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Abstract. An analysis of current profiles carried out on
moored Acoustic Doppler Current Profiler data sets recorded
during the Variability of Exchanges In the Northern Seas
project is presented here for several locations in three sec-
tions in the vicinity of the Iceland-Scotland Ridge: (1) north
of the Faroes, (2) in the Faroe-Bank Channel and (3) in the
Faroe-Shetland Channel. Total currents have been decom-
posed into three components, namely the mean residual flow,
tide and surge. The mean residual flow is found to be dom-
inant. Results for the major tidal constituents (M2, S2, N2,
O1 andK1) are shown and discussed. It is found that the pre-
dominant tidal harmonicM2 becomes steered through depth
to align with the bottom topography. The mean residual flow
is found to be generally larger than the surge, particularly
in the Faroe-Bank Channel below 500 m depth where it is
the dominant component. Here tidal rectification, i.e. the to-
pographic rectification of tidal currents originating in non-
linearities that rectify the oscillatory tidal motion, is identi-
fied as the process enhancing the large mean residual cur-
rents found. From the current structure, two water masses
are identified in the channel: the upper slowing moving in-
flow water and the colder outflow water characterised by a
3–6-day periodicity. In the Faroe-Shetland Channel the flow
is characterised by large tidal currents, particularly in shallow
waters. Instead, north of the Faroes none of the component
was identified as dominant. The results show that the vari-
ability of the current components is strongly dependent upon
topography and water depth.

Keywords. Oceanography: Physical (Currents; General
circulation; General or miscellaneous)

1 Introduction

The aim of this study is to understand the vertical and spa-
tial variability of tidal and residual currents in three sections
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located north of the Faroe Islands, in the Faroe-Bank Chan-
nel (FBC) and in the Faroe-Shetland Channel (FSC) (Fig.1)
and to relate this to the water movement for the region.

Such an approach for the analysis of current structure
through the water column is common in ocean litera-
ture (Halpern, 1976; Saunders, 1976; Halpern et al., 1977,
1978; Halpern, 1979; Brink et al., 1980; Godfrey et al.,
1980; Halpern, 1980; Jones and Halpern, 1981; Pingree and
Mardell, 1981; Heathershaw, 1985; Halpern, 1987a,b). The
procedure generally followed is to identify (1) factors influ-
encing current speed, (2) the effect of the wind stress on sur-
face layers (Halpern, 1976; Jones and Halpern, 1981), (3) the
vertical stratification of temperature and salinity (Halpern,
1980), and (4) the influence of the sloping topography on
tidal and residual currents, particularly in areas like the shelf-
break (Pingree and Mardell, 1981). This list is by no means
exhaustive but is included to illustrate the importance of con-
sidering the vertical current profiles.

The object of the study here is to identify the current com-
ponents that may dominate extremes in ocean currents and to
better understand their make-up. It is proved to be necessary
prior to the application of the statistical analysis of extreme
events to allow for a physical interpretation of the results, as
shown in the companion paper.

Evidence of topographic steering and rectification for tidal
currents is investigated. Previous work byAllen (1995) stud-
ies sub-tidal and tidal currents north of the Faroes in the re-
gion of the Iceland-Faroe Front showing the spatial variation
of tidal currents due to the bottom topography. The semi-
diurnal tide is indicated be the largest in bothu andv ve-
locity components and can be affected by the meandering of
the front. Sherwin and Jeans(1997) analyse tidal currents
in the Wyville-Thomson Ridge at the southern end of the
FSC section and show that three semi-diurnal components
(M2, S2 andN2) dominate tidal currents (in agreement with
Sherwin(1991)). Similarly Simonsen(1999) describes the
semi-diurnal character that dominates tidal currents around
the Faroe Islands and indicates the presence of topographical
trapped waves along the Scottish and Faroe shelves.
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Fig. 1. VEINS deployments in sections N (north of the Faroes), F
(Faroe-Bank Channel), and S (Faroe-Shetland Channel) (modified
from Hansen et al.(1999a)).

2 ADCP data

The Variability of Exchanges In the Northern Seas (VEINS)
project was set up to evaluate the variability of the fluxes
between the North Atlantic and the Arctic Ocean (Hansen
et al., 1998; Hansen and Østerhus, 2000; Hansen et al., 2001).
To achieve this, long-term upward looking Acoustic Doppler
Current Profiler (ADCP) were deployed in several locations
around the Faroe Islands (Hansen et al., 1999a,b).

The importance of this area lies in being the connection
and the conduit for water mass exchange across the Iceland-
Scotland Ridge.

ADCP data consist ofu andv current velocity components
averaged vertically over 10 m depth bins for shallow water
deployments, and 25 m depth bins for deep water deploy-
ments and over 20 min time interval (Hansen et al., 1999a).

In the sections considered in this study upward looking
ADCP were deployed at 7 standard mooring sites and 3 spe-
cial ones (FA, FC and ND) (Hansen et al., 1999a) (see Fig.1).

Measurements were taken from June 1996 to June 1999
from around 40/200 m down to 300/900 m depending on the
sea-floor depth at each location. Details of the deployments
are given in Table1.

The recorded current data sets are not continuous in time
due to missing data, especially for the near-surface bins that
are most distant from the instrument. ADCP records have
been quality controlled by the Faroese Fisheries Laboratory
by comparing the performance of the instruments and the
variation of data with time in relation to neighbouring bins.
During the editing process missing data, outliers and data in-
cluding large errors were flagged; bins with less than 50%
valid data were rejected (Hansen et al., 1999a).

Table 1. Latitude and longitude (degrees), sea-floor depth (in
meters) and number of days available for the ADCP time series
recorded during the VEINS project.

latitude longitude depth days

FA 61 26.40N 08 14.56W 718 71
FB 61 24.98N 08 16.98W 816 362
FB 61 24.93N 08 17.34W 818 71
FB 61 24.95N 08 17.13W 815 273
FC 61 23.60N 08 18.95W 836 71
NA 62 42.31N 06 05.17W 300 359
NA 62 42.17N 06 05.04W 297 360
NB 62 54.81N 06 04.95W 907 365
NB 62 55.15N 06 04.84W 961 349
NC 63 16.42N 06 06.60W 1733 364
NC 63 15.94N 06 06.29W 1728 349
ND 62 57.54N 06 05.06W 1283 214
SA 61 00.13N 05 50.61W 295 218
SB 60 46.93N 05 18.48W 782 271
SC 60 34.03N 04 46.10W 1068 318
SC 60 33.98N 04 46.10W 1076 271

2.1 Section N: north of the Faroes

North of the Faroe Islands, where the Iceland Faroe Front
(IFF) separates warm water masses of Atlantic origin from
colder waters produced in the Arctic region, three quasi-
permanent mooring sites (NC, NB, NA) plus a shorter de-
ployment at a site ND (between NB and NC) (Hansen et al.,
1999a), were located on a north-south section (Fig.1), which
traverses the flow (Hansen et al., 1999b). From north to south
there is a steep decrease in the bottom depth (from 1700 m to
300 m), i.e. NA is located in shallow waters.

The deployments NA, NB, ND and NC traverse the Faroe
Current as it flows eastward (Hansen et al., 1999b). This
current is a jet with its core over the slope, where maximum
velocity is recorded (Hansen et al., 1998).

This area is characterised by the presence of meanders and
eddies of 30–50-km scale that move eastward with the front
itself (Hansen and Østerhus, 2000).

2.2 Section F: the Faroe-Bank Channel

In the FBC one quasi-permanent mooring site (FB) plus
two shorter deployments (FA and FC) were located on a
southwest section across the channel (Fig.1) (Hansen et al.,
1999a). At these sites deep-water instruments were deployed
(sea-floor depth around 800 m).

This channel, which separates the Faroe Plateau from the
Faroe Bank, is about 20 km wide, has sill depth of about
840 m, and is the deepest passage of the Ridge. It is, there-
fore, the main outlet of cold waters from the Nordic Seas
that dominate the deepest 200/300 m of this channel (Hansen
et al., 1998; Østerhus et al., 1999).

Different water masses are found in the channel as exten-
sively described inHansen and Østerhus(2000):
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(1) Modified North Atlantic Water (MNAW) located from the
surface to about 250 m, (2) intermediate water, from 250 m
to 550 m, is a mixture of the two water masses from above
and below, (3) bottom water made up of Norwegian Sea Arc-
tic Intermediate Water (NSAIW) and Norwegian Sea Deep
Water (NSDW) (Østerhus et al., 1999).

At the central site (FB) cold waters flow northwestward
in a current with average velocities exceeding 1 m s−1 in its
core, centered about 120 m above the bottom (Østerhus et al.,
1999). In the channel the flow is strongly steered by the
bottom topography; the mean direction is, in fact, 135/315◦

(Saunders, 1990).

2.3 Section S: The Faroe-Shetland Channel

In the southwestern part of the FSC three mooring sites (SA,
SB and SC) were located on a southeast section (Fig.1). The
deployment at site SA is a shallow water one; at sites SB and
SC deep water instruments were used (Hansen et al., 1999a).
There is a steep increase in the sea-floor depth from SA to
SC along the section from 295 to 1076 m.

This channel separates the Faroe Plateau from the British
Isles. Sea-floor depth is about 1500 m on the northern end,
with a minimum of 1000 m, and is just over 600 m on its
southern part where it is blocked by the Wyville-Thomson
Ridge (Sherwin et al., 1999). Bathymetry dominates current
dynamics in this channel, which is one of the most important
passage of the region for the overflow.

The water column is characterised by the presence of:
(1) two different surface water masses, North Atlantic Wa-
ter (NAW) and Modified North Atlantic Water (MNAW),
(2) two intermediate water masses Arctic Intermediate Wa-
ter (AIW) from 400 m to 600 m, and Norwegian Sea Arctic
Intermediate Water (NSAIW) from 600 m to 800 m, (3) a bot-
tom water mass known as Faroe-Shetland Channel Bottom
Water (FSCBW) that is a mix of Norwegian Sea Deep Wa-
ter (NSDW) and NSAIW in different percentages (Sherwin
et al., 1999). Details can be found inHansen and Østerhus
(2000).

The speed of the along-shore current on the Shetland
side of the channel increases off-shore (from 10 cm s−1 over
200 m depth to 20 cm s−1 over 500 m depth) (Hansen and
Østerhus, 2000).

3 Methodology

3.1 Justification for the paradigm of the methodology

It is usual to analyseu andv velocity components separately
through a tidal analysis. The difference between raw data
and tidal currents gives the non-tidal flow that subsequently
is filtered to remove long-term trend. The normal proce-
dure (Pugh, 1987) is to make a harmonic tidal analysis of
these raw data usually specifying harmonics≤1 cycle per
day (cpd). Following this methodology, long period varia-
tions influenced by meteorological effects are not considered
and are resolved as a mean residual offset.
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Fig. 2. Linearly interpolated raw data (black), low-passed data
(blue) and high frequency data (cyan) are shown foru component
at location NA, 170 m depth.

However, to avoid mistakes in the interpretation of the re-
sults a better approach is to pre-filter, i.e. use the filter before
applying the harmonic analysis as proposed byGraff (1986).
Serious anomalies can arise in applying conventional tidal
harmonic analysis in cases where residual drift is in line with
the dominant tidal current and is of similar amplitude. For
example, in the case of a semi-diurnal dominant current with
energy peaks at 2 cpd it becomes rectified into a pseudo di-
urnal current (1 cpd) response that contributes to the resolu-
tion of pseudo diurnal tidal harmonics that can give a seri-
ously false representation of the tidal regime. In this way a
“cleaner” time series can then be processed using a tidal har-
monic analysis (Graff, 1986) to separate out tide and surge
component.

This methodology was followed after the application of
the standard methodology to the time-series collected in the
FBC showed that the semi-diurnal harmonics reduced dras-
tically at about 500 m depth thus suggesting a possible inter-
action between the mean flow and the tidal components. It
was found that diurnal harmonics increased in value.

3.2 Filtering

Raw data (divided intov andu component) were pre-filtered
using a 39-h centrally averaging Doodson X0 filter with a
cutoff of 1 cpd to separate out low frequency data (less than
1 cpd) and high frequency data (tidal and surge component)
(Graff, 1986). Any gaps present in the data were interpolated.

The high frequency data (Fig.2) were then subjected to a
tidal analysis to resolve the data further into tidal and non-
tidal (surge) components (Fig.3).

3.3 Tidal Analysis

Tides can be expressed as a Fourier sum of tidal harmonic
constituents in the form

X(t) = A0 +

∑
aN cos(ωN t − φN ) , (1)

whereA0 is the mean flow/level andaN is the amplitude of
the tidal constituent,ωN is the angular frequency, andφN
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Fig. 3. High frequency data (cyan), tidal data (red) and surge data
(green) are shown foru component at location NA, 170 m depth.

is a phase lag relative to the Equilibrium Tide. Each tidal
harmonic has a specific physical origin with dominant ones
being of lunar (M2) and solar (S2) semi-diurnal form.

The aim of a tidal analysis is to resolve a sufficient number
of tidal harmonics to describe the tidal regime at the place of
observation (Pugh, 1987). N depends upon the length and
quality of the observed data and complexity of tidal regime
(Pugh, 1987).

The POL/PSMSL (Proudman Oceanographic Labora-
tory/Permanent Service for Mean Sea Level) Tidal Analysis
Software Kit 2000 (Bell et al., 2000) was used for this pur-
pose.

Due to the different length of the time-series available
3 sets of tidal constituents were specified. The first set ap-
propriate to monthly data sets was made up of 27 major
constituents and 8 related constituents. The second set ap-
propriate to data sets greater than 6 months was made up
of 55 major constituents plus 2 related constituents. The
third set, suitable for the analysis of one year or longer data
sets, was made up of 58 major constituents including sea-
sonal dependence forM2 (Bell et al., 2000). Following
the above methodology the long period variations with fre-
quency<1 cpd which are influenced by meteorological ef-
fects were incorporated into the low frequency data and not
considered in the tidal analysis.

From these analyses only the largest 5 tidal constituents
were selected and studied: three semi-diurnal harmonics
(M2, S2 andN2) and two diurnal harmonics (O1 andK1).

The matlab functions used to convert amplitude and phase
into ellipse parameters and to plot the results were created by
Xu (2000).

4 Results

4.1 Section N

4.1.1 Tidal Component

The harmonic constituentM2 (Fig. 4) was found to be the
most important in the section north of the Faroes. The

value of the semi-major axis for this constituent generally
decreases at corresponding levels from location NA to loca-
tion NC (Fig.4), i.e. with increasing bottom depth, due to the
presence of an amphidrome north of NC. The largest values
were found at around 200 m depth (18.834 cm s−1 at 213 m
location NA) where the Faroe Current has its core (Hansen
et al., 1998), while minimum values were found at about
300 m depth at location NC (Fig.4). The same spatial and
vertical variations were found for the other two semi-diurnal
tidal harmonicsS2 andN2 (Fig.4). They are smaller thanM2
at all depths. The diurnal constituents are generally smaller
than the semi-diurnal ones and they do not vary greatly with
depth (Fig.4).

4.1.2 Mean Residual Flow and Surge Component

The amplitude of the mean residual flow decreases with
depth (Fig.5). At location NA the direction of the mean
residual flow (100/150◦) is very stable through time and
depth with periodicity of 3 to 6 days. Peaks of about
60/70 cm s−1 were found in surface waters while peaks of
40/50 cm s−1 characterise bottom waters. At NB, instead, it
is stable (100/150◦) only in the surfacemost measurements,
but not all year round. In deep waters there is a strong direc-
tionality toward 300◦ in some months again with a periodic-
ity of 3 to 6 days (Fig.6). At location NC the directionality
(200◦) is less stable.

In near-surface waters the surge component is smaller than
the mean residual flow. Instead at the bottom it is gener-
ally larger or of the same amplitude (Fig.5). This compo-
nent shows a preferred direction of flow between 60/90◦–
240/270◦ from 50 to 100 m at site NA. The surge does not
show any preferred direction at locations NB and NC. Peaks
of about 120/140 cm s−1 were recorded in surface waters and
of about 30/40 cm s−1 near the bottom (Fig.5).

4.2 Section F

4.2.1 Tidal component

M2 was found to be the dominant tidal harmonic in the FBC
deployments (Fig.7). The value of the semi-major axis for
this constituent generally decreases rapidly with depth and
it is does not show great spatial variation at corresponding
levels. Largest values were therefore found in the surface-
most measurements. Different behaviour is shown by the
other two semi-diurnal tidal constituents (Fig.7). In fact,
for these, the largest values were found around 350/400 m or
even deeper, though in magnitude smaller than the ones ob-
served forM2. This means that while the energy ofM2 de-
creases through depth it does not vary greatly forS2 andN2.
The inclination of the semi-major axis for the semi-diurnal
constituents changes abruptly at around 500/600 m (Fig.7)
to align with topography providing evidence of topographic
steering of tidal flows.

The diurnal constituents increase with depth from the sur-
face to about 550/650 m and then decreases in deep waters
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NA NB NC

Fig. 4. Variation of tidal constituents (M2 black,S2 cyan,N2 red,O1 blue andK1 green) with depth (from top to bottom at about 220, 320,
420, 520, 620, and 720 m depth) and space in the section north of the Faroes.
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Fig. 5. Vertical profiles of 3 months averaged daily maximum speed
for total currents (black), mean residual flow (blue), surge com-
ponent (green) and tide (red) at locations NA, NB and NC from
top to bottom. Continuous (–) line stands for average over June–
September, dashed (- -) line stands for average over September-
December, dotted (...) line stands for average over December–
March and dash-dotted (-.-.) line stands for average over March–
June.

where their amplitudes are comparable to the semi-diurnal
ones or even larger (Fig.7). The dominant constituents
are always aligned with the topography, which suggests that
there may be an energy leakage between the diurnal and
semi-diurnal co-aligned components. This is not investi-
gated.

4.2.2 Mean Residual Flow and Surge Component

In the FBC the presence of a strong residual current was
found (Fig.8), flowing almost continuously over the period
analysed along the 315◦ direction (Fig.9) steered by the
bathymetry slope contours and is much stronger at depth,
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Fig. 6. From top to bottom speed (cm s−1) and direction (degrees)
of mean-residual, tidal and surge components at location NB, 573 m
depth (from 12 October 1997 to 10 November 1997).

though still evident near the surface suggesting a strong co-
herence throughout the water column.

The amplitude of the mean residual flow changes with
depth, with high speed at the bottom (Fig.9) and low speed at
the surface. Strong mean residual flow at the bottom is in the
northwest direction. This flow increases from about 500 m
where tide and surge components are very small. The near-
bottom mean residual current has peak values in the range
100/150 cm s−1 which is greater than the tidal and surge cur-
rent together (Fig.8). Besides, this current component has
speed peaks with a period of 3 or 6 days of constant direc-
tion.

Superimposed on the low frequency mean residual flow
there are the tide and surge, particularly the extremes of the
surge component (high variation, but small speed). The peri-
odicity of the surge component is just a few hours due to the
interaction with the topography and storm events (Fig.9).

The dominant direction of surges can be in phase or up
to 90◦ out of phase with the dominant direction of the mean
residual flow and tide (Fig.9). Peaks of about 30/50 cm s−1

in surface waters and 40/60 cm s−1 in deep waters were
found.

4.3 Section S

4.3.1 Tidal Component

In the FSC the largest values of tidal currents were found
for the study area. The maximum value for the semi-major
axis of M2 was found at site SA in near-surface measure-
ments (Fig.10). This harmonic constituent decreases at cor-
responding levels from site SA to site SC along the section
with increasing sea-floor depth (Fig.10). At site SA the value
of the semi-major axis for the dominant tidal harmonicM2
increases with depth from the surface to about 150 m and
then is almost constant and decreases only in bottom waters
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FA FB FC

Fig. 7. Variation of tidal constituents (M2 black,S2 cyan,N2 red,O1 blue andK1 green) with depth (from top to bottom at about 220, 320,
420, 520, 620, and 720 m depth) and space in the FBC section.
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Fig. 8. Vertical profiles of 3 months averaged daily maximum speed
for total currents (black), mean residual flow (blue), surge com-
ponent (green) and tide (red) at locations FA, FB and FC from
top to bottom. Continuous (–) line stands for average over June-
September, dashed (- -) line stands for average over September–
December, dotted (...) line stands for average over December–
March and dash-dotted (-.-.) line stands for average over March–
June, only for location FB (mid plot). Instead continuous line
stands for monthly averaged daily maxima over July–August and
dashed line stands for monthly averaged daily maxima over August-
September for locations FA and FC (top and bottom plots) where
only 71 days long time series are available.

(Fig.10). At location SB and SC a continuous increase of the
semi-major axis is found from surface to deep waters, where
it gets stable (Fig.10).

The other analysed components are smaller thanM2
(Fig. 10). The harmonicsN2, O1 andK1 show very small
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Fig. 9. Speed (cm s−1) and direction (degrees) of the mean-residual
(blue), tidal (red), and surge (green) components at location FB,
524 m depth (from 14 November 1997 to 14 December 1997).

variations with depth and their inclinations suggest along-
channel flows (Fig.10).

Tidal current ellipses exhibit relative uniformity in the ver-
tical such that the tidal current near the bottom is comparable
in amplitude to that found near the surface.

4.3.2 Mean residual flow and surge component

The mean residual flow decreases through depth while in-
creasing along the section from SA to SC (Fig11). It does
not present a very stable or fixed directionality but in some
months it shows a tendency of flowing along the 200◦ di-
rection (Fig.12). In these locations the mean residual flow
shows changes in direction when great changes in speed
occur (Fig.12). Periodicity of 3 to 6 days and peaks of
40/50 cm s−1 in surface waters (Fig.12) and of 20/30 cm s−1

in near bottom measurements were found.
The surge component decreases slightly with depth but it

is generally constant along the section at corresponding lev-
els (Fig11). It is smaller than the tide (the dominant com-
ponent in this section) and mean residual flow (Fig11). It
shows a preferred direction of flow at SA (30/90◦–210/270◦)
from 48 to 148 m, but not at SB (Fig.12) or SC. Peaks of
80–130 cm s−1 in surface waters and 30-40 cm s−1 in deep
waters were found.

5 Discussion

Some of the results showed above are similar to the ones ob-
tained by the Faroese Fisheries Laboratory (Hansen et al.,
1999a) that carried out tidal analyses in the same area, though
different results particularly in surface measurements can be
affected by the linear interpolation carried on in the present
study before filtering.
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SA SB SC

Fig. 10.Variation of tidal constituents (M2 black,S2 cyan,N2 red,O1 blue andK1 green) with depth (from top to bottom at about 220, 320,
420, 520, 620, and 720 m depth) and space in the FSC section.
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Fig. 11. Vertical profiles of 3 months averaged daily maximum
speed for total currents (black), mean residual flow (blue), surge
component (green) and tide (red) at locations SA, SB and SC from
top to bottom. Continuous (–) line stands for average over June-
September, dashed (- -) line stands for average over September–
December, dotted (...) line stands for average over December–
March and dash-dotted (-.-.) line stands for average over March–
June.

The spatial and vertical variations of tidal currents were
analysed in a previous study (Larsen et al., 2000). The au-
thors investigate the behavior ofM2 in the FBC and its reg-
ular variation with depth in sections N and S. A clockwise
rotation of the major-axis of the tidal ellipse with depth is
seen more consistent north of the Faroes (as shown in Fig.4).
They propose a two layer system for the semi-diurnal con-
stituents with a more complicated pattern for the diurnal
ones. They also find that tidal ellipses generally rotate clock-
wise. This is confirmed by the results of the present study
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Fig. 12.From top to bottom speed (cm s−1) and direction (degrees)
of mean-residual, tidal and surge components at location SB, 588 m
depth (from 14 October 1998 to 12 November 1998).

particularly for the semi-diurnal constituents in sections F
and N.

The area north of the Faroe Islands is dominated by great
changes in topography and bathymetry due to the Faroe Shelf
and the warm and cold water masses that meet in this area.
From south to north, the water depth is increasing and this
feature strongly influences ocean currents. Also, the pres-
ence of an amphidrome north of the section makes tidal cur-
rents small at deployment NC.

Allen (1995) describes strong tidal currents dominating
the velocity field in the IFF region. In the present study in-
stead only at site NA is the tidal component larger than the
surge and mean residual flow throughout the water column.
At the other sites of section N the tide decreases with depth
(Fig. 5). The surge is smaller than the mean-residual flow in
near-surface waters, but in bottom waters it gets larger than
the other two components. This discrepancy in results com-
pared to the previous study is due to the fact thatAllen (1995)
made use of short time-series (only 29-day records) at only
one depth (252 m).

Saunders(1990) found that in the FBC the tidal com-
ponent M2 is the dominant one and its amplitude is
about 10 cm s−1 with larger speed in shallow waters (about
30 cm s−1). The results found here show that in this channel
(1) the tide is smaller than the other two components at all
depths (Fig.8) and (2) in deep measurements total currents
are dominated by the mean-residual flow. The tide, surge
and mean residual component are constant in the surface-
most measurements. The tide gets smaller through depth;
the mean residual flow increases rapidly, while the surge
does not show large changes. The oscillatory phenomenon
of the mean residual flow with period of 3 to 6 days (Fig.9)
looks like a sort of pumping mechanism or flow rectification
due to the presence of the slope and particularly to the non-
linear interaction of tides with bottom topography. This is
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in agreement with literature studies (Loder, 1980; Robinson,
1981; Wright and Loder, 1985; Tang and Tee, 1987; Loder
et al., 1997; White and Bowyer, 1997; Shi et al., 2002) inves-
tigating the topographic rectification of tidal currents origi-
nating in nonlinearities that rectify the oscillatory tidal mo-
tion. This phenomenon occurs when two current components
interact nonlinearly provided that both are in phase and thus
correlate over a tidal cycle (Robinson, 1981; Clarke, 1991).
As the continental shelf and slope form a large perturbation
to the nearly constant-depth bottom topography, the deep-
sea ocean tide can be severely distorted over this topography
(Clarke, 1991). The major factors influencing tidal rectifica-
tion over sloping topography are described to be topographic
features, density structures and flow interaction; these can all
contribute to give rise to the phenomenon also in the FBC.
This is described in the literature to play an important role
all year-round as it is found in the present study.

In the FSC tides are larger than the surge and mean-
residual flow, and dominate the velocity field at site SA
(Fig.11). This can be due to the effect of the Wyville-
Thomson Ridge on the currents flowing parallel to the Scot-
tish Shelf (Sherwin et al., 1999). At SB and SC the tidal
component has magnitude larger than the surge from the sea-
surface to the sea-floor; the mean-residual component de-
creases with depth to become smaller than the other two com-
ponents in bottom waters.

The semi-diurnal harmonics dominate throughout the wa-
ter column. In general the clockwise component of these har-
monics is larger than the anticlockwise component. Because
of this structure the direction of the major axis of the tidal el-
lipse turns clockwise with depth (Figs.4, 7, and10) (Prandle,
1982). In contrast, the clockwise component is smaller than
the anticlockwise component of the diurnal constituents, par-
ticularly in the FBC. As a result no rotation of the tidal ellipse
with depth occurs.

The oscillatory period (3 to 6 days) that characterises the
mean residual flow at almost all depths and deployments
(Fig. 12) is similar to the results found byWhite and Bowyer
(1997) for the shelf-edge current northwest of Ireland, where
variability of 2–5 days is seen. The authors find that the in-
crease in mean current speed is due to the slope angle, and
near-bottom currents are influenced by topographic steering.

The direction of the mean residual flow alternates between
periods where it is constant for many days and 24-h peri-
ods during which it moves through 360◦ at a constant rate
(Fig. 6 and Fig.12). This exactly matches the behavior of
shelf waves as highlighted byGordon and Huthnance(1987).
Consequently, followingGordon and Huthnance(1987), we
postulate that the long periods of constant current direction
observed in Figs.6 and12appear to be due to a quasi-steady
response caused by long duration surface winds, whereas the
single day current rotation anomaly is a response to storms
lasting less than 12 hours (Gordon and Huthnance, 1987).

6 Conclusion

The results obtained in this work show that for the predomi-
nant tidal constituentM2 the major axis of the ellipse is gen-
erally aligned with the topography and along-channel tidal
currents are found.

The inclination of the semi-major axis of the most impor-
tant constituents is strongly related to the bottom topogra-
phy and the bathymetry of the analysed sections. In fact,
the tidal ellipses for both diurnal and semi-diurnal tides and
mean-residual flow are oriented approximately parallel to the
local topography. Besides, in this region tidal currents give
rise to strong residual currents due to nonlinear interactions
with the bottom topography. In fact, where the distribution
of tidal currents in deep waters differs significantly from the
sea-surface one, the frictional effects and tidal rectification
should be taken into consideration to explain the decrease of
amplitude and change of inclination in bottom currents. As
found inLam et al.(2004) the effects above create an intensi-
fication of the along-channel flow that is bottom-trapped due
to stratification.

The changes identified at about 500 m depth in section F
for the semi-diurnal tidal constituents and mean residual flow
can be due to a difference in water masses found above and
below this level (as described in Sec.2.2), thus indicating a
two-layer structure for the FBC.

Largest tidal currents were found in the shallower water
deployment in the FSC. Elsewhere the mean residual flow
was found to be generally larger than the surge and tides and
therefore the major component in determining total currents,
and particularly the extremes of total currents.

The results show that the largest mean residual flow was
found near sea-bed in the FBC deployments. Its 3 to 6 days
periodicity is probably due to the effect of tidal rectification
on shoaling topography. In this section, the amplitude of the
mean residual component is such that in deep waters it dom-
inates the flow field and masks the tide and surge.

The analysis of the directionality of the flow shows that
in the passages of the Iceland-Scotland Ridge the currents
follow the general pattern described in the published re-
sults. The main flow that comes from the North Atlantic
Ocean trough the North Atlantic Current crosses the FBC
going northwestward to flow through the Iceland-Faroe Gap
and reach the region north of the Faroe Islands. Here the
flow concentrates in the Faroe Current that splits into two
branches: the first flows northward; the second, of interest
here, crosses the FSC on the Faroe side. Part of this water
goes through the Wyville-Thomson Ridge, in the southern
part of the FSC, and the other part turns northwest to cross
the FBC and return to the North Atlantic. In deep waters, the
overflow comes from the Arctic Ocean, flows through the
FSC enters the FBC and reaches the North Atlantic Ocean
(Hansen and Østerhus, 2000) as North Atlantic Deep Water
(NADW).
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