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Abstract. The structure and spectrum of standing Alfvén
waves were theoretically investigated in a dipole magne-
tosphere with moving plasma. Plasma motion was simu-
lated with its azimuthal rotation. The model’s scope allowed
for describing a transition from the inner plasmasphere at
rest to the outer magnetosphere with convecting plasma and,
through the magnetopause, to the moving plasma of the so-
lar wind. Solutions were found to equations describing lon-
gitudinal and transverse (those formed, respectively, along
field lines and across magnetic shells) structures of stand-
ing Alfv én waves with high azimuthal wave numbersm�1.
Spectra were constructed for a number of first harmonics of
poloidal and toroidal standing Alfv́en waves inside the mag-
netosphere. For charged particles with velocities greatly ex-
ceeding the velocity of the background plasma, an effective
parallel wave component of the electric field appears in the
region occupied by such waves. This results in structured
high-energy-particle flows and in the appearance of multi-
band aurorae. The transverse structure of the standing Alfvén
waves’ basic harmonic was shown to be analogous to the
structure of a discrete auroral arc.

Keywords. Magnetospheric physics (Auroral phenomena;
Magnetosphere-ionosphere interactions; MHD waves and
instabilities)

1 Introduction

Alfv én oscillations in a magnetosphere are known to enjoy
two types of polarisation (Dungey, 1954; Radoski, 1967,
1969). Oscillations in an axisymmetrical magnetosphere,
exemplified by a dipole magnetic field model, may be rep-
resented as the sum of azimuthal harmonics of the form
exp(imφ), wherem is the azimuthal wave number,φ is
the azimuthal angle. Oscillations withm→∞ are termed
toroidally polarised, while those withm=0 are poloidally
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polarised oscillations. In toroidal Alfv́en oscillations, the
disturbed magnetic field and plasma fluctuate azimuthally,
while the electric field fluctuates radially across magnetic
shells. For poloidal oscillations the case is reversed: the
magnetic field and plasma fluctuate radially, while the elec-
tric field fluctuates azimuthally. Each geomagnetic field
line crosses the Earth’s ionosphere in both the Northern
and Southern Hemispheres. Alfvén oscillations, propagating
chiefly along these field lines, form standing waves between
the magnetoconjugated ionospheres.

Each magnetic shell was shown inKrylov et al. (1981) to
be characterised by two sets of standing Alfvén wave eigen-
frequencies. One corresponds to poloidal waves the other,
to toroidal Alfvén waves. Alfv́en oscillations withm 6=0,∞
are not purely poloidal or toroidal. Their polarisation may
be chiefly poloidal/toroidal, depending on the ratio between
their characteristic spatial scales in the azimuthal and radial
directions.

The polarisation of standing Alfv́en waves generated by
the field line resonance mechanism, withm∼1, is almost
toroidal (Southwood, 1974; Chen and Hasegawa, 1974;
Leonovich and Mazur, 1989). A theory of such oscillations
was originally developed for a one-dimensionally inhomo-
geneous model of the magnetosphere (Chen and Hasegawa,
1974; Southwood, 1974). Papers were published later in
which this process was examined in models of a magneto-
sphere inhomogeneous along two coordinates – along mag-
netic field lines and across magnetic shells. A box model
with straight magnetic field lines was discussed inSouth-
wood and Kivelson(1986), a model of the magnetosphere as
a semicylinder inAllan et al.(1986), and models with dipole
magnetic field inChen and Cowley(1989); Leonovich and
Mazur(1989); Wright (1992).

Nonlinear effects in the resonant Alfvén waves proved to
be very interesting and important for the dynamics of mag-
netospheric charged particles. Thus, ponderomotive forces
arise in a nonlinear Alfv́en wave (Rankin et al., 1994; Al-
lan and Manuel, 1996), capable of accelerating electrons
along magnetic field lines up to an energy of several kev.
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Fig. 1. A model magnetosphere with a dipole magnetic field
and azimuthally rotating plasma (v=(0, vφ,0)). Coordinate sys-
tems tied to magnetic field lines are shown: a curvilinear orthogonal
system of coordinates (x1, x2, x3) and a non-orthogonal system of
coordinates (a, φ, θ ) used in numerical computations.

Precipitating in the ionosphere, these electrons are capable
of triggering aurorae in polar latitudes. Taking into account
dispersion kinetic effects in Alfv́en waves allows a longitudi-
nal electric fieldE‖ to be revealed in these waves (Hasegawa,
1976; Goertz, 1984). In a nonlinear Alfv́en wave, theE‖

amplitude is one order of magnitude larger than in a linear
one (Frycz et al., 1998). Taking into account the nonlocal
conductivity effect for electrons in the field of a nonlinear
Alfv én wave can increaseE‖ by several orders of magnitude
(Rankin et al., 1999; Tikhonchuk and Rankin, 2000; Samson
et al., 2003; Watt et al., 2004). This is related to the fact that,
within one oscillation period of an Alfv́en wave, electrons
experience multiple bounce oscillations along field lines be-
tween the reflection points. Accelerated by the wave’s longi-
tudinal electric field, electrons can acquire energy necessary
for aurorae to emerge in the ionosphere. Besides, kinetic dis-
persion effects and nonlinearities result in Alfvén oscillations
being nonlinearly structured across magnetic shells (Rankin
et al., 2004).

The structure of standing Alfv́en waves withm�1 is more
complicated. They are excited by a monochromatic source
as nearly poloidal oscillations on the magnetic shell whose
source frequency coincides with a poloidal eigenfrequency of
the Alfvén oscillations. Later on, they slowly (much slower
than the Alfv́en velocity) travel across magnetic shells to the
shell whose toroidal eigenfrequency of Alfvén oscillations
equals that of the source’s frequency. Alfvén oscillations are
entirely absorbed in the neighbourhood of this shell because
of their dissipation in the ionosphere. In the process of this
displacement, standing Alfvén waves change their polarisa-
tion from nearly poloidal to nearly toroidal (Leonovich and
Mazur, 1993).

All the above-cited investigations involved model magne-
tospheres with quiescent plasma. The actual magnetosphere
is a configuration with its plasma in dynamical equilibrium.
In other words, motion is an inalienable property of the mag-
netospheric plasma. This factor is of doubtless importance in
forming the structure and spectrum of the magnetosphere’s
Alfv én eigen oscillations. This work is a first-attempted

theoretical exploration of the effects taht the magnetospheric
plasma motion exerts on the structure and spectrum of stand-
ing Alfv én waves with high azimuthal wave numbersm�1.
The research employed a self-consistent model magneto-
sphere with a dipole magnetic field, in which plasma mo-
tions were simulated by its azimuthal rotation (Leonovich et
al., 2004).

The paper is structured as follows. Section 2 provides
a brief description of the model magnetosphere, as well as
deriving the principal equation describing the structure and
spectrum of standing Alfv́en waves withm�1 in an axisym-
metrical magnetosphere with rotating plasma. Section 3 ex-
plores the longitudinal structure (the one forming along field
lines) and spectrum of standing Alfvén waves near a toroidal
resonant shell. An equation is derived describing the struc-
ture of these oscillations across magnetic shells. Section 4
describes similar research carried out near a poloidal res-
onant shell. Section 5 produces a solution for the model
equation describing the structure of monochromatic stand-
ing Alfv én waves across magnetic shells in the entire region
of existence. Section 6 presents results of numerical calcu-
lations covering the spatial structure and spectrum of several
first harmonics of these oscillations. Section 7 compares the
standing Alfv́en waves’ spatial structure and propagation ve-
locity to the structure and characteristic dynamics of discrete
auroral arcs. The Conclusion lists the principal results of this
research.

2 Model medium and major equations

To solve the problem posed, let us employ a model magneto-
sphere with a dipole magnetic field and azimuthally rotating
plasma (Fig. 1). A self-consistent analytical model of such
a magnetosphere was presented inLeonovich et al.(2004).
Rotating plasma simulates both its convective motion inside
the magnetosphere and the solar wind flow around the mag-
netosphere. Whereas plasma in the process is affected by
centrifugal forces, the equilibrium of the plasma configura-
tion is sustained by the gas-kinetic pressure gradient. This
rather simple model allows for a realistic description of the
distribution of plasma parameters in the dayside magneto-
sphere – the plasmapause and magnetopause included. Note
that it is not the only possible way to construct a balanced ax-
isymmetrical model with rotating plasma. Analogous models
were presented inBespalov and Chugunov(1984); Soldatkin
and Chugunov(2003), where a system’s dynamic equilib-
rium was sustained thanks to the Earth’s gravity field and
self-consistent generation of currents in a differentially ro-
tating plasma. They are more sophisticated electrodynamic-
equilibrium models. Our goals of exploring the plasma mo-
tion effect on the structure of standing Alfvén waves, how-
ever, are quite satisfied by using the above simpler model. It
includes the actual magnetosphere’s major elements neces-
sary for the problem posed: a dipole magnetic field, a dif-
ferentially rotating plasma and the presence of a gas-kinetic
pressure gradient.
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To examine Alfv́en oscillations in this model, we will use
the system of ideal MHD equations:

ρ
dv
dt

= − ∇P +
1

4π
[curlB × B], (1)

∂B
∂t

= curl[v × B], (2)

∂ρ

∂t
+ ∇(ρv) = 0, (3)

d

dt

P

ργ
= 0, (4)

whereB andv are magnetic field vectors and plasma motion
velocities,P andρ are the plasma pressure and density,γ is
the adiabatic index. In Eqs. (1) and (4), d/dt=∂/∂t+(v∇)

represents the Lagrangian derivative in a moving plasma. In
a steady state (∂/∂t=0), the set of Eqs. (1–4) describes the
distribution of the plasma equilibrium parametersB0, v0, P0
andρ0.

We introduce a curvilinear orthogonal coordinate system
(x1, x2, x3) tied to magnetic field lines. Thex3 coordinate
is directed along the field line,x1 across magnetic shells,
whereasx2 is directed azimuthally and complements the co-
ordinate system so that it becomes right-handed. In this sys-
tem of coordinatesB0=(0, 0, B03), v0=(0, v02, 0), while the
length element has the form

ds2
=g1(dx

1)2+g2(dx
2)2+g3(dx

3)2,

wheregi (i=1, 2, 3) are metrical tensor elements. Using
the azimuthal angleφ as the azimuthal coordinate yields
v02≡vφ=

√
g2�, where� is the angular speed of the ro-

tating plasma. Note that in the model under examina-
tion, the plasma rotation on each magnetic shell proceeds
with a constant angular velocity�≡�(x1). The portion
of the magnetosphere below the plasmapause, correspond-
ing to the plasmasphere, is assumed to be at rest. Pass-
ing through the plasmapause, the plasma rotation velocity
reachesv02∼30−50 km/s, a value characteristic of convec-
tive plasma motion in the outer magnetosphere. Passing
through the magnetopause, the plasma velocity increases to
v02≈400 km/s, typical of the solar wind.

We linearise the system of Eqs. (1–4) relative to the
smaller disturbances due to the plasma MHD oscillations
and consider the monochromatic oscillations of the form
exp(−iωt+ik2x

2), whereω is the oscillation frequency,k2
is the azimuthal wave vector (ifx2

=φ is the azimuthal angle,
thenk2≡m=0,±1,±2, . . . is the azimuthal wave number).
The first two equations Eq. (1) yield

−ρ0(iω̄v1 + v2�∇1 ln g2)−
ρ̃�2

2
∇1g2 =

−∇1P̃ −
B0

4π

1
√
g3
(∇3B1 − ∇1B3), (5)

ρ0(−iω̄v2 + v1
∇1(g2�)

g1
+
v3�

g3
∇3g2) =

−ik2P̃ −
B0

4π

1
√
g3
(ik2B3 − ∇3B2), (6)

where∇i≡∂/∂x
i (i=1,2,3), while vi andBi are the dis-

turbed velocity and disturbed magnetic field vector com-
ponents,P̃ and ρ̃ are the plasma’s disturbed pressure and
density. The added notation̄ω=ω−m� here refers to the
Doppler-shifted oscillation frequency in rotating plasma.

To describe MHD perturbations propagating in the plasma,
it is convenient to switch from the components of the elec-
tromagnetic field and disturbed velocity field to potentials.
According to the Helmholtz expansion theorem (Korn and
Korn, 1968), an arbitrary vector field can be represented as
the sum of the vortex-free and solenoidal fields.

We represent the disturbed electric field of the oscillations
as

E = −∇ϕ + curl9,

whereϕ is the scalar potential, and9=(ψ1, ψ2, ψ3) is the
vector potential. This obviously implies thatE is invari-
ant to an arbitrary constant added to the scalar potential
ϕ→ϕ+const and to an arbitrary gradient added to the vector
potential9→9+∇χ . Without loss of generality, one can
choose const=0, while choosing∇χ such thatψ1+∇1χ=0,
i.e.9=(0, ξ, ψ), whereξ=ψ2+∇2χ , ψ=ψ3+∇3χ .

The electric,E, the magnetic,B, and velocityv, fields of
oscilaltions are related by Eqs. (2), and by the equation

E = −
1

c
(v × B0 + v0 × B),

that allow for the components ofB andv to be expressed in
terms of the potentialsϕ, ξ andψ . Based on Eqs. (3) and (4),
one can also express the disturbed densityρ̃ and the pressure
P̃ in terms of the potentials.

We will focus our interest on oscillations withm�1 in the
neighbourhood of resonant surfaces. As further calculations
will show, the potentialϕ has a singularity on these surfaces.
The field of resonant Alfv́en oscillations can be expressed
through it.

The potentialsξ andψ have no such singularities and, in
zero approximation, can be neglected. Note that it can only
be done for oscillations withm�1. Whenm∼1, the poten-
tial ψ , that describes magnetosonic oscillations as well, can
play the role of a source for Alfv́en waves via the field-line
resonance mechanism. Whilem�1, magnetosonic oscilla-
tions practically do not penetrate the magnetosphere and are
unable to effectively excite Alfv́en waves (Leonovich and
Mazur, 2000).

The expressions for components of the Alfvén oscilla-
tions’ electromagnetic and velocity fields associated with the
potentialϕ are:

E1 = −∇1ϕ, E2 = −ik2ϕ, E3 =
k2�

ω̄
∇3ϕ,

B1 =
k2c

ω̄

g1
√
g

∇3ϕ,

B2 = i
c

ω̄

g2
√
g

∇3

(
∇1 − k2

�′

ω̄

)
ϕ, B3 = 0,

v1 = −i
k2

p

c

B0
ϕ, v2 =

cp

B0
∇1ϕ,
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v3 ≈ i
cp

B0

�

ω̄
(∇3 ln g2)∇1ϕ, (7)

whereg=g1g2g3,�′
≡∇1�. Note that a stationary system of

coordinates associated with Earth witnesses the emergence
of longitudinal components of the electric field of oscilla-
tionsE3 6=0 and of the velocity fieldv3 6=0. This effect can
prove to be of importance in the dynamics of the magneto-
spheric plasma ions and electrons, and in their precipitation
into the ionosphere. Until now, the presence ofE‖ andv‖ in
Alfv én waves has been thought to be associated with small
kinetic effects, such as a finite ion Larmor radius or elec-
tron skin-length (Hasegawa, 1976; Goertz, 1984). It follows
from Eq. (7), for particles that are at rest relative to Earth (but
moving relative to the background magnetospheric plasma),
E‖/E⊥∼v‖/v⊥∼vφ/A in order of magnitude.

To obtain an equation for Alfv́en waves, let us multiply
Eq. (5) by ik2B0/ρ0, and Eq. (6) by B0/ρ0, take a deriva-
tive ∇1 of Eq. (6) and subtract Eq. (6) from Eq. (5). For
virtually the entire magnetosphere the inequalityS, v20�A

holds true, whereA is the Alfvén velocity,S=
√
γP0/ρ0 is

the sound velocity in plasma. Therefore, terms of orderS/A

andv02/A will be assumed to be small. The resulting equa-
tion for transverse small-scale (m�1) Alfv én waves has the
form:

∇1L̂T∇1ϕ − k2
2L̂Pϕ + k2

∇1�

ω̄
∇1L̂T 0ϕ = 0, (8)

where

L̂T = L̂T 0 − βT ,

L̂P = L̂P0 − βP ,

are the toroidal and poloidal longitudinal operators

L̂T 0 =
1

√
g3

∇3
p

√
g3

∇3 + p
ω̄2

A2
,

L̂P0 =
1

√
g3

∇3
p−1

√
g3

∇3 + p−1 ω̄
2

A2
,

are the zero approximation operators in a cold (P0=0) sta-
tionary (�=0) plasma,

βT = p
�2

A2

(
∇3g2
√
g2g3

)2

,

βP = p
�2

2A2 (∇1 ln g2)

(
∇1 ln

ρ0
√
g3

B0

)
+

+
S2

A2

∇1 ln ω̄/B0
√
g1g2

(
∇1 ln

P
1/γ
0

√
g3

B0

)
,

are the corrections due to the plasma motion and pressure.
The additional notationp=

√
g2/g1 is used here. As

long as we are examining transverse small-scale oscillations,
Eq. (8) retains only the basic terms quadratic on transverse
derivatives(∇1ϕ,∇2ϕ). If the plasma is cold (P0=0) and
stationary (�=0), Eq. (8) transforms into the familiar equa-
tion describing the structure of Alfvén oscillations withm�1
in a cold plasma (Leonovich and Mazur, 1993). Analogous

research in the stationary magnetosphere with plasma un-
der pressure other than zero was conducted inKlimushkin
(1997). For �=0, P0 6=0, Eq. (8) transforms into a corre-
sponding equation of that paper.

3 The structure of Alfv én oscillations near a poloidal
resonant surface

As was shown inLeonovich and Mazur(1993), transverse,
small-scale Alfv́en waves can be excited in the neighbour-
hood of a poloidal resonant surface only. Their source cannot
be provided by fast magnetosonic waves generated outside
the magnetosphere or at its boundary with the solar wind.
Magnetosonic oscillations withm�1 practically do not pen-
etrate the magnetosphere. A possible source of such oscilla-
tions can be the ring current, appearing during geomagnetic
disturbances (Pilipenko, 1990). External currents in the iono-
sphere were discussed inLeonovich and Mazur(1993) as a
source of standing Alfv́en waves withm�1. This paper also
assumes such external currents to be present.

In this case, the boundary condition for the potentialϕ has
the form (Leonovich and Mazur, 1996):

ϕ|
x3
±

= ∓
v±

ω̄

1
√
g3

∂ϕ

∂x3

∣∣∣∣
x3
±

−
J±

‖

V±

(9)

on the ionosphere, where the notations are:

v± =
c2 cosχ±

4π6±
p

, V± =
6±
p

cosχ±

.

The signs± refer to the Northern and Southern Hemispheres,
χ is the angle between the vertical and the field line at its
intersection point with the ionosphere,6p is the integrated
Pedersen conductivity in the ionosphere, while the function
J‖ is related to the densityj‖ of external field-aligned cur-
rents in the topside ionosphere by

1⊥J‖ = j‖,

where1⊥=∇
2
1/g1−k

2
2/g2 is the transverse Laplacian. The

right-hand terms in Eq. (9) will be assumed to be small, im-
plying the values of the parametersv± and 1/V± to be small,
too.

The calculations that follow below will involve the basic
and several first harmonics of standing Alfvén waves. Since
we assume Alfv́en oscillations across magnetic shells to be
small-scale, the characteristic wave length onx1 coordinate
is much smaller than the longitudinal wave length onx3 co-
ordinate. In this context, the solution to Eq. (8) can be sought
in the form:

ϕ = U(x1)H(x1, x3) exp(ik2x
2
− iωt), (10)

where the functionU(x1) describes the small-scale struc-
ture of oscillations across magnetic shells, whileH(x1, x3)

describes their structure along geomagnetic field lines.
The scale of variations ofH on x1, in the meantime,
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Fig. 1. A model magnetosphere with a dipole magnetic field and azimuthally
rotating plasma (v = (0; v�; 0)). Coordinate systems tied to magnetic field
lines are shown: a curvilinear orthogonal system of coordinates (x1; x2; x3)
and a non-orthogonal system of coordinates (a; �; �) used in numerical com-
putations.
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Fig. 2. The structure of standing Alfven waves with toroidal (solidlines) and
poloidal polarisation (dashed lines). The curves are of thepoloidal,PN , and
toroidal,TN , eigenfunctions with unity amplitude for the first three parallel
harmonics (N = 1; 2; 3).
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Fig. 3. Dependency of the toroidal and poloidal eigenfrequencies
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various values of azimuthal wave number: (0)m = 0, (1)m = �20, (2)m = �50, (3) m = �100, (4) m = 20, (5) m = 50, (6) m = 100.
The upper curve displays the dependency of equatorial distance between the
poloidal and toroidal resonant shells.
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Fig. 2. The structure of standing Alfv́en waves with toroidal (solid
lines) and poloidal polarisation (dashed lines). The curves are of the
poloidal,PN , and toroidal,TN , eigenfunctions with unity amplitude
for the first three parallel harmonics (N = 1,2,3).

significantly exceeds the scale of variations ofU(x1):
|∇1U/U |�|∇1H/H |. Justification of the desired solution
in the form Eq. (10) is given in more detail inLeonovich and
Mazur(1993).

In the neighbourhood of a poloidal resonant surface, the
azimuthal wave length is much smaller than the radial:
k2

2�|∇1U/U |
2. The second term in Eq. (8), therefore, be-

gins to greatly exceed the other two. The functionH(x1, x3)

in the neighbourhood of a poloidal resonant surface is repre-
sented as

H(x1, x3) = P(x1, x3)+ h(x1, x3),

whereP(x1, x3) is a function describing the longitudinal
structure of standing Alfv́en waves and satisfying, in the
main order of perturbation theory, the equation:

L̂PP = 0. (11)

Boundary conditions on the ionosphere for function
P(x1, x3), in the same approximation, have the form

P(x1, x3
±) = 0. (12)

The solution of Eqs. (11), (12) are the poloidal eigen-
functions PN (x1, x3) and the corresponding eigenvalues
ω̄≡�PN (x

1), whereN=1,2, . . . is the longitudinal wave
number (the number of nodes of the functionPN (x1, x3) on
the field line beingN − 1). Let us define the normalisation
of the functionPN (x1, x3) with the following condition

`+∫
`−

P 2
N

p−1

A2
d` = 1, (13)

where integration is along a field line, whose length element
d`=

√
g3dx

3, while `± correspond to its intersection points
with the ionosphere in the Northern and Southern Hemi-
spheres.
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N=1. The numbers 0, 1, 2,. . ., 6 refer to curves of poloidal
eigenfrequencies with various values of azimuthal wave number:
(0) m=0, (1) m= −20, (2) m=−50, (3) m=−100, (4)m=20,
(5) m=50, (6)m=100. The upper curve displays the dependency
of equatorial distance between the poloidal and toroidal resonant
shells.
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Fig. 1. A model magnetosphere with a dipole magnetic field and azimuthally
rotating plasma (v = (0; v�; 0)). Coordinate systems tied to magnetic field
lines are shown: a curvilinear orthogonal system of coordinates (x1; x2; x3)
and a non-orthogonal system of coordinates (a; �; �) used in numerical com-
putations.
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toroidal,TN , eigenfunctions with unity amplitude for the first three parallel
harmonics (N = 1; 2; 3).
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poloidal and toroidal resonant shells.
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reference frame. The poloidal eigenfrequency values showncorrespond to
the azimuthal harmonicsm = 50 (solid lines) andm = �50 (dashed
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Fig. 4. Dependency of the toroidal (thick lines) and poloidal (thin
lines) eigenfrequencies�TN (x

1), �PN (x
1) on the magnetic shell

parameterL for the first five longitudinal harmonics (N=1, . . . ,5),
in the source reference frame. The poloidal eigenfrequency values
shown correspond to the azimuthal harmonicsm=50 (solid lines)
andm=,−50 (dashed lines).

The numerical solution of Eqs. (11), (12) is shown in
Figs. 2, 3 and 4. Figure 2 shows the structure of oscilla-
tions along field lines (functionPN (x1, x3)), whereas Figs. 3
and 4 depict the dependence of the eigenvalues�PN on the
magnetic shell parameterL (Figure 3 displays the basic har-
monic�P1(L), while Fig. 4 showsfPN=(�PN−m�)/2π ,
N=1,2,3, 4, 5). The solutions obtained are discussed in
more detail in Sect. 6.

Functionh(x1, x3) correctsP(x1, x3) in the higher orders
of perturbation theory. Boundary conditions for it have the
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form

hN (x
1, `±) = ∓

v±

�PN

∂PN

∂`

∣∣∣∣
`±

−
J±

‖

UN (x1)V±

. (14)

In the first order of perturbation theory, Eq. (8) serves to ob-
tain the equation

∇1L̂T (�PN )PN∇1UN − k2
2UN L̂P (�PN )hN −

k2
2UN

p−1

A2
(ω̄2

−�2
PN )PN +

k2�
′

�PN
L̂T (�PN )PN∇1UN = 0.

Premultiplying this equation byPN and integrating it along
a field line between the magnetoconjugated ionospheres
yields, in view of the normalisation condition Eq. (13):

αPN∇
2
1UN − k2

2[(ω̄ + iγPN )
2
−�2

PN ]UN +

αPN
k2�

′

�PN
∇1UN = IN , (15)

where the notations are:

αPN =

`+∫
`−

P 2
N

(
∂2p

∂`2
+ βP

)
d`,

γPN =
1

2�2
PN

[
v+

p+

(
∂PN

∂`

)
`+

+
v−

p−

(
∂PN

∂`

)
`−

]
,

IN =

[
j
(+)
‖

V+

√
g1g2

(
∂PN

∂`

)
`+

−
j
(−)
‖

V−

√
g1g2

(
∂PN

∂`

)
`−

]
.

One can see from Eq. (15) thatγPN acts as a decrement of
poloidal Alfvén waves, determined by their Joule dissipation
in the ionosphere. FunctionIN represents a source of oscil-
lations linked to external currents in the ionosphere. Equa-
tion (15) describes the structure of standing Alfvén waves
across magnetic shells near a poloidal resonant surface. A
solution to Eq. (15) may be found by linearising the coeffi-
cients in the neighbourhood of the poloidal resonant surface
x1

=x1
PN (where ω̄=�PN (x

1
PN )). An analogous solution

can be construed near a toroidal resonant surfacex1
=x1

TN

(whereω̄=�TN (x
1
TN )) as well, and these solutions are later

matched together across the gap using the WKB approxima-
tion on x1 coordinate. This rather unwieldy technique was
implemented inLeonovich and Mazur(1993). This paper
applies a different approach. Section 5 proposes a model
equation describing the structure of standing Alfvén waves
across magnetic shells in the entire region of existence, in-
cluding the poloidal and toroidal resonant surfaces. An ana-
lytical solution is found for this equation in the same section.

4 The structure of Alfv én oscillations near toroidal res-
onant surfaces

Near toroidal resonant surfaces, the characteristic wave
length (onx1 coordinate) of the Alfv́en oscillations across
magnetic shells under study is much smaller than that on
the azimuthalx2 coordinate. The Alfv́en oscillations are
generated considerably less effectively near the toroidal sur-
face than near the poloidal (Leonovich and Mazur, 1993).
Therefore, in the neighbourhood of the toroidal surface in
the boundary condition (9), the last term, related to external
currents in the ionosphere, can be ignored. Represent func-
tionH(x1, x3), describing the structure of oscillations along
a field line near the toroidal surface, as:

H(x1, x3) = T (x1, x3)+ h(x1, x3).

Here, the functionT (x1, x3) satisfies the zero-order equation

L̂T T = 0, (16)

with homogeneous boundary conditions on the ionosphere

T (x1, x3
±) = 0. (17)

The solution of Eqs. (16), (17) is represented by toroidal
eigenfunctionsTN (x1, x3) (N=1, 2, . . . being the longi-
tudinal wave number), with corresponding eigenvalues
ω̄=�TN (x

1). A numerical solution for Eqs. (16), (17) is
shown in Fig. 2 (eigenfunctions) and Figs. 3, 4 (eigenvalues).
These figures exhibit the structures of poloidal and toroidal
Alfv én waves along magnetic field lines as fairly similar. Nor
is there much difference between the eigenfrequencies of the
poloidal and toroidal oscillations. The exception is the ba-
sic harmonicN=1, for which the eigenfrequency splitting
1�1=�T 1−�P1 can reach a quarter of their value. Choose
the normalisation of eigenfunctionsTN (x1, x3) in the form

`+∫
`−

T 2
N

p

A2
d` = 1. (18)

We obtain from Eq. (8), in the first order of perturbation
theory, an equation for the functionUN (x1):

TN∇1
p

A2
(ω̄2

−�2
TN )∇1UN − k2

2UN L̂P (�TN )TN +

∇
2
1UN L̂T (�TN )hN = 0, (19)

describing the structure of oscillations across magnetic shells
near the toroidal resonant surface. Equation (19) is premul-
tiplied by TN and integrated along a field line between the
magnetoconjugated ionospheres. Given the boundary condi-
tion on the ionosphere Eq. (9), without the last term and the
normalisation condition Eq. (18), we obtain

∇1[(ω̄ + iγTN )
2
−�2

TN ]∇1UN − k2
2αTNUN = 0, (20)

where

αTN = −

`+∫
`−

T 2
N

∂2p−1

∂`2
d`,
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γTN =
1

2�2
TN

[
v+p+

(
∂TN

∂`

)
`+

+ v−p−

(
∂TN

∂`

)
`−

]
.

The functionγTN constitutes a decrement for toroidal Alfvén
waves due to their dissipation in the ionosphere. The next
section will rely on Eqs. (15) and (20) to propose a model
equation describing the structure of standing Alfvén waves
across magnetic shells in the entire region of existence.

5 The structure of standing Alfvén waves across mag-
netic shells

A technique was developed inLeonovich and Mazur(1997)
for describing the structure of standing Alfvén waves across
magnetic shells by means of a model equation. Combining
Eqs. (15) and (20), describing the structure of oscillations
in the neighbourhood of the poloidal and toroidal resonant
shells, one can construct a model equation
√
αPN∇1[(ω̄ + iγN )

2
−�2

TN ]∇1UN −

√
αPN

k2�
′

ω̄
[(ω̄ + iγN )

2
−�2

TN ]∇1UN −

√
αTNk

2
2[(ω̄ + iγN )

2
−�2

PN ]UN =
√
αTN IN , (21)

applicable for the entire region of existence. The same nota-
tions are used here as in the two previous sections. The only
exception is the decrementγN , which we will deem the same
for both the poloidal and toroidal oscillations.

Figures 3, 4 imply that a situation is typical for most
of the magnetosphere when�PN (x1)>�TN (x

1). Consider
just such regions of the magnetosphere. Since the functions
�PN (x

1) and�TN (x1) are similar enough, the characteris-
tic scale of their variation onx1 coordinate is virtually the
same. Let the source (external currents in the ionosphere)
generate a monochromatic oscillation in the magnetosphere,
with a certain value of the azimuthal wave numberm. In this
case, standing Alfv́en waves are excited near the resonant
surface, wherēω=ω−m�=�PN (x

1). Expanding the func-
tion�PN (x1) near this surface down to linear terms yields

�PN (x
1) ≈ ω̄

(
1 −

x1
− x1

PN

L

)
, (22)

whereL is the characteristic variation scale of�PN (x1) near
x1

=x1
PN . This representation is obviously not to be applied

near the extrema of the function�PN (x1), whereL→∞.
Analogously, one can factorise the function�TN (x1) in
the neighbourhood of the toroidal resonant surface (where
ω̄=�TN (x

1)):

�TN (x
1) ≈ ω̄

(
1 −

x1
− x1

TN

L

)
. (23)

Denote the equatorial distance between the toroidal and
poloidal resonant surfaces as1N=x1

TN−x1
PN . In Figs. 3

and 5, 1N corresponds to the distance between the in-
tersection points of the horizontal linēω=const with the

�PN (x
1) and�TN (x1) curves. Equations (22) and (23)

imply that, in linear approximation,1N≈1�NL/ω̄, where
1�N=�TN−�PN is the polarisation splitting of the spec-
trum.

Since we are to apply Eq. (21) near the poloidal and
toroidal resonant surfaces, just a small distance apart
(1N�L), we substitute the expansions Eqs. (22) and (23)
into it. Switching to the dimensionless transverse coordinate
ξ=(x1

−x1
TN )/1N , we obtain

∂

∂ξ
(ξ+iε)

∂UN

∂ξ
+q(ξ+iε)

∂UN

∂ξ
−κ2

N (ξ+1+iε)UN=bN , (24)

where the following dimensionless parameters are intro-
duced

ε = 2
γN

ω̄

L

1N
, q = k21N�

′/ω̄, κ2
N =

√
αTN

αPN
k2

21
2
N ,

bN = IN

√
αTN

αPN

L1N

ω̄2
.

A solution to Eq. (24) may be found using a Fourier trans-
form:

UN (ξ) =
1

√
2π

∞∫
−∞

ŪN (k)e
ikξdk. (25)

Substituting Eq. (25) into Eq. (24) can produce a first-order
equation for the Fourier harmonic̄UN , to be easily solved
(Leonovich and Mazur, 1997). Substituting the expression
found for ŪN (k) into Eq. (25) yields a solution to the initial
Eq. (24) in the form:

UN (ξ) = i
bN

κN

∞∫
0

exp[ik(ξ + iε)+ iαN arctanψ(k)]√
k2 − ikq + κ2

N

dk, (26)

where

αN =
κ2
N + q/2√
κ2
N + q2/4

, ψ(k) = k

√
κ2
N + q2/4

κ2
N − ikq/2

.

Let us consider the behaviour of the solution (26) near the
toroidal resonant surface (ξ→0), as well as on asymptotics
|ξ |→∞. With ξ→0, the bulk of the integral in Eq. (26) ac-
cumulates thanks to high values ofk�κN . Lettingk→∞ in
the denominator (26) and inψ(k) produces an expression for
both the derivative

∂UN

∂ξ
≈
ξ→0

bN

κN (ξ + iε)
eiαN arctanψ(∞),

and the function itself

UN ≈
ξ→0

bN

κN
eiαN arctanψ(∞) ln(ξ + iε).

One can see that forε=0,UN (ξ) on the toroidal resonant sur-
face (ξ→0) has a logarithmic singularity known for resonant
Alfv én waves.
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Conversely, with|ξ |→∞, it is the values ofk�κN that
make the greatest contribution into the integral Eq. (26).
Therefore, we could setk=0 in the denominator of the in-
tegrand in Eq. (26) and inψ(k), resulting in

UN (ξ) ≈
|ξ |→∞

−
bN

κ2
N

1

ξ + iε

– the asymptotics for high values ofξ . Thus, whileε=0,
the functionUN (ξ) has a singularity on the toroidal resonant
surface, and linearly decreases in amplitude when moving
away from it.

Figure 6 shows a typical behaviour of the functionUN (ξ),
describing the structure of theN -th harmonic of standing
Alfv én waves across magnetic shells, for the two extreme
values of the parameter:κN�1 andκN�1. Figure 6a pro-
vides a solution corresponding toκN=0.1, while Fig. 6b
to κN=20. The decrement was chosen to be very small
(ε=10−3), in order to reveal the role of the parameterκN ,
acting as the wave number onξ coordinate.

For κN�1 the solution is a wave travelling from the
poloidal (ξ=−1) to the toroidal resonant surface (ξ=0). This
is evident from the phases ReUN and ImUN differing by
∼π/2 in the interval−1<ξ<0. This can easily be shown
analytically by computing the integral (26) for κn→∞ using
the saddle point method. Withκn�1 the oscillations’ har-
monic structure vanishes, and they become typical resonant
oscillations, analogous to those in field line resonance. In
the neighbourhood of a resonance peak the polarisation of
oscillations is toroidal.

The critical value ofκNc, discriminating between the two
above discussed structure types of standing Alfvén waves,
equals 1. The value ofκNc is determined on each magnetic
shell by the value of the critical azimuthal wave numbermc.
Figure 7 illustrates the dependence ofmc on the magnetic
shell parameterL for the first five harmonics of standing
Alfv én waves. Whenm�mc, the standing Alfv́en wave has
the form of a wave travelling across magnetic shells, while
form�mc, the form of resonant oscillations. In reality, how-
ever, the structure of oscillations across magnetic shells is af-
fected by their dissipation in the ionosphere, as well. When a
certain value is exceeded, it is dissipation that determines the
characteristic scale and structure of oscillations across mag-
netic shells.

6 Results of numerical computations and their discus-
sion

Let us discuss in more detail the results in previous sections
from numerical solutions of equations describing the longi-
tudinal and transverse structure of standing Alfvén waves.
Figure 2 presents the structure of the first three harmonics
of standing Alfv́en waves along magnetic field lines on the
magnetic shellL=3 (L=a/RE , wherea is the equatorial ra-
dius of the magnetic shell,RE is the Earth’s radius). Here
one should take notice of the fact that the structure of the
same longitudinal harmonics is virtually identical between

the poloidal and toroidal oscillations. This makes it possi-
ble, when describing the transverse structure of oscillations,
to use a model equation applicable over the entire region of
existence.

Figure 3 displays the curves for�P1(x
1) and�T 1(x

1),
as well as the equatorial splitting of resonant shells11(x

1)

for the standing Alfv́en waves’ basic harmonicN=1. Dis-
cussing this harmonic separately is justified by its possessing
a uniquely high value of the polarisation splitting of eigen-
frequencies1�1=�T 1−�P1 and of the associated resonant
shell splitting11. On the whole, the plots for eigenfrequen-
cies�P1(x

1) and�T 1(x
1) describe well enough their be-

haviour in the dayside magnetosphere, including the abrupt
changes at the plasmapause (L≈4). When approaching the
magnetopause (L≈10), the applicability of the chosen mag-
netospheric model is inevitably called into question. There-
fore, the behaviour of all the computed functions should be
regarded only as probable, when approaching the magne-
topause.

Our previous paper (Leonovich and Mazur, 1993)
has shown that, for an axisymmetrical model of the
magnetosphere with cold plasma at rest, the inequality
1�N=�TN−�PN>0 holds everywhere. Figure 3 shows
that in the case of a moving-plasma model balanced by the
plasma pressure gradient, this inequality is reversed in the
outer magnetosphere (L>8). The behaviour of�PN is es-
sentially determined by the the azimuthal wave numberm.
In a cold quiescent plasma, as well as in a plasma with fi-
nite pressure, poloidal eigen oscillations may be excited on
each magnetic shell by the single frequencyω̄=�PN , inde-
pendent of their azimuthal structure. In a moving plasma the
azimuthal harmonic with a certainm has its own distinctive
frequency�PN≡�PNm on each magnetic shell. This dis-
tinction is stronger, the greater the plasma rotation velocity
gradient∇1�. The highest gradient∇1� is reached in the
transition region between the magnetosphere and the solar
wind.

One can see that azimuthal harmonics withm<0 in the
transition region have a local maximum in the distribution of
eigenfrequencies. This may result in poloidal Alfvén eigen
oscillations confined between two poloidal turning points
(Leonovich and Mazur, 1995). In other words, the local
maximum�PNm(x

1) acts as a resonator for such oscilla-
tions. Another interesting feature involves azimuthal har-
monics withm>0. It is evident from Fig. 3 that correspond-
ing eigenvalues�PNm are cut off on some shellL=Lmc,
even before reaching the magnetopause. This is related to
the free-term coefficient in Eq. (11) having a local mini-
mum on parameter̄ω below which the frequency eigenvalue
�PNm cannot drop. For real values ofω̄ no solutions exist
for Eq. (11) on magnetic shells larger thanLmc, satisfying
the given boundary conditions. Again, we wish to empha-
sise that it is in this region that the applicability of the model
magnetosphere that we employ is rather problematic.

The11(x
1) curve in Fig. 3 is displayed as a piecewise

smooth function. This is related to the fact that the defini-
tion 1N (x1) itself suggests a possibility of the horizontal
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Fig. 5. Dependency of resonant magnetic surface splitting1N
(equatorial distance between poloidal and toroidal resonant sur-
faces) on magnetic shell parameterL for the longitudinal harmonics
N=2,3,4,5. In the range of magnetic shells studied,1N practi-
cally does not depend on the azimuthal wave numberm.

line ω̄=const intersecting the curves of the two functions
�PN (x

1) and�TN (x1). As can be seen from the figure, it
is not always possible. Moreover, when deriving the expres-
sion for1N (x1), we used the linear expansions�PN (x1)

and�TN (x1), inapplicable near the extrema of these func-
tions. At pointL=L0, where the curves intersect,1N=0.
WhenL>L0, the concept of resonant shell splitting becomes
inapplicable. Since the curves�PNm(x1) and�TN (x1) di-
verge greatly, the horizontal line intersecting�PNm(x1) will
not intersect�TN (x1) anywhere before the magnetopause.
Values of11 shown in Fig. 3 correspond to the equatorial
splitting of resonant surfaces. When projected onto the iono-
sphere along field lines the value of11 drops 10- (onL=3)
to 40-fold (onL=8).

Figure 4 displays the curves for eigenfrequencies
f(T ,P )N=(�(T ,P )N+m�)/2π for the first five harmonics of
toroidal and poloidal standing Alfv́en waves with azimuthal
wave numbersm=±50. These curves provide some insight
into how high the frequency of oscillations should be in the
source coordinate system (in the ionosphere), in order to
excite poloidal oscillations with�PN=ω̄ in the magneto-
sphere, which later transform into toroidal oscillations with
�TN=ω̄. One can see how greatly the curvesf(T ,P )N (x1)

diverge on shells corresponding to the outer magnetosphere,
for different signs of the azimuthal wave numberm. To
generate waves travelling in the magnetosphere azimuthally,
in the direction of plasma rotation (m>0), the source fre-
quencyω must be higher than the frequency of the opposite-
propagating waves (m<0). One implication is that oscilla-
tions standing on the azimuthal coordinate cannot settle in a
magnetosphere with moving plasma.

Figure 5 shows the dependencies of the equatorial distance
between the poloidal and toroidal resonant surfaces1N on
L for the standing Alfv́en waves’ harmonicsN=2, 3, 4, 5.
They, as well as11, are represented by piecewise smooth
functions in the regions of the magnetosphere where one can
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Fig. 6. The structure of standing Alfv́en waves across magnetic
shells in two limiting cases. The upper plot(a) shows dependen-
cies of theUN function’s real (thick line) and imaginary (thin line)
components describing the structure of “field line resonance”-type
oscillations withκN=0.1. The lower plot(b) shows theUN func-
tion’s real and imaginary components describing the structure of
“travelling wave”-type oscillations withκN=20.

speak of resonant surface splitting. One of the peculiarities
of these curves which should be taken notice of is the very
small value of the parameterL0≈6, on whose magnetic shell
the curves�P2 and�T 2 intersect. For the other harmonics
L0≈7−8. Comparing Fig. 5 with Fig. 3, one can observe that
the characteristic values of1N listed in Fig. 5 are 1–2 orders
lower than11. This is what constitutes the uniqueness of the
basic harmonic. It appears to be the only harmonic for which,
with realistic values ofm andγN in the magnetosphere, the
“travelling wave”-type structure can be expected across mag-
netic shells.

The corresponding values of the critical azimuthal wave
numbermcN , for which a transition takes place from the
“travelling wave”-type structure to the “field line resonance”-
type structure of standing waves, are given in Fig. 7. Themc1
for the basic harmonic is so different from all the othermcN
(N=2, 3...) values, that comparing them in one plot requires
a logarithmic scale. Note that for oscillations with a con-
spicuous enough “travelling wave” structure, the condition
m�mcN must be met. Characteristic values ofm in MHD
oscillations observed in the magnetosphere rarely exceed
m=200. Figure 7 implies that the conditionm�mcN can
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”field line resonance” form.

Fig. 7. Dependency of the critical value of the azimuthal wave
numbermcN for the first five parallel harmonics of standing Alfvén
waves. Them>mcN values correspond toκN>1, when the struc-
ture of oscillations across magnetic shells has the form of a “trav-
elling wave”. Them<mcN values correspond toκN<1, when the
structure of oscillations has the “field line resonance” form.

be satisfied only for the basic harmonic of standing Alfvén
wavesN=1.

Figure 8 presents the transverse structure of the basic har-
monic with azimuthal wave numberm=100. Various pat-
terns are covered regarding oscillations generated in vari-
ous regions of the magnetosphere by ionospheric currents of
equal intensities. The densityj‖ of external parallel currents
is chosen such that, for shellL=3, the parameterb1 deter-
mining the oscillation amplitude (see Eq.26) should be equal
to unity. Meanwhile, the characteristic ratios of the oscilla-
tion amplitudes (e.g. magnetic field amplitudes) in Fig. 8 are
as they would be near the ionosphere.

Figure 8a displays the transverse structure of oscillations
with moderate damping (γN=10−1ω̄). The oscillations have
a typically resonance-type structure on all magnetic shells.
Their amplitude is small enough. Such oscillations have
toroidal polarisation near the amplitudinal resonance maxi-
mum. A characteristic localisation scalex̄1

∼γNL/ω̄ for os-
cillations across magnetic shells in this case is determined
by dissipation. Figure 8b presents the structure of similar
oscillations but with small damping (γN=10−2ω̄). The trav-
elling wave-type structure is clearly manifest on magnetic
shellsL≈3,4,6. The oscillations’ amplitude in the neigh-
bourhood of the poloidal resonant shell, where they are gen-
erated, is much greater than near the toroidal one, where
they dissipate. Therefore, their overall polarisation may be
regarded as poloidal. The wave propagation direction is in-
dicated in Fig. 8b with arrows - from the poloidal resonant
surface to the toroidal. On the magnetic shellL≈8, where
the curves�P1(x

1) and�T 1(x
1) intersect, and, correspond-

ingly, 11→0, the oscillations have a typically resonance
structure. Their polarisation near the maximum amplitude
is toroidal.
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Fig. 8. The transverse structure of the first longitudinal harmonicof standing
Alfven waves (N = 1) with azimuthal wave numberm = 100, excited on 4
different magnetic shells (L = 3; 4; 6; 8) by ionospheric external currents of
equal density. Fig.8a shows oscillations with moderate damping (� = 0:1),
while Fig. 8b, those with small damping (� = 10�2). Arrows in Fig. 8b
indicate the direction in which the wave propagates across magnetic shells.

Fig. 8. The transverse structure of the first longitudinal har-
monic of standing Alfv́en waves (N=1) with azimuthal wave num-
berm=100, excited on 4 different magnetic shells (L=3,4, 6,8)
by ionospheric external currents of equal density.(a) shows os-
cillations with moderate damping (ε=0.1), while (b), those with
small damping (ε=10−2). Arrows in Fig. 8b indicate the direction
in which the wave propagates across magnetic shells.

7 The structure of standing Alfvén waves as compared
to discrete auroral arcs

Note that the structure of travelling wave-type oscillations is
very similar to that observed in discrete auroral arcs associ-
ated with multiple inverted V-type structures in the particle
flows precipitating into the ionosphere (Nadubovich, 1992;
McFadden et al., 1999; Newell, 2000). The characteristic
size of such structures across magnetic shells is a few tens
of km, to ∼100 km at the ionosphere level. The number
of structural elements (auroral arcs) observed simultaneously
may reach 3–4, with one of the outer arcs being the widest. It
is not unusual for such aurorae to have a periodic structure in
the azimuthal direction (longitudinally), as well. Character-
istic spatial sizes of elements of the azimuthal structure are
in the 5–60-km range. Such periodic structures move bodily
in the azimuthal direction with velocities of∼1 km/s: west-
wards before local midnight, eastwards after midnight. This
is approximately consistent with the magnetospheric plasma
convection velocity, as projected onto the ionosphere along
geomagnetic field lines.
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Since aurorae are related to charged particle flows from
the magnetosphere into the ionosphere, the latter enjoys en-
hanced conductivity in the precipitation area. On the one
hand, this promotes generation of external ionospheric cur-
rents – Alfv́en wave sources, while on the other hand, it keeps
their dissipation small. Moreover, for high-energy particles,
the presence of a parallel component in the electric field of
the Alfvén waves in question results in structured fluxes of
particles precipitating into the ionosphere.

Assume the structure of such aurorae to be related to
the way the maximum amplitudes of the above trans-
verse small-scale Alfv́en waves are distributed. Given the
fact that the observed aurorae are azimuthally structured,
it could be expected that typical values of the azimuthal
wave number are in the rangem∼100−1000. The Alfv́en
oscillations’ azimuthal phase velocity isvφ=ωρ/m. As
Fig. 3 implies, at latitudes corresponding to the auroral re-
gion (θ∼65◦

−70◦, ρ=RE cosθ∼3000 km), the characteris-
tic eigenfrequency of the standing Alfvén waves’ basic har-
monic isω∼0.05 rad/s in our model magnetosphere with a
dipole magnetic field. Since the azimuthal velocities ob-
served in auroral propagationvφ∼1 km/s, the velocities of
the associated oscillations cannot significantly exceed this
value. For oscillations propagating along the ionosphere with
a speed close to the ionospheric convection velocity, this cor-
responds to an azimuthal wave numberm∼100. With the az-
imuthal wave number increasing, the oscillations’ azimuthal
phase velocity declines, dropping below the magnetospheric
plasma convection velocity.

The same Fig. 3 also implies that the typical equato-
rial splitting of resonant magnetic shells is11∼2000 km.
Mapped along the dipole magnetic field lines, this becomes
∼60−70 km at the ionosphere level. In the magnetosphere’s
midnight sector, with field lines stretching in the geomag-
netic tail, this value can be even smaller, quite consistent
with the typical auroral arc widths. Assuming the structure
of oscillations to resemble that presented in Fig. 8b, the max-
imum near the poloidal resonant magnetic shell is the widest.
When approaching the toroidal magnetic shell, the width of
the amplitude maxima decreases with the changing radial
wavelength of the oscillations. Such a (poleward or equator-
ward) shift on the ionosphere can take any direction, depend-
ing on the resonant surfaces’ mutual locations in the magne-
tosphere. Note that the structure of oscillations in Fig. 8b
refers to the lower limit of the admissible azimuthal wave
number rangem∼100. Aurorae appearing thanks to Alfvén
oscillations with azimuthal wave numbers considerably ex-
ceeding this minimum value cannot be ruled out. Withm in-
creasing, the width of each separate auroral arc diminishes,
while the number of such arcs grows, resulting, apparently,
in an inability to visually resolve separate arcs.

One of the implications of this interpretation is a possi-
ble periodic variation (with periods of Alfv́en oscillations
∼100 s) in the brightness of aurorae – their actual charac-
teristic feature. Besides, periodic alternations (with the same
period of ∼100 s) of dark arcs and auroral arcs should be
observed, consistent with a periodically changing sign of

E‖ in the even and odd periods of the latitudinal distri-
bution of the standing Alfv́en waves’ amplitudes. Admit-
tedly, the above presented pattern concerns the structure of
only one harmonic of standing Alfvén waves generated by a
monochromatic source with the azimuthal wave numberm.
Many of such harmonics can be excited in the magnetosphere
with different wave numbersm and corresponding eigenfre-
quencies. Therefore, the pattern of the associated aurorae can
be much more diverse.

8 Conclusions

Listed below are the major results of this work.

1. Equation (8) was derived describing the structure of
standing Alfv́en waves with high azimuthal wave num-
bers m�1 in a dipole magnetosphere with rotating
plasma.

2. Solutions were found to Eqs. (11) and (16), defin-
ing the longitudinal (along magnetic field lines) struc-
ture and spectrum of the eigenfrequencies of poloidal
and toroidal Alfv́en oscillations in the magnetosphere.
Equations (15) and (20) have been obtained, describ-
ing the transverse (across magnetic shells) structure of
standing Alfv́en waves in the magnetosphere with rotat-
ing plasma near the poloidal and toroidal resonant sur-
faces.

3. A model Eq. (21) was constructed, allowing for defin-
ing the transverse structure of Alfvén oscillations under
study, not only near resonant surfaces, but in the entire
region of existence, as well. An analytical solution (26)
was produced for this equation. A comparative analy-
sis was performed for the transverse structure of oscil-
lations excited in various regions of the magnetosphere
by ionospheric external currents of equal intensities.

4. The structure of observed discrete auroral arcs was
compared to the structure of standing Alfvén waves
with high azimuthal wave numbersm∼100−200. The
characteristic transverse size of the localisation region
of such oscillations as mapped onto the ionosphere,
∼100 km, was shown to coincide with the character-
istic width of the region occupied by discrete auroral
arcs. The longitudinal periodicity in aurorae which
is sometimes observed can be interpreted as betray-
ing the azimuthal structure of standing Alfvén waves
with wave numbersm∼102

−103. The characteristic
azimuthal propagation velocities of aurorae tally with
the azimuthal phase velocities of Alfvén waves with
m>100. The number of observed auroral arcs≤3−4 is
roughly the same as the number of amplitude maxima
of the basic harmonic of standing Alfvén waves with
m∼100, across magnetic shells. The presence of a par-
allel electric field component in these oscillations, for
high-energy particles leads, to a periodically increased
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flow of charged particles precipitating into the iono-
sphere and to the attendant brightness variations in the
aurorae.
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