Barr Sylvain 
email: sylvain.barre@univ.ubs.fr
  
Mikaël Ël Pichot 
email: pichot@ms.u-tokyo.ac.jp
  
Sylvain Barré 
  
  
  
THE 4-STRING BRAID GROUP B 4 HAS PROPERTY RD AND EXPONENTIAL MESOSCOPIC RANK

We prove that the braid group B 4 on 4 strings, as well as its central quotient B 4 / z , have the property RD of Haagerup-Jolissaint. It follows that the automorphism group Aut(F 2 ) of the free group F 2 on 2 generators has property RD.

We also prove that the braid group B 4 is a group of intermediate rank (of dimension 3). Namely, we show that both B 4 and its central quotient have exponential mesoscopic rank, i.e., that they contain exponentially many large flat balls which are not included in flats.

Introduction

Let n ≥ 2 be an integer. The braid group B n on n strings is a finitely presented group generated by n -1 elementary braids σ 1 , . . . , σ n-1 subject to the following relations:

• σ i σ i+1 σ i = σ i+1 σ i σ i+1 for all 1 ≤ i ≤ n -2; • σ i σ j = σ j σ i for all 1 ≤ i, j ≤ n -1 such that |i -j| ≥ 2.
This is the classical Artin presentation of B n (see e.g. Chapter 10 in [12]).

The group B 3 is closely related to the modular group PSL 2 (Z). The above presentation shows that the braid z = (σ 1 σ 2 ) 3 is central in B 3 and that B 3 / z is generated by the class u of σ 1 σ 2 σ 1 and v of σ 1 σ 2 , where u 2 = v 3 = z. Thus B 3 / z = u, v | u 2 = v 3 = 1 = PSL 2 (Z). In fact the group B 3 admits a proper isometric action with compact quotient on a metric product T 3 × R, where T 3 is a trivalent tree, which is the Bass-Serre tree of PSL 2 (Z).

We are interested here in the 4-string braid groups B 4 . It was proved by Brady in [START_REF] Brady | Thomas Artin groups of finite type with three generators[END_REF] that B 4 admits a free isometric action with compact quotient on a CAT(0) simplicial complex Y of dimension 3. The 3-dimensional cells of Y are Euclidean tetrahedra whose faces are right-angle triangles and the quotient space Y /B 4 contains 16 tetrahedra, identified together along a single vertex. It is still true that Y splits as a product Y = X ×R, where X is now of dimension 2. The complex X can be obtained from a non positively curved complex of groups whose fundamental group is the quotient of B 4 by its center (see [START_REF] Crisp | Luisa On the classification of CAT(0) structures for the 4-string braid group[END_REF]).

The existence of a CAT(0) structure on B n is an open problem for n ≥ 6. Recall that on B 4 , the 3-dimensional CAT(0) structure which are minimal (e.g., those whose links are isomorphic to that of Y ) can be classified, by geometric rigidity results due to Crisp and Paoluzzi [START_REF] Crisp | Luisa On the classification of CAT(0) structures for the 4-string braid group[END_REF]. On the other hand, Charney [START_REF] Charney | Ruth The Deligne complex for the four-string braid group[END_REF] proved that the Deligne complex [START_REF] Deligne | Pierre Les immeubles des groupes de tresses généralisés[END_REF] of B 4 is also a CAT(0) space of dimension 3, with respect to the Moussong metric (we remind that the Deligne action of B 4 on this complex is not proper).

1.1. Property RD. Let now G be an arbitrary countable group. A length on G is a map | • | : G → R + such that |e| = 0, |s| = |s -1 | and |st| ≤ |s| + |t| for s, t ∈ G and e the identity element. We recall that G is said to have property RD ( [START_REF] Jolissaint | Paul Rapidly decreasing functions in reduced C * -algebras of groups[END_REF]) with respect to a length | • | if there is a polynomial P such that for any r ∈ R + and f, g ∈ CG with supp(f ) ⊂ B r one has f * g 2 ≤ P (r) f 2 g 2 where B r = {x ∈ G, |x| ≤ r} is the ball of radius r in G, supp(f ) is the set of x ∈ G with f (x) = 0, and CG is the complex group algebra of G. For an introduction to property RD we refer to Chapter 8 in [START_REF] Valette | Alain Introduction to the Baum-Connes conjecture[END_REF]. The above convolution inequality, usually referred to as the Haagerup inequality (after Haagerup [START_REF] Haagerup | Uffe An example of a nonnuclear C * -algebra, which has the metric approximation property[END_REF]), allows to control the operator norm of f acting by convolution on ℓ 2 (G) in terms of its ℓ 2 norm. Hence, some important consequences of property RD are of a spectral nature.

When G is finitely generated we have the word length | • | S associated to any finite generating set S. Then property RD with respect to | • | S is independent of S so we simply speak of property RD for G is that case.

Our first main result is the following theorem.

Theorem 1. The braid group B 4 on 4 strings, as well as its central quotient B 4 / z , have property RD.

This gives a partial answer to a question in [START_REF]Property of rapid decay[END_REF], Section 8. The fact that B 3 has property RD was shown very early on by Jolissaint in [START_REF] Jolissaint | Paul Rapidly decreasing functions in reduced C * -algebras of groups[END_REF], and the other cases remained open since then; in [START_REF]Property of rapid decay[END_REF], the question of property RD is raised more generally for all braid groups B n .

Update. The problem of showing property RD for B n has been solved recently by Behrstock and Minsky (see [START_REF] Behrstock | Centroids and the rapid decay property in mapping class groups[END_REF]). More generally, they established property RD for all mapping class groups (Recall that the braid group B n can be identified to the mapping class group of the n-punctured disk.)

The proof of Theorem 1 is divided into two steps. The first step relies on our previous results from [START_REF] Barré | Intermediate rank and property RD[END_REF]: Theorem 5]). Let G be a group acting properly on a CAT(0) simplicial complex ∆ of dimension 2 without boundary and whose faces are equilateral triangles of the Euclidean plane. Then G has property RD with respect to the length induced from the 1-skeleton of ∆.

Theorem 2 ([4,
We apply Theorem 2 to the quotient B 4 / z . By results of [START_REF] Brady | Thomas Artin groups of finite type with three generators[END_REF][START_REF] Crisp | Luisa On the classification of CAT(0) structures for the 4-string braid group[END_REF], this group acts on a simplicial complex X with the required properties.

The second step uses automaticity of B 4 , and more precisely, the Thurston normal forms for braids in B 4 , which allows to go back to B 4 from its central quotient.

Details of the proof are in Section 3, after a brief survey on property RD in Section 2. It would be interesting to implement the above approach of solving first the case of central quotients for higher braid groups.

As a corollary of Theorem 1, we obtain the following result (compare [START_REF]Property of rapid decay[END_REF], Section 8, where the question of property RD is raised in general for all Aut(F n ), n ≥ 2): Corollary 3. The automorphism group Aut(F 2 ) of the free group on 2 generators has property RD. Indeed, Aut(F 2 ) is isomorphic to Aut(B 4 ), itself containing Inn(B 4 ) as a subgroup of index 2 (see [START_REF] Dyer | The automorphism groups of the braid groups[END_REF][START_REF] Krammer | The braid group B 4 is linear[END_REF]). Thus property RD for Aut(F 2 ) follows from the corresponding result for Inn(B 4 ), which is isomorphic to the central quotient of B 4 . Note that in [START_REF] Adam | The automorphism group of the free group of rank two is a CAT(0) group[END_REF], a faithful action of Aut(F 2 ) = Aut(B 4 ) on the complex X is constructed.

1.2. The braid group B 4 as a group of intermediate rank. Groups and simplicial complexes appearing in Theorem 2 provide us with a large pool of objects satisfying intermediate rank properties. See [START_REF] Barré | Intermediate rank and property RD[END_REF] for definitions and concrete examples. We discuss here the intermediate rank properties of B 4 and its central quotient (denoted G below).

We introduced in [START_REF] Barré | Intermediate rank and property RD[END_REF] a notion of mesoscopic rank for a CAT(0) space X, which reflects the presence in X of maximal flats portions (where maximal refers to the dimension, hence the rank terminology) which are (much) larger than "germs of flats" in X (say, flats of tangent cones) but are not actually contained in genuine flats of X (i.e. copies of the Euclidean space R n inside X). We recall the precise definitions of mesoscopic rank and exponential mesoscopic rank in Section 5. Following [START_REF] Barré | Intermediate rank and property RD[END_REF] we say that a group G is of (exponential) mesoscopic rank when there is a proper action of G with compact quotient on some CAT(0) space which is of (exponential) mesoscopic rank at some point.

Our second main result is as follows.

Theorem 4. The braid group B 4 on 4 strings is of exponential mesoscopic rank.

For the proof, we first establish that the quotient G of B 4 by its center is of exponential mesoscopic rank, and then extend the result to B 4 . Note that B 3 is an example of a group acting freely and cocompactly on a simplicial complex as in Theorem 2 (see [START_REF] Brady | Three-generator Artin groups of large type are biautomatic[END_REF]) but it is not of mesoscopic rank, and more precisely for any action with compact quotient on a 2-dimensional CAT(0) space X, the space X cannot be of mesoscopic rank.

In course of proving Theorem 4 we will see that the central quotient G of B 4 is, at the local level, closely related to affine Bruhat-Tits buildings of type Ã2 (what actually creates some complications in the proof of Theorem 4, since the latter are not of mesoscopic rank by [START_REF] Barré | Intermediate rank and property RD[END_REF]). We will prove however that these connections cannot be extended beyond the local level (and specifically beyond the sphere of radius 1, see the last section of the paper). Related to this, we also show that being of exponential mesoscopic rank cannot serve as an obstruction to being embeddable in an affine building, and in particular, in spaces which are not of mesoscopic rank.

Acknowledgments. We thank Jason Behrstock for communicating us his recent preprint [START_REF] Behrstock | Centroids and the rapid decay property in mapping class groups[END_REF] with Yair Minsky, as well as for the reference [START_REF] Adam | The automorphism group of the free group of rank two is a CAT(0) group[END_REF]. The second author thanks JSPS for support.

Property of rapid decay

In [START_REF] Haagerup | Uffe An example of a nonnuclear C * -algebra, which has the metric approximation property[END_REF] Haagerup proved that, for any finitely supported functions f, g : F n → R defined on the free group F n on n generators, the convolution product satisfies the inequality f * g 2 ≤ (r + 1) f 2 g 2 where r is the radius of the support of f , with respect to the usual word-length metric of F n . In other words f , viewed as a convolution operator from ℓ 2 (F n ) to itself, is bounded with operator norm at most (r + 1) f 2 .

Groups satisfying the above inequality with some polynomial P (r) instead of r + 1 are said to have property RD (the precise definition of which we recalled in the introduction), see [START_REF] Jolissaint | Paul Rapidly decreasing functions in reduced C * -algebras of groups[END_REF], where Jolissaint showed that (with respect to the word length):

• a finitely generated amenable group has property RD if and only if it is of polynomial growth; • uniform lattices in a rank 1 Lie group have property RD. The latter has been extended to all hyperbolic groups in the sense of Gromov by de la Harpe [START_REF] De La Harpe | Pierre Groupes hyperboliques, algèbres d'opérateurs et un théorème de Jolissaint[END_REF], and subsequently to groups which are hyperbolic relatively to polynomial growth subgroups by Chatterji and Ruane [START_REF] Chatterji | Some geometric groups with rapid decay[END_REF], thereby establishing property RD for all lattices (uniform or not) in rank 1 Lie groups.

The situation is different for groups of rank ≥ 2. Non uniform lattices in a higher rank Lie group, typically SL 3 (Z), are prominent examples of groups without property RD (cf. [START_REF] Jolissaint | Paul Rapidly decreasing functions in reduced C * -algebras of groups[END_REF]). Valette conjectured that all uniform lattices in higher rank Lie groups have property RD. This is known to hold for uniform lattices in SL 3 (Q p ) (and other groups acting on triangle buildings), by a wellknown theorem of Ramagge-Robertson-Steger [START_REF] Ramagge | A Haagerup inequality for A 1 × A 1 and A 2 buildings[END_REF] (see also [START_REF] Lafforgue | Vincent A proof of property (RD) for cocompact lattices of SL(3, R) and SL(3, C)[END_REF]) which was the first occurrence of property RD in higher rank situations. Their results were extended by Lafforgue [START_REF] Lafforgue | Vincent A proof of property (RD) for cocompact lattices of SL(3, R) and SL(3, C)[END_REF] to cover all uniform lattices in SL 3 (R) and SL 3 (C). Chatterji [START_REF] Chatterji | Property (RD) for cocompact lattices in a finite product of rank one Lie groups with some rank two Lie groups[END_REF] showed then that lattices in SL 3 (H) and E 6(-26) behave similarly.

We refer the interested reader to [START_REF] Valette | Alain Introduction to the Baum-Connes conjecture[END_REF][START_REF]Property of rapid decay[END_REF] for more information. A well-known application of property RD concerns the Baum-Connes conjecture without coefficient: by a theorem of Lafforgue [START_REF] Lafforgue | Vincent K-théorie bivariante pour les algèbres de Banach et conjecture de Baum-Connes. (French) [Bivariant K-theory for Banach algebras and the Baum-Connes conjecture[END_REF], groups which satisfy property RD together with some non positive curvature assumption (called strong bolicity) also satisfies the Baum-Connes without coefficient. For groups with property T, including most hyperbolic groups or cocompact lattices SL 3 (R) (for instance), this is the only known approach to the Baum-Connes conjecture. (The Baum-Connes conjecture is open for SL 3 (Z).)

In [START_REF] Barré | Intermediate rank and property RD[END_REF] we studied "rank interpolation" for countable groups, that is, interpolation of the rank in between the usual rk = 1, 2, . . . integer values. The main applications presented in [START_REF] Barré | Intermediate rank and property RD[END_REF] are C * -algebraic in nature and in particular, we established property RD for many groups of intermediate rank. This provided new examples where Lafforgue's approach to the Baum-Connes could be applied (in fact for many of these groups-e.g. for groups of rank 7 4 -this is also the only approach that is presently known to work, and the Baum-Connes conjecture with coefficients is open). See also [START_REF] Barré | Property RD for D. Wise non Hopfian group[END_REF] and [START_REF] Barré | Friezes in polyhedral complexes and application[END_REF] for other results on intermediate rank and property RD. The accent in [START_REF] Barré | Intermediate rank and property RD[END_REF] is on interpolating the rank between 1 and 2, which includes a large class of groups of interest. In the present paper we will see that B 4 is also a group of intermediate rank, which interpolate the rank between 2 and 3.

Proof of Theorem 1

The group B 4 admits the following presentation:

B 4 = a, b, c | aba = bab, bcb = cbc, ac = ca .
The pure braid group P 4 is the kernel of the surjective homomorphism to the symmetric group on 4 letters, B 4 → S 4 , mapping a braid to the corresponding permutation of its endpoints. It is wellknown that the center of both B 4 and P 4 is the cyclic group generated by the element z = (bac) 4 , which consists in a full-twist braiding of the 4 strings (see [12,Section 10.B] for instance; this is known to hold for more general Artin groups [START_REF] Brieskorn | [END_REF][START_REF] Deligne | Pierre Les immeubles des groupes de tresses généralisés[END_REF]). In other words B 4 is a central extension of the group

G = B 4 / z
by the groups of integers Z = z , which gives an exact sequence

1 -→ Z -→ B 4 -→ G -→ 1,
and in the same way,

1 -→ Z -→ P 4 -→ H -→ 1,
where

H = P 4 /Z is a finite index subgroup of G.
The torsion in G corresponds to the the conjugacy classes of the elements x = bac and y = bac 2 and their powers, where we have x 4 = y 3 = z (see [20, p. 139] for a geometric proof of this fact; recall that G 4 itself is torsion free). It follows that H is torsion free. We will need some results of Brady [START_REF] Brady | Thomas Artin groups of finite type with three generators[END_REF] and their extensions in Crisp-Paoluzzi [20, Section 3]. Let Y be classifying space of B 4 constructed in [START_REF] Brady | Thomas Artin groups of finite type with three generators[END_REF]. As recalled in the introduction, Y is a CAT(0) simplicial complex of dimension 3 whose 3-dimensional faces are Euclidean tetrahedra. The authors of [START_REF] Crisp | Luisa On the classification of CAT(0) structures for the 4-string braid group[END_REF] consider the projection in Y along the z-axis and obtain a 2-dimensional complex X (called the Brady complex there) together with an action of G (called the standard action, in view of [START_REF] Crisp | Luisa On the classification of CAT(0) structures for the 4-string braid group[END_REF]Theorem 1]) which commutes to the action of B 4 on Σ under taking projection. The complex Y splits metrically as a product:

Y = X × R
and X is endowed with an action of G (in Section 4 we will give more details on these constructions).

As a CAT(0) space, X is a triangle polyhedron, i.e. its faces are equilateral triangles of the Euclidean plane ([20, p. 140]), and the action of G on X is proper with compact quotient. Thus H acts freely with compact quotient on X, so H appears as the fundamental group of the complex V = X/H (it can be shown that V has 6 vertices and 32 faces). It follows then from Theorem 2 that H has property RD with respect to some (hence any) finite generating set. As H is a finite index normal subgroup of G this implies, by Proposition 2.1.4 in [START_REF] Jolissaint | Paul Rapidly decreasing functions in reduced C * -algebras of groups[END_REF], that G itself has property RD.

Further results of Jolissaint [START_REF] Jolissaint | Paul Rapidly decreasing functions in reduced C * -algebras of groups[END_REF] (in particular Proposition 2.1.9 of that paper, see also Chatterji-Pittet-Saloff-Coste [18, Proposition 7.2]) show that property RD is stable under certain types of central extensions. We will prove that these results can by applied to the present situation and this will conclude the proof of Theorem 1.

Consider the section κ : G → B 4 of the quotient map π : B 4 → G, which identifies G as the subset of braids in B 4 whose central part is trivial. Being a central extension of G, we can decompose B 4 as a product

B 4 = Z × c G
where the value at a point (g, h) ∈ G × G of the cocycle

c : G × G → Z defining the extension is the exponent of z ∈ G in the central element κ(g)κ(h)κ(gh) -1 of G.
Our goal is to find a symmetric finite generating set of G such that, for the corresponding Cayley graph Y G of G, we have

|c(g, h)| ≤ n
for every elements g, h ∈ G at distance at most n from the identity in Y G . That this implies property RD for B 4 follows from [START_REF] Chatterji | Connected Lie groups and property RD[END_REF]Proposition 7.2].

Let us fix some notations regarding the Thurston normal form for elements of B 4 (see [START_REF] Epstein | Word processing in groups[END_REF]Chapter 9] and [START_REF] Charney | Ruth Artin groups of finite type are biautomatic[END_REF]). In what follows we write ∆ = (bac) 2 for the half twist of the four strings.

The braid group B 4 can be generated by a set S of 23 elements, which are in bijective correspondence with the non trivial elements of the symmetric quotient S 4 . The half-twist ∆ belongs to S. Furthermore in this presentation, the monoid B + 4 of positive braids is the submonoid of G generated by S, and every elements s ∈ B + 4 can be written in a canonical way s = s 1 . . . s n , called the greedy form of s, where s i ∈ S (see [START_REF] Garside | The braid group and other groups[END_REF][START_REF] Epstein | Word processing in groups[END_REF], for instance one can consider the right greedy form where the element ∆ appears only on the right side of the expression s 1 . . . s n ). This decomposition can be extended to B 4 : by [START_REF] Epstein | Word processing in groups[END_REF], every x ∈ B 4 can be written as x = s -1 t with s, t ∈ B + 4 , in a unique way (after obvious cancellation in case both s and t start with the same element r ∈ B + 4 ). Thus any elements x ∈ B 4 can be written in a canonical form x = s -1 n . . . s -1 1 t 1 . . . t m , where s i , t j ∈ S. The latter decomposition is called the Thurston normal form (or the Garside normal form) of x. Following [START_REF] Charney | Ruth Geodesic automation and growth functions for Artin groups of finite type[END_REF], we let

|x| = n + m,
where n and m are given by the normal form. The language associated to this normal form turns out to give a geodesic biautomatic structure on B 4 (see [START_REF] Epstein | Word processing in groups[END_REF][START_REF] Charney | Ruth Geodesic automation and growth functions for Artin groups of finite type[END_REF]), and if we denote by Y the cayley graph of B 4 with respect to S ∪ S -1 , then |x| is the length of a simplicial geodesic in Y from e to x ∈ B 4 . In particular for x, y ∈ B 4 we have [START_REF] Charney | Ruth Geodesic automation and growth functions for Artin groups of finite type[END_REF]Lemma 3.4]).

|xy| ≤ |x| + |y| (see
Let Y G be the Cayley graph of G with respect to the generating set π(S∪S Let g, h ∈ G at distance at most n from the identity in Y G . By definition, the value of c(g, h) is the exponent of z in the central part of κ(g)κ(h). Thus

|c(g, h)| ≤ |κ(g)κ(h)|/2 ≤ (|κ(g)| + |κ(h)|)/2 ≤ n.
This concludes the proof of Theorem 1.

Some classical applications of property RD

We present below two classical applications of property RD. The first one concerns the Baum-Connes conjecture and the second one is about random walks, which gives use some useful information on random walks on B 4 . For further consequences of property RD we refer to Valette's book [START_REF] Valette | Alain Introduction to the Baum-Connes conjecture[END_REF] and to the references there. 4.1. Braid groups and the Baum-Connes conjecture. As is well-known, the Baum-Connes conjecture with coefficients holds for the n-string pure braid group P n , as well as for its finite extension B n (see [START_REF] Oyono-Oyono | Baum-Connes conjecture and group actions on trees[END_REF][START_REF] Schick | Thomas Finite group extensions and the Baum-Connes conjecture[END_REF]). On the other hand, in the case n = 4, we have property RD and thus the Banach KKtheory techniques of Lafforgue [START_REF] Lafforgue | Vincent K-théorie bivariante pour les algèbres de Banach et conjecture de Baum-Connes. (French) [Bivariant K-theory for Banach algebras and the Baum-Connes conjecture[END_REF] applies as well. Hence: Corollary 5. The groups B 4 , P 4 and their respective central quotients, G and H, satisfy the Baum-Connes conjecture without coefficient.

The Baum-Connes conjecture (even without coefficients) has a number of applications. See [START_REF] Valette | Alain Introduction to the Baum-Connes conjecture[END_REF] for more details. The problem of showing the Baum-Connes conjecture with coefficients for groups acting freely isometrically with compact quotient on a CAT(0) space satisfying the assumption of Theorem 2 is open.

As far as we know, the Baum-Connes conjecture for the central quotients of B n and P n is open for n ≥ 5. 4.2. ℓ 2 spectral radius of random walks on B 4 . Another application of property RD concerns random walks on groups, see Grigorchuk and Nagnibeda [START_REF] Grigorchuk | Nagnibeda, Tatiana Complete growth functions of hyperbolic groups[END_REF] and the end of Section 2.2 in [START_REF] Barré | Intermediate rank and property RD[END_REF] for more details and references.

If G is a countable group endowed with a length, one considers the operator growth function of G,

F r (z) = n a n z n
where the coefficients a n are bounded operators on ℓ 2 (G) defined by (which also has some important applications, again see the references in [START_REF] Barré | Intermediate rank and property RD[END_REF]).

a n = |x|=n u x with u x , x ∈ G,
Thus we obtain:

Corollary 6. The groups B 4 , P 4 and their respective central quotients, G and H, satisfy the ℓ 2 spectral radius property. Furthermore for these four groups the reduced spectral radius ρ r and the radius of convergence ρ of the usual growth series are related as follows:

ρ r = √ ρ < 1,
and thus these groups satisfy Conjecture 2 in [START_REF] Grigorchuk | Nagnibeda, Tatiana Complete growth functions of hyperbolic groups[END_REF].

Mesoscopic rank

Let X be a piecewise Euclidean CAT(0) simplicial complex of dimension n ≥ 2, without boundary, and let A be a point of X (see [START_REF] Bridson | Metric spaces of non-positive curvature[END_REF] for a general reference on CAT(0) spaces). We call mesoscopic rank profile of X at A the function ϕ A : R + → N which associate to an r ∈ R + the number of distinct flat balls of radius r in X which are centered at A, and which are not included in a flat of X. By a flat in X (resp. flat subset of X) we mean an isometric embedding of the Euclidean space R n in X (resp. of a subset of an Euclidean space R n with the induced metric).

We then have the following.

Proposition 7 (see [START_REF] Barré | Intermediate rank and property RD[END_REF]). Let X be a piecewise Euclidean CAT(0) simplicial complex without boundary and let A be a point of X. Then, (1) if X is hyperbolic, ϕ A is compactly supported;

(2) if X is an affine Bruhat-Tits building, ϕ A vanishes identically.

We refer to [4, Section 6], where this theorem is stated for triangle polyhedra but the proof extends to the above general situation (in the first case there is no flat at all, while in the second, we have in fact that every flat ball is included in uncountably many flats).

According to Proposition 7, the mesoscopic rank profile trivializes when the rank takes the usual rk = 1, 2, 3, . . . integer values. The following property detects spaces of intermediate rank where, more precisely, intermediate rank occurs (exponentially) in between the local and asymptotic scale in X: Definition 8. The space X is said to have exponential mesoscopic rank at A if the function ϕ A converges exponentially fast to infinity at infinity.

Mere mesoscopic rank refers to the fact that the support of ϕ A contains a neighbourhood of infinity. Thus for spaces of mesoscopic rank at a point A, on can continuously rescale the radius of balls of center A from some constant C up to ∞, in such a way that all the balls in this family are flat but not included in flats. When the mesoscopic rank is exponential, the number of possible choices for these balls varies exponentially with the radius. Definition 9. A group G is said to be of exponential mesoscopic rank if it admits a proper isometric action with compact quotient on a CAT(0) space which is of exponential mesoscopic rank at least at one point (and thus at infinitely many points).

The following groups are known to be of exponential mesoscopic rank:

(a) The group denoted Γ ⊲⊳ in [START_REF] Barré | Intermediate rank and property RD[END_REF], and called group of frieze there (see [4, Section 6.1]); (b) The group of rank 7 4 which is the fundamental group of the complex denoted V 1 0 in [START_REF] Barré | Intermediate rank and property RD[END_REF] (see [4, Section 6.1]); (c) D. Wise's non Hopfian group (see [START_REF] Barré | Property RD for D. Wise non Hopfian group[END_REF][START_REF] Barré | Friezes in polyhedral complexes and application[END_REF]).

In the present paper we add further groups to this list, namely B 4 and its central quotient (as well as the group G 0 of Section 7). given in [4, Theorem 4], but we presently have no general (say local or semi-local) criterion ensuring exponential mesoscopic rank (compare Section 7 below). Another interesting problem is to prove or disprove the existence of groups of mesoscopic rank for which the mesoscopic rank profile at some vertex grows faster than polynomials but slower than exponential functions.

Proof of Theorem 4

We prove that the Braid group B 4 and its central quotient G = B 4 / z are of exponential mesoscopic rank, respectively, in Section 6.3 and Section 6.2.

6.1.

A closer look at the 4-string complexes Y and X. Let us first recall in some more details the description of the Brady action of B 4 on Y and its quotient action of G on X, following [START_REF] Brady | Thomas Artin groups of finite type with three generators[END_REF] and [START_REF] Crisp | Luisa On the classification of CAT(0) structures for the 4-string braid group[END_REF]. Consider the following presentation of B 4 ,

B 4 = a, b, c, d, e, f |ba = ae = eb, de = ec = cd, bc = cf = f b, df = f a = ad, ca = ac, ef = f e ,
and let us keep the notations x = bac and y = bac 2 , so that x 4 = y 3 = z generates the center of B 4 . There are exactly sixteen ways to write x as a product of three of the generators a, . . . , f . These can be expressed as the length 3 subwords of the following two words of length 12:

W 1 = bcadef bacdf e; W 2 = f aecf aecf aec,
which are representative for the central element x 4 = y 3 = z in B 4 (see [20, page 139]). To each of these expressions x = a 1 a 2 a 3 one associates an Euclidean tetrahedron whose faces are right-angled triangles, and whose edges have length

|x| = √ 3; |a i | = 1; |a 1 a 2 | = |a 2 a 3 | = √ 2.
The corresponding labelled tetrahedra can be assembled to form a compact complex V such that π 1 (V ) = B 4 . Then Y = Ṽ is the universal cover of V with the corresponding deck-transformation action of B 4 .

The CAT(0) space Y splits as a metric product Y = X × R, where X is the range of a projection of Y along the z-axis. The image of each tetrahedron in Y under this projection is an Euclidean equilateral triangle in X and the action of B 4 factors out to a simplicial action of G = B 4 / z on X, which is proper and cocompact. The Cayley graph of G with respect to the generating set S = {a, . . . , f } (where the above a, . . . , f are viewed as elements of G under a slight abuse of notation) is a 4-to-1 cover of the 1-skeleton of X.

Links at vertices in X are represented on Figure 1 below, where the right hand side representation corresponds to Figure 3 in [START_REF] Brady | Thomas Artin groups of finite type with three generators[END_REF] and Figure 6 in [START_REF] Crisp | Luisa On the classification of CAT(0) structures for the 4-string braid group[END_REF]. The equivalent left hand side representation is included for future reference (see Section 7). The labellings on these figure corresponds to edges of the generating set S entering and leaving the given vertex (this depends on the choice of a representative of the coset of x in G, but a different choice will simply relabel the link according to the action of an element of stabilizer of the vertex, see [20, p. 141]).

We call lozenge in X the reunion of two triangles glued along an edge of valence 2, and restrict from now on the terminology triangle of X to those equilateral triangles in X which are not included in a lozenge. According to the description given on p. 160 of [START_REF] Crisp | Luisa On the classification of CAT(0) structures for the 4-string braid group[END_REF], the complex X is built out of triangles and lozenges, all of whose edges being trivalent in X and labelled in the same way. There are three types of corners: in triangles, all angles labelled by 1, while in lozenges the angles are labelled 2 or 3 depending of whether it equals π/3 or 2π/3. Then triangles and lozenges in the complex X are arranged in such a way that the labelled link at each vertex matches that given on the following Fig. 2 (our notations differ slightly from those of [START_REF] Crisp | Luisa On the classification of CAT(0) structures for the 4-string braid group[END_REF], in particular our label 3 correspond to 2T - 3 and 2T + 3 in [20, Fig. 19]). [START_REF] Barré | Intermediate rank and property RD[END_REF] (see Section 6.1 and 6.2), with the additional difficulty that the link L embeds into the incidence graph of the Fano plane (compare Section 7). Let us first derive a few elementary lemmas regarding the local structure of X.

Lemma 11. Let R be a lozenge of X. Any boundary edge of R is incident to exactly a triangle and a lozenge R ′ = R of X. Furthermore, R ∪ R ′ is isometric to a parallelogram and we will say that R and R ′ are aligned in X.

Proof. Let R be a lozenge of X, e = [A, B] be a boundary edge of R, where A is the vertex of e whose internal angle in R is 2π/3. The geometry of L shows that there are two faces incident to e which are not included in R. Inspecting the link at B, we see that one of these faces is a triangle of X, while the other is a lozenge whose internal angle at B is 2π/3. This follows from the fact that every vertex of valence of 3 in L is adjacent to a vertex of valence 2, and the vertices with valence 2 are at distance ≥ 3 one from the other. Hence the lemma is proved. Lemma 12. Let R be a lozenge of X and A be a vertex of R of internal angle 2π/3. There are exactly two lozenges R 1 and R 2 in X such that R ∩ R 1 = R ∩ R 2 = {A} and such that both R ∪ R 1 and R ∪ R 2 are included in a flat hexagon of X. (This hexagon contains R and R 1 (resp. R and R 2 ) and the two triangles of X containing A and completing R and R 1 (resp. R 2 ) to a local flat at A.)

Proof. The assertion follows from the fact that, given a vertex x of valence 2 in L, there are exactly two vertices y and z of valence 2 in L such that (x, y) on the one hand, and (x, z) on the other, are at distance π in a cycle of L of length 2π. Lemma 13. Let x and y be two trivalent vertex at distance π in L. Then there are precisely three distinct paths of length π with extremities x and y in L. Depending on the position of x and y in L these paths are labelled in either one of the following two ways (with the labelling given by Fig. 2):

• Case I: 2-3, 3-2, and 1-2-1;

• Case II: 1-3, 3-1, and 2-1-2.

Proof. It is easily seen from the geometry of the link (Fig. 2) that trivalent points at distance π in L can be joined by simplicial paths whose edges labelling are:

(a) 1-3 (or 3-1) (b) 2-3 (or 3-2) (c) 1-2-1 (d) 2-1-2
and furthermore that there are precisely three distinct paths between any two such points. Indeed, the group of labelling preserving automorphisms of L is homogeneous on trivalent vertices, so we can assume for instance that x = a + (in the notation of Fig. 1), in which case there are two possibilities for y, namely y = a -and y = e -. The lemma follows, where case I corresponds to y = a -and case II to y = e -.

We call singular geodesic in X a CAT(0) geodesic of X which is included in the 1-skeleton of X (viewed with respect to the triangle/lozenge simplicialization, in particular, all edges of singular geodesics are of valence 3). It is easy to see that for u = a or u = c, and every vertex A in X, the vertices u i A, i ∈ Z, belong to a singular geodesic of X. Indeed, since the labellings of the link at each vertex u i A are given by permuting letters of L, it is sufficient to show that the points of L with label u -and u + are trivalent vertices at distance π in L, which straightforward. We will denote this geodesic by u Z A.

Recall that a subset S of X is called a (flat) strip if it is isometric to a product I × R ⊂ R 2 where I is a compact interval of R. The boundary of S is a reunion of two parallel geodesics of X, say d and d ′ , and is denoted (d, d ′ ). The height of S is the CAT(0) distance between d and d ′ .

The following lemma asserts that singular geodesic in X all appear as branching locus of flat strips of X. This property is reminiscent of affine Bruhat-Tits buildings (say, of dimension 2), where it is true in a somewhat stronger form (in particular strips may be extended arbitrarily there). Lemma 14. Let d be a singular geodesic of X. There are precisely three flats strips in X of height at least √ 3/2 whose pairwise intersection are reduced to d.

Proof. For each edge e of d consider the three faces T i e , i = 1, 2, 3, whose boundary contains e. Two of these faces are lozenges and one of them, say T 1 e , is a triangle of X (see Lemma 11). Let f be an edge of d adjacent to e and let A be their intersection point. The points corresponding to e and f in the link L A of X at A are trivalent, and it can be easily checked that they are at distance π from each other in L A . Thus Lemma 13 applies. In case I, the faces T 1 e and T 1 f correspond to a path of length π of the form 1-2-1, and, up to permutation of indices i, the faces T i e and T i f (for i = 2, 3) corresponds to a cycle of length π of the form 2-3 and 3-2. In case 2 and again up to permutation of the indices i, the faces T 1 e and T 2 f correspond to a path of length π of the form 1-3, the faces T 1 f and T 2 e correspond to a path of length π of the form 3-1, while the faces T 3 e and T 3 f correspond to a path of length π of the form 2-1-2. Then the lemma follows by iterating this on both sides of the geodesic d starting from a fixed edges e. The height of each strip may be taken to be at least √ 3/2.

We say that a vertex of a singular geodesic of type I (resp. of type II) depending on whether case 1 (resp. case 2) applied in the proof of the above lemma, and call a geodesic of type I (resp. of type II) if all its vertices are of type I (resp. type II). For instance the geodesic a Z A and c Z A are of type I for any vertex A of X.

Lemma 15. Let d be a singular geodesic of type I in X. There are precisely three flats strips in X of minimal height whose pairwise intersection are reduced to d and whose boundary geodesics are singular geodesics type I in X. Two of them have height √ 3/2, and are reunions of aligned lozenges (see Lemma 11), and the other one has height √ 3, and is a reunion of hexagons as described in Lemma 12, and triangles of X which are the unique triangles completing these hexagons to a flat strip.

Proof. Let d be a singular geodesic of type I in X and let S 1 , S 2 and S 3 be the strips of height √ 3/2 given by Lemma 14, whose pairwise intersections are reduced to d. We may assume at each vertex A of d the path of length π in L A corresponding to S 1 are of the form 1-2-1. Then the path corresponding to S 2 and S 3 are either of the form 2-3 or 3-2. Let us first consider the strip S 1 and for each vertex A of d denote by R A the lozenge of X corresponding to the index 2 in the path 1-2-1 of L A . It is easily seen that if A and B are consecutive vertices on d, then the lozenges R A and R B are in the configuration described in Lemma 12 and they can be completed by a unique triangle of X (besides the one in S 1 ) to form an hexagon H AB . The reunion S ′ 1 of all hexagon H AB when A and B runs over the pair of adjacent vertices on d is a flat strip of X of height √ 3. Furthermore it is a simple matter to check (with Lemma 13) that all the vertices of the boundary of this strip which is distinct from d are of type I, which proves the assertion of the Lemma in that case. A parallelogram of the strip S ′ 1 is represented on Fig. 3 on the left.

Consider now the strip S 2 , which is of height √ 3/2. The boundary of this strip which is distinct from d contains only vertices whose link intersect S 2 along a path of the form 2-3 or 3-2. By Lemma 13 again, these vertices are of type I. The case of S 3 being identical to that of S 2 , this proves the lemma. Parallelograms of the strips S 2 and S 3 are represented on Fig. 3.

Theorem 16. The complex X is of exponential mesoscopic rank at every vertex. More precisely let O be a vertex of X and k be a sufficiently large integer (in fact k ≥ 32 is sufficient for our purpose). Then the mesoscopic profile ϕ O at X satisfies

ϕ O ≥ 3 2 2µ k -4
on the interval [k -1, k] of R + , where

µ k = k( 2 √ 3 -1) + ( 2 √ 3 -3) .
In particular the group G is of exponential mesoscopic rank. Proof of Lemma 17. As we see on the link L A of A, there is a unique lozenge R, which corresponds to a label 2 in L A and which extends the strips S 1 and S ′ 2 at the point A to a flat disk in X containing A as an interior point. This lozenge contains a vertex B at distance π from c -1 (A) in L A and in turn, there is a unique way to extend the resulting configuration to a flat disk in X containing B as an interior point. This disk corresponds to a circle of length 2π which is labelled 1-3-2-1-2 in L B . Let R ′ be the lozenge of X distinct from R which corresponds the label 2 in this circle.

It is easy to see that, if D is a flat disk as in the statement of the lemma, then any flat disk D ′ of center O k and radius > k + 1 which contains D must contain the points A and B as interior points and must intersect the lozenge R ′ along a non-empty open subset. On the other hand D, and a fortiori D ′ , contains at least 3 2 2µ k -4 distinct elements. Furthermore all these disks satisfy the assumption of Lemma 17 and thus are not included in a flat of X. Since the vertex O k are all equivalent under the group G, this proves the theorem. 6.3. Exponential mesoscopic rank for Y and the braid group B 4 . We conclude this section with the proof of Theorem 4. 

Y O at Y satisfies ϕ Y O ≥ ϕ X π(O)
where ϕ X O ′ is the mesoscopic profile of X at a vertex O ′ ∈ X. In particular the braid group B 4 is of exponential mesoscopic rank.

Proof. For r ∈ R, let k = ϕ X (r) and consider k distinct flat disks D 1 , . . . , D k of center O ′ = π(O) and radius r in X which are not included in a flat of X.

Let C i = π -1 (D i ) ≃ D i × R
be the cylinder of Y corresponding to the decomposition Y ≃ X × R. These cylinder are isometric to cylinders in the Euclidean space R 3 and in particular the ball of center O and radius r in C k are all flat balls of X. Furthermore, these balls are not included in flats of Y . Indeed, if B i ⊂ Π where Π ≃ R 3 is isometric to the Euclidean space R 3 , then the projection π(Π) is a convex subset of X which is isometric to the Euclidean space R 2 . But this shows that D i is included in a flat of X. Finally, as the ball B i are pairwise distinct (since the disks D i are), we obtain that ϕ Y (r) ≥ k as claimed. The last assertion follows from Theorem 16.

Remark 19. It would be interesting to give example of groups which act properly with compact quotient on a CAT(0) space of dimension ≥ 3 of exponential mesoscopic rank, which doesn't split as a metric product where some factor is of exponential mesoscopic rank. In view of Tits' classification of affine buildings, it seems plausible that CAT(0) simplicial complexes "whose rank is close to their dimension" will get sparse when the dimension gets strictly greater than 2. Recall here that affine Bruhat-Tits buildings are completely classified in dimension ≥ 3 by work of Tits [START_REF] Tits | Buildings of spherical type and finite BN-pairs[END_REF], and that this is far from being possible in dimension 2 which offers a great degree of freedom [START_REF] Barré | Sur les immeubles triangulaires et leurs automorphismes. (French) [Triangular buildings and their automorphisms[END_REF]. We also refer to the paper of Ballmann and Brin [START_REF] Ballmann | Michael Rank rigidity of Euclidean polyhedra[END_REF] concerning rank rigidity results in dimension 3.

More on mesoscopic rank

In the present section we investigate possible relations between the Brady complex X and triangle buildings of order 2. Furthermore we present a group which acts freely isometrically with compact quotient on polyhedra of exponential mesoscopic rank that is embeddable into a triangle building.

Let us observe first that the link of X (represented Fig. 1) obviously embeds (simplicially) into the incidence graph L 2 of the Fano plane. Such an embedding is made explicit on Fig. 5 below; the graph L is obtained from L 2 by removing a tree T of 5 edges (indicated in dots on Fig. 5). We call center-edge of T the only non-extremal edge of T -this tree T appears often in [START_REF] Barré | Immeubles de Tits triangulaires exotiques[END_REF] where it is called a fishy edge (or a fish bone, depending on the translation). The graph L 2 is a spherical building and can be identified to the link of triangle buildings of order 2 (see e.g. [START_REF] Ronan | Lectures on buildings[END_REF]; triangle buildings are also called affine Bruhat-Tits buildings of type Ã2 ). By [START_REF] Barré | Sur les immeubles triangulaires et leurs automorphismes. (French) [Triangular buildings and their automorphisms[END_REF] there are uncountably many such buildings, and their groups of automorphisms is generically trivial (generic is taken here in the sense of Baire with respect to some appropriate topology). In view of the above embedding L ֒→ L 2 , it is natural to ask whether the complex X itself can be simplicially embedded into one of these triangle buildings. It turns out that this problem has an elementary answer. Proposition 20. Let X be the brady complex and ∆ be a triangle building of order 2. There is no simplicial embedding X ֒ → ∆. More generally, any CAT(0) complex X of dimension 2 whose faces are equilateral triangle and whose links at each vertex are isomorphic to L does not embed simplicially into a triangle building.

Proof. Let X be a CAT(0) complex X of dimension 2 whose faces are equilateral triangle and whose links at each vertex are isomorphic to L, and assume that we are given a simplicial embedding X ֒→ ∆. For a vertex D of X we write T D for the removed tree,

T D = L ∆,D \L X,D ,
where L Z,D denotes the link of D in the complex Z. Fix some vertex A ∈ X.

Then there is a unique triangle in ∆, say (ABC), which corresponds to the center-edge of the tree T A at the point A. Denote by (ABB ′ ) and (ABB ′′ ) the two other triangles in ∆ adjacent to the edge [A, B]. In the link L ∆,B ′ (resp. L ∆,B ′′ ), the edge corresponding to the triangle (ABB ′ ) (resp. (ABB ′′ )) is extremal in the tree T B ′ (otherwise L ∆,A \L X,A would contain more than 5 edges). Thus the three triangles of ∆ adjacent to the edge [B, B ′ ] (resp. [B, B ′′ ]) do not belong to X. But then the graph L ∆,B \L X,B contains at least six edges, contradicting our assumptions. Therefore there is no simplicial embedding X ֒→ ∆.

Remark 21. The proof of Proposition 20 shows more, namely, it shows that the obstruction of an embedding X ֒→ ∆ is local : for X and ∆ as in the is the best we can do.

We will conclude with a discussion of the following question, which is natural in view of the above. Does (exponential) mesoscopic rank for a CAT(0) complex prevents simplicial embeddings of this complex into an affine Bruhat-Tits building ? It turns out that the answer is negative. It can be shown that the group G 0 defined by the presentation:

G 0 = r, s | s -2 ts 2 t = t 2 st -2
admits a free and isometric action with compact quotient on a CAT(0) simplicial complex X 0 of dimension 2 such that:

(1) there is a simplicial embedding X 0 ֒→ ∆ where ∆ is a triangle building of order 2; (2) X 0 is of exponential mesoscopic rank. Since the construction from which G 0 is derived is not related to braid groups and would take us too far away from the subject of the present paper, we will omit the proofs of the above two statements. Let us simply describe the local geometry of X 0 , which can be interestingly compared to that of the Brady complex X. The links at each vertex of X 0 (which necessarily embed simplicially into L 2 ) are all isometric (in fact G 0 acts transitively on the vertices of X 0 ). They are obtain from graph L 2 by removing 3 edges. Note that these edges are not in a tree but they are irregularly positioned on the graph L 2 , as for the link L of the Brady complex X. The complex X 0 has exponential asymptotic rank in the sense of [START_REF] Barré | Intermediate rank and property RD[END_REF].

The above figure represents the links in X 0 . The complex X 0 itself contains two types of faces, equilateral triangles and parallelograms of size 2 × 1 in the Euclidean plane; a representation of these faces and their labellings can be found on Fig. 8. 

Remark 10 .

 10 Most of the groups of rank 7 4 (see [4, Section 4]) might be of exponential mesoscopic rank. Besides the one of Item (b) above, one can get more examples from the classification of transitive orientable groups of rank7 4
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 1 Figure 1. The link L and its labelling
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 262 Figure 2. Description of the complex X
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 3 Figure 3. Parallelograms and strips on type I geodesics of X

Proof.

  Let Π be the flat containing the origin O = O 0 of X and generated by the subgroup a, c ≃ Z 2 of G. Denote O 1 = (ac) -1 (O 0 ) let d = [O 0 , ∞) be the semi-line of Π of origin O 0 and containing O 1 . Hence the vertices of d are the points O k = (ac) -k (O 0 ) for k ∈ N. Let Π 0 be the sector of X of extremity O 0 , of angle 2π/3 at O 0 , and which is bisected by the semi-line d (see Figure 4). The boundary of Π 0 is included in the reunion of singular geodesics d 1 and d 2 which intersects at O 0 ; the first one contains the vertices a -k (O 0 ) and the second one the vertices c -k (O 0 ), k ∈ N. Both d 1 and d 2 are of type I. Consider the vertices A = a(O 0 ) of the flat Π. By Lemma 15: (1) There is a unique strip S 1 of height √ 3 whose intersection with Π is reduced to a Z (O 0 ), and whose other boundary d ′ 1 is a singular geodesic of type I in X. We consider then on d ′ 1 the unique strip of height 1, say S ′ 1 , which corresponds in the link of vertices of d ′ 1 to paths of the form 3-2 (see Fig. 4). Let d ′′ 1 be the other boundary of S ′ 1 . (2) Consider the strip S 2 in X of height √ 3/2 on c Z (O 0 ) which contains A. (This strip is included in Π and its other boundary d ′ 2 = c Z (A) is a singular geodesic of type I in X.) There is on d ′ 2 a unique strip S ′ 2 of height √ 3 whose other boundary d ′′ 2 is a singular geodesic of type I in X. The strips S 1 , S ′ 1 , S 2 and S ′ 2 are represented on Fig. 4, together with the labellings given by the links at their vertices. Lemma 17. Let k ∈ N and let D be a flat disk in X of center O k such that D\(X\Π 0 ) = D ∩ Π 0 . If the intersections D ∩ S i and D ∩ S ′ i , i = 1, 2 are non empty open sets, then D is not included in a flat of X.

Theorem 18 .

 18 Let O be a vertex of Y and consider the CAT(0) projection π : Y → X associated to the metric decomposition Y ≃ X × R. Then the mesoscopic profile ϕ
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 5 Figure 5. The incidence graph L 2 of the Fano plane and the link of X
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 6 Figure 6. Embedding X into a triangle building
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 7 Figure 7. The link of a complex of mesoscopic rank that can be embedded into a triangle building

Figure 8 .

 8 Figure 8. Description of the complex X 0

  is obtained from the product κ(g)κ(h) by cancellation of the central factor. In particularκ(Ball n (Y G )) ⊂ Ball n (Y ),where Ball n (•) is the ball of radius n in the corresponding Cayley graph. On the other hand, since ∆ ∈ S and z = ∆ 2 , the absolute value of the exponent of z in the central part of an x ∈ B 4 is at most |x|/2 by construction of the normal form of x.

-1 

). It is easily seen that |κ(gh)| ≤ |κ(g)| + |κ(h)| since κ(gh)

  the canonical family of unitary operators corresponding to G in C * r (G) under the regular representation. The radius of convergence ρ r of F r is no lower than the radius of convergence of the usual growth series of the group G with respect to ℓ. Conjecture 2 in[START_REF] Grigorchuk | Nagnibeda, Tatiana Complete growth functions of hyperbolic groups[END_REF] states that G is amenable if and only if ρ = ρ r . For groups with property RD (in fact "radial subexponential" property RD is sufficient, see [4,Proposition 23] and references) we have ρ r = √ ρ and thus the above Conjecture 2 holds. One can also deduce the ℓ 2 spectral radius property for every element in the group algebra of G provided G has (subexponential) property RD, i.e., the fact that the spectral radius of every element a ∈ CG acting by convolution on ℓ 2 (G) is equal to

	defined by			
	1 ρ r	= lim sup n→∞	a n	1/n r
		lim n→∞	a * n 1/n 2

We can now conclude the proof of Theorem 16. We proceed as in Lemma 59 of [START_REF] Barré | Intermediate rank and property RD[END_REF], to which we refer for more details. For k ≥ 32 let µ k be the integer defined in the statement of the theorem and let ν k = 3 2 µ k . (Since k ≥ 32 we have µ k ≥ 3.) Using Lemma 15, we can construct, for i = 1, 2, (at least) ν k distinct flat strips

(The lower bound ν k is estimated by examining transverse trees in the sets ∪ ν k j=1 S j i ; sharper bounds can be obtained easily but ν k is enough to show exponential growth of the mesoscopic profile.) So let i = (i 1 , i 2 ) ∈ {1, . . . , ν k } 2 and consider the subset Π i of X defined by

Then the set