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Abstract. Three ULF wave events, all occurring in the
dayside magnetopshere during magnetically quiet times, are
studied using the Cluster satellites. The multi-point mea-
surements obtained from Cluster are used to determine the
azimuthal wave number for the events by means of the phase
shift and the azimuthal separation between the satellites.
Also, the polarisation of the electric and magnetic fields is
examined in a field-aligned coordinate system, which, in
turn, gives the mode of the oscillations. The large-inclination
orbits of Cluster allow us to examine the phase relation-
ship between the electric and magnetic fields along the field
lines. The events studied have large azimuthal wave num-
bers (m∼100), two of them have eastward propagation and
all are in the poloidal mode, consistent with the large wave
numbers. We also use particle data from geosynchronous
satellites to look for signatures of proton injections, but none
of the events show any sign of enhanced proton flux. Thus,
the drift-bounce resonance instability seems unlikely to have
played any part in the excitation of these pulsations. As for
the drift-mirror instability we conclude that it would require
an unreasonably high plasma pressure for the instability cri-
terion to be satisfied.

Keywords. Ionosphere (Wave propagation) – Magneto-
spheric physics (Plasma waves and instabilities; Instruments
and techniques)

1 Introduction

Although waves with small azimuthal length scale in the Pc5
frequency range have been studied since the 1930s (Rolf,
1931) there are still open questions regarding their genera-
tion mechanism, largely due to insufficient data for a com-
plete picture of both the waves and the particles. ULF waves
in the Pc5 frequency range are seldomly observed close to
noon MLT in the magnetosphere (Hudson et al., 2004), how-
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ever, when they appear it is usually during magnetically quiet
times.

The usual angle of attack on geomagnetic ULF waves is
to solve the MHD equations for a magnetised plasma in a
dipole field geometry (e.g. Radoski, 1967). For small az-
imuthal wavelengths the solution to these equations for the
magnetic field is predominantly in the meridional and paral-
lel directions. In the limit when the azimuthal wavelength
goes to zero, the eastward magnetic field component also be-
comes zero. This is usually termed the poloidal mode. The
proposed excitation mechanisms for this mode are internal
to the magnetosphere and involve unstable particle distribu-
tions. Sources external to the magnetosphere (such as so-
lar wind waves) are ruled out because of heavy damping.
The reason for this is that transmission between the mag-
netopause and the resonance position is by means of the fast
wave. Consider a box model with thex-axis along the Sun-
Earth line (positive earthward); the magnetic field lines are
parallel to thez-axis and they-axis completes the coordinate
system. In a smallβ plasma the local dispersion relation is
(Walker 2004):

ω2

V 2
A

− k2
x − k2

y − k2
z=0, (1)

whereω is the angular frequency of the wave,kx,y,z is the
x, y, z component of the wave vector,VA is the Alfvén speed.
We can assumem=kyr, wherer is the radial distance and
m is the azimuthal wave number. It follows then that ifk2

y

dominates the leading term of Eq. (1), kx becomes imagi-
nary. The wave is then evanescent everywhere between the
magnetopause and the resonance position. Its decay is of
the order of exp(−

∫
|kx |dx) with distance from the magne-

topause. Whenky is large, no significant energy can reach
the resonance position.

During magnetically active times, substorm injection of
energetic particles can produce an unstable plasma distribu-
tion that via drift-bounce resonance interaction can couple to
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ULF waves. The drift-bounce resonance criterion between
the wave and the particles is normally written as

ω − m�D=N�B , (2)

where�D is the particles’ bounce-averaged drift frequency,
�B is the bounce frequency of the particles and N is an
integer (Southwood et al. 1969). Recently, Glassmeier et
al. (1999) generalised Eq. (2) by allowing an asymmetric
ionospheric conductivity. In doing so they came to the con-
clusion thatN could take any real value, determined by the
physical properties of the system. Oscillations that occur dur-
ing active times are normally observed in the dusk sector and
are termed storm-time pulsations.

Another proposed excitation mechanism is the drift-mirror
instability (Chen and Hasegawa, 1991; Walker et al., 1982).
It can develop in finite beta plasmas when there is a signifi-
cant pressure anisotropy, with the instability criterion

P⊥

P‖

>1 +
1

β⊥

, (3)

whereP=NkbT and β⊥=2µ0P⊥/B2 (that is, the perpen-
dicular pressure is larger than the parallel pressure, so par-
ticles are “squeezed” from regions of higher magnetic field
into regions of lower). In the rest frame of the plasma the
mirror instability grows without oscillations (zero real fre-
quency). This instability is a viable excitation mechanism
at L>8, where the magnetic field becomes weak enough to
allow β to exceed unity during normal conditions.

There are a number of spacecraft observations of large-m

ULF pulsations and two reviews of these are given by Ander-
son (1994) and Takahashi (1988). The majority of these stud-
ies were with satellites near the equatorial plane and some
utilised multi-spacecraft configurations. One such study was
conducted by Takahashi et al. (1985), who investigated the
azimuthal wave number of several compressional Pc5 waves.
They foundm in the range of−40 to−140 by observing the
phase difference between two azimuthally spaced satellites.
We shall adopt a similar approach in this paper.

2 Instrumentation

Our study uses the EFW (Gustafsson et al., 1997) and the
FGM (Balogh et al., 1997) instruments on board the four
Cluster spacecraft (e.g. Escoubet et al., 2001). The Cluster
spacecraft have an orbital period of 57 h and the nearly po-
lar orbits have a perigee of 4RE and an apogee of 19.6RE .
The orbital planes are fixed in inertial space, so as the Earth
progresses around the Sun, apogee will change from local
noon in midwinter to midnight in midsummer. The space-
craft constellation forms a tetrahedron, which, in general, is
non-regular (i.e. the separation between each pair of satel-
lites is not equal). The EFW (Electric Field and Waves) in-
strument measures the electric field components in the spin
plane of each spacecraft. This plane is close to the eclip-
tic plane and the two components measured (duskward and
sunward) are thus very close to thex and y components

in GSE-coordinates. The FGM instrument (Fluxgate Mag-
netometer) measures the three components of the magnetic
field. The Cluster data used have a time resolution corre-
sponding to one spacecraft spin period (4 s). Data from the
LANL geosynchronous satellites have been used to monitor
possible particle injections. The CPA and SOPA instruments
carried on board the satellites measure electron and proton
fluxes. The satellites used to monitor injections are (with
their longitudinal position in geographical coordinates),
1990−095 (38◦ W) 1991−080 (166◦ W) 1994−084 (145◦ E)
LANL −01A (7.9◦ E) LANL−02A (69◦ E) LANL−97A
(102◦ E), all of which are in geostationary orbit.

3 Observations and data analysis

This paper focuses on three ULF wave events occurring in
the dayside (MLT∼10–15) magnetosphere in the vicinity of
the plasmasphere (4≤L≤6). This region of space is crossed
by Cluster in the period May-September when the spacecraft
are close to perigee. For this time period ULF oscillation
events have been identified by inspection of the duskward
electric field.

A field-aligned coordinate system is needed to determine
the relevant polarisation of the oscillations. This system is
defined as follows: a 20-min running average is applied to the
measured magnetic field. This average is then taken as the
background magnetic field and its direction defines the par-
allel component,̂p, in the coordinate system. The other com-
ponents are then chosen to beê=(p̂×R)/|p̂×R|, whereR is
the radius vector of the satellite andr̂=ê×p̂; ê thus defines
the eastward direction and̂r is meridional (radially outward
at the magnetic equator). The coordinate system is illustrated
in Fig. 1. By plotting the electric and magnetic fields in this
coordinate system, the polarisation can be found. This then
tells us whether the oscillations are in the toroidal or poloidal
mode. For this study, only events which are found to be in
the poloidal mode are selected.

The large-inclination orbits of Cluster make it a good plat-
form for studying the physics along the field lines for a ULF
pulsation event. In addition, the azimuthal separation of
the spacecraft allows us to determine the propagation char-
acteristics of the wave in the azimuthal direction (i.e., the
azimuthal wave number,m). This is done by calculating
the phase difference between the satellites. A detailed de-
scription of the calculations of the azimuthal wave number is
given in Eriksson et al. (2005). Figure 2 shows the duskward
electric field for s/c 1 and s/c 2 (top panel) and the phase
difference between the two (bottom panel). The phase differ-
ence at the time when both spacecraft are on the sameL-shell
is selected and divided by the azimuthal angle separation of
the spacecraft in SM-coordinates. This is performed on as
many combinations of satellite pairs as possible, to obtain
multiple estimates ofm. An interesting aspect is how much
the frequency of the oscillations is Doppler-shifted due to
the motion of the spacecraft. If we assume wave propaga-
tion of the formeimφ−iωt , the Doppler-shift can be estimated
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Fig. 1. Schematic illustration of the field-aligned coordinate system
used in this study. The green line represents a magnetic field line
and the purple line represents the spacecraft orbit. See text for the
definition of the coordinate axis.
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Fig. 2. The top panel shows the duskward electric field for s/c 1
(black line) and s/c 2 (red line), and the bottom panel shows the
phase difference between s/c 1 and s/c 2 for the 21 September 2003
event.

by mfsat wherefsat, is the azimuthal orbital frequency of the
satellite in SM-coordinates. Of interest is also the phase re-
lationship between the electric and magnetic fields. In this
study the phase difference between ther̂ component of the
magnetic field oscillations and thêe component of the elec-
tric field oscillations has been examined. From this we can
deduce if the standing wave is in an asymmetric or a sym-
metric mode with respect to the wave magnetic field, or if
the wave has developed into a quarter wavelength mode due
to large asymmetry in ionospheric conductivity.

3.1 17 August 2002

Figure 3 shows the duskward electric field measured by the
four spacecraft. The oscillations appear in the data at about

−2

0

2

(m
V

/m
) 

S
C

4

E−dusk

−2

0

2

(m
V

/m
) 

S
C

3

−2

0

2

(m
V

/m
) 

S
C

2

16:00 16:30 17:00 17:30 18:00 18:30 19:00

−2

0

2

(m
V

/m
) 

S
C

1

Hours (UT)
2002−08−17

Fig. 3. The duskward electric field for the 17 August 2002 event.
The bottom panel is s/c 1 (black), followed by s/c 2 (red), s/c 3
(green) and s/c 4 (blue) at the top.
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Fig. 4. L-value, polar angle in SM-coordinates and MLT for s/c 1
(black), s/c 2 (red), s/c 3 (green) and s/c 4 (blue) for the 17 August
2002 event.

16:40 UT for s/c 1, 2 and 4. For s/c 3 they appear at 17:15 UT,
consistent with the fact that s/c 3 is trailing the rest of the
satellites, as seen in panel 1 of Fig. 4. This event occurs at
about noon MLT. The abrupt onset and end of the oscilla-
tions might be related to an abrupt change in plasma density,
like a crossing of the plasmapause. As the spacecraft move
to smallerL, the amplitude of the oscillations decreases (i.e.,
the spacecraft are moving away from the resonantL-shell),
so that the extent of this event is about 1RE in the equatorial
plane. Figure 5 shows the fields plotted in our field-aligned
coordinate system . The polarisation of the magnetic field in
the field-aligned coordinate system shows clear oscillations
in the r̂ andp̂ directions but none in thêe direction. This in-
dicates that the wave is in the poloidal mode. The estimate of
the azimuthal wave number yieldsm=130±30, so the sense
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Fig. 5. The electric and magnetic fields in a field-aligned coordinate
system for the 17 August 2002 event. The subscript r indicates the
meridional, e the eastward and p the field-aligned (parallel) direc-
tion.

−4

−2

0

2

4

(m
V

/m
) 

S
C

4

E−dusk

−4

−2

0

2

4

(m
V

/m
) 

S
C

3

−4

−2

0

2

4

(m
V

/m
) 

S
C

2

10:00 10:30 11:00 11:30 12:00 12:30 13:00
−4

−2

0

2

4

(m
V

/m
) 

S
C

1

Hours (UT)
2003−08−14

Fig. 6. The duskward electric field for the 14 August 2003 event.

of propagation is eastward for this wave. By inspecting the
phase difference betweenbr andEe we find that it is approx-
imately 100◦ south of the equator and approximately−80◦

north of it, meaning that there is a 180◦ phase shift across the
equator. So this is an asymmetric (odd) mode with respect
to thebr -component of the wave magnetic field. This event
is monochromatic in time and space, with the wave oscillat-
ing at 4.2 mHz measured in the satellite frame. Regarding
the Doppler-shift, s/c 2 moves about 2.5◦ from 16:30 UT
to 17:00 UT, which meansfsat≈4.0·10−3 mHz. For an az-
imuthal wave number of 100 this would give us a Doppler-
shift of 0.4 mHz, an order of magnitude less than the ob-
served frequency for this event. The geomagneticKp index
is 1+ from 15:00 to 18:00 UT and the interplanetary mag-
netic field (IMF)Bz has mainly a weak negative component
from 15:00 UT to 20:00 UT.
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Fig. 7. As Fig. 5 but for the 14 August 2003 event.

3.2 14 August 2003

This event occurs at about 13:30 MLT, when the spacecraft
are relatively close to each other,≤0.1RE in L and≤0.5◦ in
azimuthal separation. Accordingly, the commencements of
the oscillations in the duskward electric field are within mins
between the satellites, as seen in Fig. 6. For this event the
phase difference between the satellites range from 5◦ to 30◦,
with fluctuations in the same range. So we cannot make
a precise determination of them-number other than that it
is large (∼100). The observed frequency is about 5.8 mHz
when the spacecraft are south of the magnetic equator and
then decreases to about 5.4 mHz north of it. Since we do
not know the azimuthal wave number, this change might be
caused by a Doppler-shift in frequency, but it is unlikely
sincefsat changes approximately from 4.5·10−3 mHz south
of the magnetic equator to 6.3·10−3 mHz north of it, meaning
thatm has to be about 220 to accommodate this change. The
magnetic field exhibits the poloidal mode polarisation (i.e.
oscillations are in the radial and field-aligned components),
as shown in Fig. 7.Kp is 2o from 09:00 UT to 12:00 UT
and the IMFBz is mostly positive from 08:00 UT to about
15:00 UT.

3.3 21 September 2003

The ULF oscillations in the duskward electric field compo-
nent start at about 11:55 UT on all four satellites (Fig. 8),
due to their relative proximity (≤0.1 in L during the event,
Fig. 9). At about 12:30 UT, coinciding with the minimum
in amplitude in the electric field oscillations, the satellites
pass perigee. Pc 3 pulsations are also visible, especially from
about 12:50 UT to 13:30 UT. The Pc 5 wave event of interest
here occurs at about 11:00 MLT. From the phase difference
of the duskward electric field between the satellites, the az-
imuthal wave number is estimated to be about 90±30, mean-
ing that this is a highm event, with the wave propagating
eastward. By inspection of the polarisation of the magnetic
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Fig. 8. The duskward electric field for the 21 September 2003 event.
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Fig. 9. L-value, polar angle in SM-coordinates and MLT for s/c 1,
s/c 2, s/c 3 and s/c 4 for the 21 September 2003 event.

field in the field-aligned coordinate system, we see that the
field is oscillating in thêr andp̂ directions (Fig. 10), whereas
no oscillations are found in thêe direction, indicating that it
is the poloidal mode that is excited. Looking at the phase
difference betweenbr andEe, we find that its about−90◦

south of the equator and about 100◦ north of it, with varia-
tions of the order of±15◦. Figure 11 shows a spectrogram
for the duskward electric field on s/c 2. Apparent is the in-
crease in frequency from about 4.6 mHz at 11:50 UT to about
6.6 mHz at 12:20 UT. This increase cannot be accounted for
by an increase in Doppler-shift, since the angular frequency
fsat is more or less constant through the event. TheKp in-
dex is 3+ from 09:00 to 12:00 UT and 4o from 12:00 UT
to 15:00 UT; the IMF is northward from about 10:00 UT to
12:00 UT when it rapidly changes sign and stays southward
for a couple of hours.
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Fig. 10. As Fig. 5 but for the 21 August 2003 event.
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Fig. 11. Spectrogram for the duskward electric field measured by
s/c 4 on the 21 September 2003 event.

4 Results

The high values (∼100) of the azimuthal wave number found
in all three events are consistent with the poloidal mode type
polarisation of the wave magnetic field. All of the studied
events are located within (4≤L≤6). Many authors have stud-
ied the eigenfrequencies for geomagnetic ULF pulsations
(e.g. Cummings et al., 1969; Schulz, 1996; Takahashi et al.,
2004). These studies adopted a power law for the plasma
density along a field line:

ρ=ρeq

(
LRE

r

)α

, (4)

whereρeq is the density at the equator,L is the McIlwain
parameter,RE is the radius of the Earth,r the geocentric dis-
tance to a point on the field line andα is the scaling index.
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From this model of the density the Wentzel-Kramer-Brillouin
(WKB) approximation can be used to calculate the eigenfre-
quencies. In this approximation the harmonics are multiples
of the fundamental frequency which is inversely proportional
to

∫
ds
vA

, wheres is the coordinate along the field line andvA

is the Alfvén speed. However, the WKB approximation is, in
general, only true forα=6. So, in reality, the frequency ratios
of the different harmonics are dependent on the variations of
the plasma density. This effect can be incorporated by solv-
ing the governing wave equations numerically, yielding a nu-
merical approximation for the eigenfrequencies. This was
done by Takahashi et al. (2004) for the toroidal mode. Their
Table 1 shows the obtained ratio forfT 2/fT 1 andfT 3/fT 1
for integer values ofα in the range−6≤α≤6 atL=6.6. They
also find thatα∼0.5 at 4≤L≤6. The events studied here also
occur withinL≤6, so we can useα=1 as an estimate of the
distribution of plasma along a field line. Forα=1 Takahashi
et al. (2004) obtainedfT 3/fT 1=4.09 for the toroidal mode.
Cummings et al. (1969) showed that the frequency of the fun-
damental poloidal mode is lower than for the frequency of the
fundamental toroidal mode. Schulz (1996) derived an empir-
ical relation factor between the two fundamental frequencies,
given by:

fP1

fT 1
≡ FP1=0.690+

(
0.246

L

)
. (5)

So atL=4 the fundamental poloidal frequency is about 25%
lower than the corresponding toroidal frequency (and about
27% atL=6). Furthermore, we assume that the frequency
ratio of the higher order harmonics is one. So we obtain
fP3/fP1=5.44 as an estimate for the ratio for the poloidal
mode (where we have assumedfP3=fT 3). Although this ra-
tio isL dependent, it does not vary strongly forL≥4 (Schulz,
1996, Table 2). If we assume that the observed oscillations in
the 17 August 2002 event were the third harmonic, we obtain
the estimate of 0.7 mHz (with the calculated Doppler shift
taken into account) for the fundamental mode. Although
low, this value is not unreasonable. If we instead assume that
the observed frequency is the fundamental mode, we obtain
21 mHz for the third harmonic. By following the same rea-
soning for the 4.6−6.6 mHz wave of the 21 September 2003
event (which also had an approximately 180◦ phase jump
across the equator, and accordingly, occurred in the asym-
metric (odd) mode), we obtain 0.9−1.2/25−36 mHz as an
estimate for the fundamental/third harmonic.

Most of the studied poloidal wave events with high az-
imuthal wave number have displayed westward propagation
(consistent with the predominant drift motion of ions). In
this study at least two of the three events exhibit eastward
propagation (positive wave number). Events with eastward
propagation have been studied with radar by Walker and
Nielsen (1984) and with satellite by Takahashi et al. (1987);
however their events occurred in the post-midnight sector, in
contrast to the dayside events observed here.

The existence of pressure anisotropy can render the plasma
unstable to the mirror instability. Takahashi et al. (1987)
observed an anisotropy of 14% andβ⊥∼9 at geostationary

orbit. Thus, they found the instability criterion (Eq. (3))
to be satisfied. Woch et al. (1988) found an anisotropy of
60% for a Pc5 pulsation event observed by GEOS-2 on 14
November 1979. As the magnetic field increases asL de-
creases, larger anisotropy is needed for an instability to de-
velop. We can make an estimate of the plasma density re-
quired for Eq. (3) to be satisfied based on the observed mag-
netic field. The absolute value of the magnetic field is 220–
380 nT for the 17 August 2002 event, 300−480 nT for the
14 August 2003 event and 250−400 nT for the 21 Septem-
ber 2003 event. If we assume a temperature anisotropy of
60% andT⊥=1 MK (∼86 eV), the particle density has to be
between 1.1×103 cm−3 and 2.3×103 cm−3 for Eq. (3) to be
satisfied. This is a very high value forL∼5. Farrugia et
al. (1989) found the ion temperature in the quiet plasmas-
phere to range from 4×103 K to 1.5×104 K and the proton
density to vary smoothly between∼102 cm−3 (L≈6) and
2×103 cm−3 (L≈3). Thus, it seems unlikely that the drift-
mirror instability is the driver for any of these three events.

SOPA and CPA data from the LANL satellites have been
studied for signs of proton injections prior to, or during, the
observed ULF events. An observed enhancement of the pro-
ton flux in conjunction with the waves would give a strong
case for the drift-resonance instability as a driving mecha-
nism. However, none of the satellites show enhancements
in proton flux for any of the events, several hours prior to, as
well as during the events themselves. For the 17 August 2002
event three LANL satellites had data available (LANL−01A,
LANL −97A and 1991−080). This event was particularly
quiet, with no signs of injections observed in the data eight
hours prior to the observation of the ULF oscillations. For
the 14 August 2003 event, data from all six LANL satellites
were available and none of them show any sign of proton in-
jections three hours before, or during, the ULF event. LANL
data from 21 September 2003 does not show any injection
two and one half hours before, as well as during the event,
although 1991–080, 1994–084 and LANL−97A show a de-
pression in the proton flux during the ULF wave event. The
satellites LANL−01A and LANL−02A show no significant
alterations in the flux. 1990–085 had no data available for
this event.

5 Discussion and conclusions

The drift-mirror instability caused by an anisotropy in the
plasma pressure has been considered by several authors to
be a driving mechanism of high-m ULF pulsations. How-
ever, for the events studied here unusually high values would
be needed for either the pressure anisotropy, the density
or the temperature, for the instability criterion to be satis-
fied. The drift-resonance instability is also unlikely since
the events occur during magnetically quiet times and no pro-
ton injections are visible from geostationary satellites. A
Kelvin-Helmholtz instability at the magnetopause, or other
driving mechanisms outside the magnetosphere, are also
ruled out, due to the very large azimuthal wave numbers
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observed. Thus, it seems likely that the 17 August 2002
and 14 August 2003 events were driven by some other
plasma instability. The drift-wave instability associated
with a gradient in the cold plasma population, discussed by
Hasegawa (1971), or a modification of the drift-mirror insta-
bility such as the one studied by Pokhotelov et al. (2001),
would be two candidates. As for the drift-wave instabil-
ity Hasegawa (1971) assumed the following plasma param-
eters at the plasmapause: the ion and electron temperature
Ti=Te=1 eV, the plasma densityn0=102 cm−3, the ambi-
ent magnetic fieldB0=5×10−7 T and the density gradient
length scale 1/κ=0.1RE , whereκ=−∇ lnn0. From this he
obtained a growth rateγ≈7×10−4 s−1, but sinceγ∼T 2

e the
growth rate becomes significant for higher electron tempera-
tures. Pokhotelov et al. (2001) studied the effects of plasma
inhomogeneities on the drift-mirror instability and showed
that this substantially modifies the instability threshold, re-
quiring a smaller anisotropy for the instability to develop.
The modulation of the observed frequency for the 21 Septem-
ber 2003 event might be related to changes in the density and
thus the Alfv́en velocity. This would correspond to a local
maximum in density at approximately 12:00 UT, where there
is a minimum in the observed frequency. Measurements of
the plasma density and temperatures would have been a valu-
able asset in this study. Unfortunately, the ion density instru-
ment on Cluster is crippled by energetic particles when inside
the radiation belts.
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A., Stasiewicz, K.,Åhlén, L., Mozer, F. S., Pankow, D., Harvey,
P., Berg, P., Ulrich, R., Pedersen, A., Schmidt, R., Butler, A.,
Fransen, A. W. C., Klinge, D., Thomsen, M., Fälthammar, C.-G.,
Lindqvist, P.-A., Christenson, S., Holtet, J., Lybekk, B., Sten, T.
A., Tanskanen, P., Lappalainen, K., and Wygant, J.: The electric
field and wave experiment for the Cluster mission, Space Sci.
Rev., 79, 137–156, 1997.

Hasegawa, A.: Drift-wave instability at the plasmapause, J. Geo-
phys. Res., 76, 5361–5364, 1971.

Hudson, M. K., Denton, R. E., Lessard, M. R., Miftakhova, E. G.,
and Anderson, R. R.: A study of Pc-5 ULF oscillations, Ann.
Geophys., 22, 289–302, 2004,
SRef-ID: 1432-0576/ag/2004-22-289.

Pokhotelov, O. A., Balikhin, M. A., Treumann, R. A., and Pavlenko,
V. P.: Drift mirror instability revisited, 1, Cold electron tempera-
ture limit, J. Geophys. Res. Vol., 106, 8455–8463, 2001.

Radoski, H. R.: Highly asymmetric MHD resonances: the guided
poloidal mode, J. Geophys. Res., 72, 4026–4027, 1967.

Rolf, B.: Giant micropulsations at Abisko, Terrest. Mag. Atmosph.
Elec., 36, 9–14, 1931.

Schulz, M.: Eigenfrequencies of geomagnetic field lines and im-
plications for plasma-density modeling, J. Geophys. Res., 101,
17 385–17 397, 1996.

Southwood, D. J., Dungey, J. W., and Etherington, R. J.: Bounce
resonant interactions between pulsations and trapped particles,
Planet. Space Sci., 17, 349–361, 1969.

Takahashi, K., Higbie, P. R., and Baker, D. N.: Azimuthal propaga-
tion and frequency characteristic of compressional Pc-5 waves
observed at geostationary orbit, J. Geophys. Res., 90, 1473–
1485, 1985.

Takahashi, K., Lopez, R. E., McEntire, R. W., Zanetti, L. J., Kistler,
L. M., and Ipavich, F. M.: An eastward propagating compres-
sional Pc 5 wave observed by AMPTE/CCE in the postmidnight
sector, J. Geophys. Res., 92, 13 472–13 484, 1987.

Takahashi, K.: Multisatellite studies of ULF waves, Adv. Space
Res., 8, 427–436, 1988.

Takahashi, K., Denton, R. E., Anderson, R. R., and Hughes, W. J.:
Frequencies of standing Alfvén wave harmonics and their im-
plication for plasma mass distribution along geomagnetic field
lines: Statistical analysis of CRRES data, J. Geophys. Res.,
109(A08202), doi:10.1029/2003JA010345, 2004.

Walker, A. D. M., Greenwald, R. A., Korth, A., and Kremser, G.:
STARE and GEOS 2 observations of a storm time Pc 5 ULF
pulsation, J. Geophys. Res., 87, 9135–9146, 1982.

http://direct.sref.org/1432-0576/ag/2001-19-1197
http://direct.sref.org/1432-0576/ag/1999-17-338
http://direct.sref.org/1432-0576/ag/2004-22-289


2686 T. Eriksson et al.: Poloidal ULF oscillations in the dayside magnetosphere

Walker, A. D. M. and Nielsen, E.: Stare observations of an eastward
propagating Pc5 pulsation with large azimuthal wavenumber,
Geophys. Res. Lett., 11, 259–262, 1984.

Walker, A. D. M.: Magnetohydrodynamic Waves in Geospace, Se-
ries in Plasma Physics, Institute of Physics Publishing, Bristol
and Philadelphia, 2004.

Woch. J., Kremser, G., Korth, A., Pokhotelov, O. A., Pilipeno, V.
A., Nezlina, Y. M., and Amata, E.: Curvature driven drift mirror
instability in the magnetosphere, Planet. Space Sci., 36, 383–
393, 1988.


