, b) are shown by the corresponding dotted lines. The long-dashed lines show the final term
only on theRH sides of Egs. (33) and (34), plotted in the relativistic region widre mc2~511 keV.

linearly with the potential, and the kinetic energy flux as the the non-relativistic limit, assuming an isotropic Maxwellian
square, in the regime whee®>kT for each curve. How- source population, and found that for an acceleration region
ever, the relativistic flux values increasingly diverge to larger at sufficient altitude (for which the required accelerating po-
values in the relativistic regime wheksb>mc2. In this tential is a minimum), the current (assumed well above the
regime the normalised flux values are dominated by the fidimiting value) increases linearly with the voltage. Lundin
nal term on theRH sides of Egs. (33) and (34), as indi- and Sandahl (1978) subsequently calculated the precipitat-
cated by the long-dashed lines in Fig. 5, which show theing energy flux on the same basis, and found that it increases
final terms alone for acceleration potential energies aboveas the square of the potential, or equivalently as the square
mc?~511keV. Under these relativistic conditions we thus of the current density. These results have subsequently been
find that the current density increases as the square of thextended by a number of authors to include other forms for
potential, or equivalently that the potential increases as théhe source distribution, and have been applied extensively to
square root of the current density, and that the kinetic energyhe auroral acceleration process in the terrestrial system.

flux increases as the cube of the potential, or equivalently as The non-relativistic approximation is indeed well satisfied

the current density to the three-halves power. in the terrestrial system, where accelerating potentials are
typically in the range~1-10KkV, such that the energy of the
accelerated particles is much less than the electron rest mass
of ~511 keV. Indeed, the total voltage associated with the so-

Large-scale current systems flowing between the magnetol-ar W'nd mteractl_on across '_che whole ma_gnetosph(_are, repre-
enting the maximum possible potential in the static case, is

spheres and ionospheres of planetary bodies are set up when . . ;
ever they exchange momentum via the magnetic field thafmly ~50-100kV. However, observations of the “main oval

links them. The forces are exerted via the cross-field current?ur?ras in The {O\é'ar: systtehm ]'P%C?te that glztigf%r:)ska(/e rou-
flowing in these bodies of plasma, while the current circuit In€ly accelerated along the field 1o energie ev,

is completed by upward- and downward-directed currentsSometimes reaching several hundred keV, these values com-

flowing along the linking field lines. The upward-directed paring with cross-field voltages in the outer and middle mag-
field-aligned currents are of special significance, since theynetosphere of order10 MV. Such observations thus suggest

are generally dominantly carried by downward-precipitatingIthte geed to conglder Ehe Lela.tlwlstlc rteglmehln th"cl’ caze. Rg_—
electrons from the hot, tenuous magnetospheric plasma. Th&t€d Processes in astrophysical Systems have aiso been dis-
current that such particles can carry is, however, subject tésussed in which electrons are accelerated to highly relativis-

strict limitation, and when the requirement for current by the tic energies.

circuit exceeds this limit, field-aligned voltages must appear In this paper we have therefore considered the relativis-
along the field lines which accelerate the magnetospheridic problem of the field-aligned acceleration of auroral elec-
electrons into the ionosphere, thereby increasing both thérons through an arbitrary field-aligned potential, assuming
current (number flux) and the kinetic energy flux of the pre- for simplicity, and in keeping with Knight (1973) and many
cipitating particles. Knight (1973) originally calculated the previous works, that the source population is an isotropic
current-voltage relationship for hot precipitating electrons in Maxwellian, of arbitrary temperature. We have mapped the

5 Summary
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particle distribution function across the voltage drop into the celerating potential falls rapidly to a minimum value given by
region of increasing magnetic field strength on the other sidehe second of the above limits (limit “B”), which can thus be
using Liouville’s theorem, together with conservation of to- taken as a reasonable estimate of the potential likely to occur
tal energy and the magnetic moment invariant, assuming foin practice. When the required current density considerably
simplicity that the acceleration region is sufficiently com- exceeds the maximum for the unaccelerated population, the
pact along the field that magnetic mirroring within it can current density depends linearly on the accelerating potential
be neglected. By integration of suitable moments over then the non-relativistic regime in this limit, and the kinetic en-
accelerated particle distribution, we have then obtained exergy flux as the square, as found previously by Knight (1973)
act analytic expressions for the field-aligned current densityand Lundin and Sandahl (1978). However, when the acceler-
(number flux) and kinetic energy flux of the accelerated par-ating potential energy exceeds the electron rest energy in the
ticles (Egs. 23 and 26), as functions of the temperature andelativistic regime, we find that the current density instead
density of the source plasma, the accelerating potential, anthcreases as the square of the potential, or in other words that
the field strength beneath the acceleration region. We havéhe potential increases as the square root of the required cur-
also shown that these expressions reduce to the well-knowrent. In the same limit, the kinetic energy flux increases as
non-relativistic results of Knight (1973) and Lundin and San- the cube of the potential, or equivalently as the three-halves
dahl (1978) in the appropriate limit (Egs. 24 and 27). power of the current density.
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