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Abstract. The local ground geomagnetic field fluctuations geomagnetic fieldNishida 1978. The effects of geomag-
(AB) are dominated by high frequencies and 83% of thenetic disturbances are observed on technological systems,
power is located at periods of 32 min or less. By forming 10- such as electrical power grids, pipe lines, and telegraph lines
min root-mean-square (RMS) af B a major part of this vari-  (Boteler et al(1998, Lundstedt) and are called geomagnet-
ation is captured. Using measured geomagnetic induced cuieally induced currents (GIC). There is great interest in mod-
rents (GIC), from a power grid transformer in Southern Swe-elling GIC, both for post-event analysis and for predictions.
den, it is shown that the 10-min standard deviation GIC mayAs a result there are three parallel GIC studies within the
be computed from a linear model using the RMX and  ESA Space Weather Applications Pilot Project and these can
AY at Brorfelde (BFE: 167 E, 5563° N), Denmark, and  be found at the web padgtp://www.esa-spaceweather.net/

Uppsala (UPS: 185 E, 5990° N), Sweden, with a correla- ~ The calculation of GIC can, in principle, be divided into
tion of 0.926:0.015. From recurrent neural network mod- two steps PRirjola, 2009. The first step is the geophysical
els, that are driven by solar wind data, it is shown that the logpart which involves the determination of the horizontal geo-
RMS A X andAY atthe two locations may be predicted up to electric field at the Earth’s surface. The second step is the
30min in advance with a correlation close to 0.8: @082  engineering part which involves the calculation of the cur-
for both directions at BFE; 0.810.02 and 0.8&0.02 inthe  rents in the system based on the electric field and knowing
X- andY-directions, respectively, at UPS. The most impor- the system layout and resistance. However, the geoelectric
tant inputs to the models are the 10-min averages of the solafeld is not directly available and must be estimated from the
wind magnetic field componer®; and velocityV, and the  geomagnetic field. One approach is to use geomagnetic in-
10-min standard deviation of the proton number density  dices, as several can be successfully predicted from the solar
The average proton number densitias no influence. wind, like AE (Gleisner and Lundsted20013, Dy, (Vas-

Keywords. Magnetospheric physics (Solar wind - magne- Siliadis and Klimas1999 Lundstedt et a.2003, andK,

tosphere interactions) — Geomagnetism and paleomagnetisiBoberg etal.2000. The index may then be translated into a
(Rapid time variations) physical quantity that is related to GIC. For examj@eteler

(2001 showed that there is close to a linear relationship be-
tween the 3-1X , index and the logarithm of the ground elec-
tric field. However, the indices have their limitations because
they have been derived to capture some specific aspect of the

The Earth' h . q , h magnetospheric variation. Another approach is to compute
e Earth's magne_tosp ere 1S a dynamic system that re;, equivalent ionospheric current system from a measured
sponds to changes in the upstream solar wind. Through co

. . X Mocal geomagnetic field and to assume that the geomagnetic
plex Processes that mclut_jes magnetic reconnection and_ Vijariations at the Earth’s surface can be explained by a hori-
cous instabilities energy is tr_ansferred from the solar wmdZontal divergence-free ionospheric current systsfjaen

into the magnetospher&gumjohann and Haerendd87) et al, 2003. The method was applied using measured ge-

with subsequent energy dissipation through geomagneﬁ((:)magnetic data with a temporal average of one minute and

storms gnd substormssonzalez et a,I.199_4). Dl_mng th_e then compared to measured GIC. The relative errors were
storm different current systems are modified, like the i0n0-|.<< than 30% for large GIC values. However, from a so-

spheric currents, ring current, and magnetopause current. OI'%r wind-magnetosphere coupling study it is currently not
the ground the currents are observed as deviations of the local

1 Introduction
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feasible to try to model the one minute data. A straightfor- the wavelet transform is capable of more accurately separat-
ward solution to this is to temporally average the solar winding the signal in the time-frequency domakuddison 2002.

and geomagnetic data. For example, it is possible to predicin the following equations we will usé X, but the same
the 10-min average local magnetic field from solar wind dataanalysis is also performed axy .

(Gleisner and Lundsted?2001. But, as the electric field is Using a discrete wavelet transform (DWT) th&X can be
related to the rate-of-change of the magnetic fiel® (dt) decomposed into signals, called details and approximation,

via Faraday'’s law of induction that are associated with different scales, where the scale cor-
9B responds to a frequency band. The decomposed signals can
VxE= = 1) thus be thought of as being a band-pass filtered versions of
t
AX.
a more basic quantity to use is the time differencesof.e. The total power inAX equals the sum of the power in

AB(t)=B(t+1)—B(t). However, as will be shown in this the details and approximation, i.e. the transformation con-
paper, most of the power inB is located at small scales serves power. However, the transformation is not time in-
(high frequencies) and therefore a large fraction of the signalariant, i.e. the DWT of a time-shifted X is not equal to
will be lost if AB is temporally averaged, or B is formed  the time-shifted DWT ofAX. This is an undesired prop-
from a temporally averageBl. This happens already at 5- to erty of a transform when dealing with time series data. To
10-min averages. Therefore, other momentd\df should  ensure time invariance we use a modified DWT, called the
be considered. In the work bifeigel et al.(2002 models  Maximum Overlap DWT (MODWT) Percival and Walden
were developed that predict the average absolute valtiBof  2002).
with a temporal resolution of 30 min. More specifically, they ~ We apply the MODWT Cornish et al. 2003 using the
studied the north-south component of the magnetic field, i.eDaubechies wavelet, of the order of, 4 on one-minate
{IAX])3omin- The best model reached an overall prediction for all data in 1998 resulting in the wavelet coefficiefits ,
efficiency of 04 based on data from 1998-1999. (details) andv; (approximation), where the level j&[1, /1,

In this work the time difference of the local magnetic field /=7, and time ist<[0, 525599 min. Level j is associated
is also studied but using a slightly different approach. Bothwith scale
the north-south A X) and east-westAY) components are
analysed in terms of their wavelet power spectra. Based/
on the analysis the 10-min root-mean-square (RMSAf A the time resolution is one minute the scale is also in min-
andAY are proposed as useful quantities for a solar wind— ;a5 The variance, or power, at leyeis
magnetosphere study. The RMS andAY are also shown
to be well correlated to the 10-min RMS of measured GIC. » _ 1 Z W2 (5)

N &=

=2/71 4

. Cve
Finally, recurrent neural networks are developed that predict /

the RMS AX and RMSAY at two locations in southern )
Scandinavia from solar wind data, where data from the ACEWhere N=525600 are the number of data points. As the
spacecraft$tone et al.1998 have been used. MODWT conserves power we have

1 2 2, 1 2
o T AXE=D Wi S VA (6)
2 Estimating the power spectrum ofAX and AY t F ;

The analysis is based on one-minute average north-southNe signal at levelj is associated with frequencies in the
(X) and east-west{) local magnetic field components from ange

Brorfelde (BFE) and Uppsala (UPS). As stated in the Intro- 1 1 1 1
duction, it is more natural to study the time derivative of the fj € [ﬁ g] = [E g} .
magnetic field as it is related to the electric field driving GIC. o
The time derivative is approximated by the one-minute dif- Thus, if we compute the power spectruftf) of AX with

Q)

ference in the two directions as the Fourier transform, then the wavelet variance at lgvel
is approximately equal to the power in the frequency band
AX()=X@+1) - X (2 given by f;, according toPercival and Walder2002)
AYt)=Y(@t+1) -Y@), 3 ,
) (r+1 (1) 3) , 120
where is time in minutes. However, to make the subse- v; ~ 2/1/2,~+1 S(fHdf. (8)

quent solar wind—magnetosphere coupling study feasible the
level of disturbance iMAX and AY will be addressed, in- The factor 2 in front of the integral comes from the
stead of the detailed minute-to-minute variation. To proceedfact thatS(f) is mathematically defined over the interval
the power distribution iAX and AY are examined with a  fe[—1/2,1/2]. But, asAX is a real value, it follows that
wavelet transform. Using the wavelet transform it is possibleS(f)=S(— f), so that the negative frequencies can be inter-
to simultaneously examine the signal in both time and fre-preted in terms of positive and physical frequencies. In Fig.
guency similar to the windowed Fourier transform. However, the MODWT estimated power spectra farX (north-south
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component) andAY (east-west component) at both Bror-
felde and Uppsala are shown. Itis seen that the power is con:
centrated to small scales (high frequency). More than 83% 1
of the power is located at the first 4 levels, corresponding
to scales smaller than=2*-1=8 min or frequencies higher

than 132 min~1, and 99% of the power is captured by the ‘c o8

details up to levelj=J=7. This means that the approx- f

imation which contains variations with scales longer than <% i
128 min has a very small contribution to the total power in % ¢

AX. We also see that the total power is higher for Upp- ~ 04 ]

sala than for Brorfelde, as is expected for a station closer to
the auroral oval. However, the spectral distributionsAd 0.2
and AY are quite different. FOAX the power decreases
monotonically with increasing scale (decreasing frequency), ‘
whereasAY shows a more flat distribution for the first 4 lev- 10° 10' 10°
els. Clearly, the dynamics in the two directions are different. Scale (minutes)

A consequence of the Iocal|sat|(_)n of power at high fre- Fig. 1. The figure shows the power distribution afX and AY
quencies 1S that_ temp(_)ral averaging ol WlII_re_move at Brorfelde (BFE), Denmark, and Uppsala (UPS), Sweden, based
most of the variance in the signal. Thus, it is not so 4y 525600 one-minute data points from 1998X and AY are

useful to_study temporgl averages ofX. |F is also  the one-minute time differences of the north-south and east-west
worth noting that a T-minute average &fX will cancel magnetic field components, respectively.

all terms except the endpoints, so that it becomes equiva-
lent to estimating the derivative using only two points, i.e.

(AX)7(0)=1/T(X(t+T)—X(1)). From Eg. 6) we see that
Returning to the wavelet coefficieni; ; we see that they 5 5
represent/ different time series that describe variations at 7“(r) ~ Z 3 (), (12)
different scales, or frequency bands. We may form a set of j
new time series representing the variance dverinute time and with the assumption of a constant power distribution we
windows ;
obtain
5 1 t+T )
O =23 Wi ©) 20~ ;). (13)

t'=t

To summarise, we may develop a model that predicts the
10min MS, or RMS,AX and AY. Then, assuming that
the power distribution is constant over time we also obtain
an estimate of the power at different frequencies. Before we
proceed with the solar wind -A(X,AY) models we study the
i%orrelation between MSAX,AY) and MS GIC for a single
site in Southern Sweden.

where we sef"=10-min. The power conservation does not
strictly hold over 10 min windows but the correlation is still
high. Models could now be developed that predict the vari-
ancev? in X and Y, and thereby estimate not only the mag-
nitude of the variation iM X andAY, but also at what fre-
quencies the disturbances are located. Currently, a study
performed that aims at modifying existing GIC models to
make use of this kind of data to calculate the RMS GIC based
on power g(ld datd However, in this WO”.( we W'.”’ as afirst %% Correlation between MSAX and AY, and MS GIC
approximation, assume that the power distribution is constan

over time. From Eq.6) we can define the fractional power The GIC flowing between the transformer neutral and the

as ground has been measured at a location in Southern Swe-

vjz. den. The measurements have been carried out for a number

A= ————, 10 i i -
IS UNY, AX2 (10)  of periods during the years 1998 to 2000 and the data set con

sists of almost 100 000 one-minute samples. The measured

where)” «;~1 as the last term approximation of E) (s GIC ranges from-269 Amperes (A) to 195 A. As previously
close to zero. Next, we form 10-min mean-square (MS) stated, with knowledge about the power grid configuration

as and the ground conductivity, the GIC may be computed from
149 the time derivative of the horizontal magnetic fie‘ﬂl;(aljen

r2() = i Z AX (12, (11) et al, 2003. Therefore, we expect to find a correlation be-
10 tween the MSA X andAY (r2), and the MS GIC#?). Using

t'=t

a least-squares fit betweefandg? we find
2private communications: R. Pirjola, A. Pulkkinen, A. Viljanen,
2004 $°=(0.47+0.15-24+0.08-24-0.152+0.053) A?, (14)
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Fig. 2. The left plot in the figure shows the correlation between the 10-min RMS GIC from the linear model and the measured 10-min RMS
GIC. The two curves mark th&5 Amp. error. The right plot shows an example of a GIC event for the period 24 and 25 September 1998.
The blue curve is the observed GIC and the red curve is the GIC from the linear model.

where r1=RMS(AXgFrE), ro=RMS(AYgrE), due to strong shocks, waves, or turbulence. The input data is
r3=RMS(AXyps), and rs=RMS(AYyps). The corre-  collected into the vector

lation betweeng? and g2 is 0.929+0.015 at the 95%

confidence level, taking into account the autocorrelation inX() = (182 (1), 0B:(1). 1 (1), 0w (D). v (1) 0y (1), ] (15)

the time series (see next section). In Faghe RMS GIC  \yhere,y, is the average and, is the standard deviation of
from the linear model is shown together with the measured,e solar wind magnetic fiel,, proton number density

RMS GIC. The high correlqtion of the singlelsite empirical (hereafter called density), and velocit. In order to also
linear model indicates that it should be possible to computgy,qqel any seasonal and local time variation, the sine and co-

the RMS GIC at other locations and for other power grid gjne of the fractional year and fractional local time are given
configurations using the RMAX andAY as inputs. at the input

|:. 27D 2rD . 2xnL ZnL]
y(t) = | sin , COS ,

,sin , COS (16)
4 Coupling of the solar wind to RMS AX and AY 365 365 24 24

where D is the decimal day of the year and L is the local time
Now we turn to the solar wind — RMS\(X,AY) models. We  in decimal hours. In total there are 10 inputs.
will use a recurrent neural network similar to that described The output from the model is the predicted ldg+1),
in Lundstedt et al(2002. This kind of model captures the wherer is the prediction horizon. Typically, the time it will
dynamics in the system that shall be modelled through intertake a structure in the solar wind at L1 to reach the Earth’s
nal feedback connections. One advantage of using a recumagnetopause will vary from 30 min (800 km/s) to 80 min
rent model over a model with time delays on the inputs is(300 km/s). This variable prediction horizon could, in prin-
that the memory of the system need not be given explicitly.ciple, be handled by either shifting the solar wind input or
An interesting feature of the recurrent network is that it is adjustingr with a time lag determined by the current so-
possible to rewrite the network equation into a set of coupledar wind velocity. However, this will alter the shape of the
differential equations that can be used for further physicaltime series and artificially modify the dynamics of the sys-

interpretation. tem. Therefore, we set=30 min and let the neural network
The input to the model is the solar wind data from the ACE adjust to the given situation.
SWEPAM and MAG instrumentsMcComas et a).1998. As mentioned in the Introduction, any temporal averag-

The 64-s plasma data and the 16-s magnetic field data arneg will decrease the forecast lead time. To illustrate this we
resampled to 10-min averages. In addition, the 10-min stanmay consider a time dependent paramatey that is col-
dard deviations are also used, as the average does not alwalested with a sampling intervaht that results in the time
give a good representation of the original data. For exampleseriesy;. The corresponding time stampmarks the begin-
two different 10-min intervals may have a similar average ning of the interval so that; is the average of (r) over the
proton number density, but very different standard deviationsnterval r[z;, t; 1] wheres;  1=t;+At. Similarly, we may
caused by the presence of large variations around the averadve another variable(r) sampled toy;. If we now wish to
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develop a model that predicisfrom x with some lead time  features in the data. Then, as training continues the training

T we havey(t+1)=f(x(¢)), wherey is the prediction ofy. error still decreases, while the validation error may occasion-

This leads to the discrete model ally increase, passing through several local minima. Finally,
the validation error just continues to grow while the training

Vitk = f(xi), 17 error still decreases. The values of the weights at which the

network reached the deepest validation minimum are con-
sidered to be the optimal weight. During the first phase the
network adjusts to general features in the data, then it picks
out more detailed features but also starts to adjust to the noise
time of t’=t—At. In order for the model to perform actual in the data, .af‘d ther_1 finally the n_etvyork continues to adjust
to the remaining noise. By monitoring the progress of the

forecasts we must haver <t. S . .
. - validation set error, we can thus find the optimal network.
The solar wind data and ground magnetic field data are L .
A large number of networks with different architectures

extracted from the si.x year period 1998-2003, giving in total are trained to predict log, and the optimal network is de-
about 300000 10-min data samples. However, the Compleu?ermined using the validation set. The initial network is

data set is dominated by quiet conditions wittlose to zero. . . )
. X . fully connected and has 10 inputs, hidden unitsp.=ny,
If the network was to be trained on this set, it would become . .
heavily biased towards predicting quiet levels and therebycomext units, and one output. As the output unit and each
hidden unit also has a bias, the total number of weights is

poorly predict storm levels. The optimal situation is to have = P
a balanced data set in which all levels of disturbance occur ir}n]aég;h:n’?f;:"\;’;rgéh:é;il?’fg n Tlcli m;Zt\t/)veorrlfsf
equal numbers. However, the optimal situation can us:uallyWith -0, 46, 65. 86. 109 vf\L/; ’ht’s » 2.9, gvIng
not be achieved due to the distribution of data, and for recur- Starﬁng’ Wi{h tr;e rﬁodel forgthe.RME&X at Uppsala we
rent netw_orks the data .must also be.connguo_us. Th_e reforesee that the maximum correlation is obtained for a network
a subset is selected using the following algorithm. First, all ith n,=5 hidden units (Fig3, upper left plot). The confi
. . h= y . -

contiguous sequences Ic_)nger than 48 h th"?‘t contaln. at Iea\érence limits are shown at the 95% level. In computing the
ggeuegfgetg&z; Ileonn-trr/lr:'rnair?nseﬁgﬁd‘i; E '3 retso uliszgnhltt)hla orrelation and confidence limits we use all three data sets:

que | 1€ngihs ranging . P raining set, validation set, and test set. There are almost
contain both quiet and disturbed conditions. Finally, the S€40 000 data points but the autocorrelation in both the ob-
quences are sorted with respect to the varianceand three

independent data sets are created by selecting every third Sggrved series and the predicted series do not fall off to zero

quence. This results in about 15000 data points in each se uickly. Therefore, the effective number of independent ob-

where each set has a similar mean and standard deviatiog_ervatlons(Quenowlle 1952 von Storch and Zwiersl999

The three sets are used for training, validation, and testing'lsoroe((;I llj:deg 23:]3;?,:: toorir?tfsablﬁu[ii%St’hge“ﬂg%zs;Ir?tr;ﬁl)llirr:aoirr? dtran
The training set is used for the weight adjustment, the vali- P b : !

dation set is used to determine the optimal network, and th cates the level at which the correlation is significantly lower

test set is used to test the network. The input data are no‘:t'_han the highest correlation. This means that all models with

. . rrelation ve the lin rform lly well n
malized to cover approximately the rangté and the output aco eat'o above the ine perform equarly wer, but any
. : . odel falling below the line performs significantly poorer.
is log-normalized. The neural network can be summarize . : N : :
as hus, it can be seen that there is a significant increase in the

correlation going from 2 hidden units to 3 hidden units, and
l0gri(t + 1) = fi(x(1)), (18)  increasing the number of hidden units has very little (or no)

effect. Similar results are obtained for URY, and BFE
where logr; is the output andr is the prediction hori- AX andAY.
zon. The goal of the training procedure is to change the It is interesting to see which inputs have an influence on
free parameters (weights) of so that the squared error the model. Itis not possible to merely look at the strengths of
(logr;(1)—logr;(r))? is minimized. The network function the weights to judge which inputs are of importance. Instead,
f contains input units, hidden units, context units, and aneach weight must be removed and the change in performance
output unit. The units are connected with weights, and eactmonitored. For large networks there are more efficient ways
hidden unit and output unit has a bias. The context units conto achieve this, in which the second derivative of the error
tain a delayed copy of the hidden units that are fed back intavith respect to the weights is computéae(Cun et al, 1990.
the hidden units; this is the recurrent layer. To a first approx-But since the network used here is quite small, we may sim-
imation, the recurrent layer is an exponential trace memoryply remove one input at a time and compute the change in
where the weights represent the decay terms. Thus, the corerror. Before the error is computed the network is addition-
text units contain the memory of the system. ally trained for a few iterations, so that the remaining weights

The weights are initialised to small random values andmay be altered to compensate for a possible change in bias.

then the network is trained. Typically, both the training set The initial network is fully connected with 10 inputs and 5
error and the validation set error decrease during the firshidden units. When one input is removed the total number
part of the training phase as the network adjusts to generabf weights is decreased by 5. After removing one input at a

wheret=kAtr. Now assume that the current timesgs The
latest available input is_; and it has been collected over
the time interval[z_1, 10]. With a forecast time ot =kA¢
we will therefore forecasyy_1, resulting in a true forecast
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Fig. 3. The figure shows the correlation coefficiediflogr, logr) for networks with different numbers of weights and biases. The plots

show the results for the models, predicting the 10-min root-mean-square (RMSRMS UPSAX) and RMSAY (RMS UPSAY) at

Uppsala, and RM\X (RMS BFEAX) andAY (RMS BFEAY) at Brorfelde. The error bars indicate the 95% confidence levels. The
horizontal line in each plot indicates the level at which the correlation is significantly lower than the highest correlation. The solid curve
connected with diamonds corresponds to the fully connected networks with 2, 3, 4, 5 and 6 hidden units. The labels along the dashed curve
show which input that has been removed. The labels have the following meaning: solar wind magnetic field z-conBpnpraton

number density (n), and velocity (V); standard deviation8o{op;), n (o,), and V Ey); sine (SY) and cosine (CY) of the year; sine (SLT)
and cosine (CLT) of local time.

time we will have a set of 10 different models, each havingtion with a maximum around noon and a minimum around
9 inputs. The model with the highest correlation is chosenmidnight. Further pruning reveals that the most important
from the set to be used for continued pruning. The processnputs, ordered in increasing importance, 8eo,, andV.

is repeated until there is only one input unit left. The net- Now studying theAY-models we note that there is a weak
work pruning results in the change in correlation accordingcoupling to sine local time instead of cosine. Again, look-
to the points connected with dashed lines in BigEach la-  ing at the local time distribution there is a maximum in the
bel indicates which input has been removed. The procedurenorning sector that can be described by a sine curve, how-
is repeated for UppsalaY, and BrorfeldeAX andAY. For ever, the distribution in the afternoon sector does not follow
all models the following inputs have no influence: sine andthe sine shape, instead it levels out, showing no variation in
cosine of the year, standard deviationsBefand velocityV, local time. Ordering the remaining inputs in increasing im-
and density:. Then there are some differences between theportance we fing,, V, andB,. Apart from the difference in
models. In both Uppsala and Brorfelde th&(-models show local time distribution, there also seems to be a difference in
a weak dependence on the cosine local time (CLT). Lookingthe coupling to the solar wind betwe&X andAY. The two

at the local time distribution oA X it follows a cosine func-  mostimportant parameters farX areV ando,,, and they are
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Fig. 4. The four plots show the observed (blue) and predicted (red) 10-min RM&ndAYat Uppsala (UPS) and Brorfelde (BFE) during
a storm in 11-12 April 2001. The correlation in this case is around 0.90. The event was selected from the test set.

related to pressure variations in the solar wind that compress Discussion

the dayside magnetopause. This is also consistent with the

local time variation seen inX. On the other hand, fohY As also shown byweigel et al.(2002, we found no cou-

the two most important parameters &eandV that may be  pling from solar wind density to RMS AX. In solar wind

interpreted to be more linked to the reconnection process atoupling studies the density usually enters into the equations

the magnetopause which causes sub-storms and storms. through the dynamic pressupe=mn V2, either as the square
As previously mentioned, the prediction lead time is root of p or as a linear function op (Baker, 1989. If we

30min. We may examine if it is possible to increase theassume that the geomagnetic fidlds proportional top, we

lead time without degrading the performance of the model.have

We increase the lead time in steps, with continued training 5

of the network, and compute the correlation. It turns outX X p xnV (19)
that the correlation for botlh X and AY monotonically de- Diff tati ith tto ti btai

creases, even though we may extend the lead time to 7o='erentiating with respect to imewe obtain

90 min before it becomes significantly poorer. However, the ;x 4, dv 0)

A X-model shows a steeper decrease in correlation than the; - EVZ + VE'

AY-model. This is consistent with the finding above, that
solar wind pressure variations are more important A0¢ Analysing ACE data from 1998 we find that the first term in

than AY, and that the substorm process dominatesAfie  the above equation completely dominates, leaving us with an
variations. The magnetopause current responds directly tequation that does not containln addition,dn/dt is related
solar wind pressure changes, so the only available lead tim& o, and from the neural network we also find a dependence
is the travel time from L1 to the Earth’s magnetopause. Ononoy,.

the other hand, there are additional time delays before the The overall correlation of the models is7@ and the pre-
substorm develops after the southward turnin@of diction efficiency (PE) Detman and Vassiliadisl997) is
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0.63 for the logarithm of the 10-min RMS data. Transform- From measured GIC at a single location we found that the
ing the data to 10-min RMS values the correlation drops to10-min RMS GIC can be quite accurately estimated from
0.71 and the PE to 0.50. It is difficult to make a comparisonRMS AX andAY from two nearby magnetic observatories.
with the Weigel et al.(2002 models, as they predict the 30- Therefore, we believe that it should be possible to use fore-
min average of the absolute vali& X| at higher latitudes. casted RMSAX andAY as a general indicator of the GIC
However, forming 30-min RMS the correlation reaches 0.77level.

and the PE 0.58. In future work the models should be developed to directly

Another issue is that the variance in RMEX is much predict the variance?(¢) at different levels;. It also has to
larger than the variance ipAX|. The variance of the be seen whether this will significantly improve the estimates
one-minuteAX at Uppsala for 1998 is?(AX)=4.23 and  of the variation inAX andAY and thereby also give further
the variance of the 10-min RMAX is 82% of that, or insight into the solar wind—magnetosphere coupling.
02(RMSAX)=3.45. The 10-min averageA X| (u(|AX]))
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