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Abstract

Let {bH(t), t ∈ R} be a fractional Brownian motion with parameter 0 <
H < 1. We are interested in the estimation of this parameter. To achieve this
goal, we consider certain functionals of the second order increments of bH(·),
using variation technics. Based on an almost-sure convergence theorem for
general functionals, we single out particular functionals that allows to construct
certain regression models for the parameter H. We show that this regression
based estimator for H is asymptotically unbiased, consistent and that it satisfies
a Central Limit Theorem (CLT).

Key words: central limit theorem, estimation, fractional Brownian motion, Gaussian pro-

cesses, Hermite polynomials.

1 Introduction

In this work, our main interest is to provide estimators of the Hurst parameter H
(0 < H < 1) for a fractional Brownian motion bH(·). Instead of the original process we
assume we observe a smoothed by convolution process, defined as bεH(u) = ϕε ∗bH(u).
Here ε → 0 is the smoothing parameter and ϕε is a positive convolution kernel.
Our method consists in obtaining some least squares estimators in certain regression
models. The asymptotic behavior of such estimators will be equivalent to those
of certain non-linear functionals of the Gaussian process bεH(·), whose asymptotic
behavior can be obtained by using the method of moments, via the Diagram formula.

The estimation of the Hurst parameter, or of the other parameters associated
to long rang dependence, has been recently a matter of intense research. For this
different approaches have been developed. Some of them consider spectral methods:
as the Whittle estimator [9], [15], and also estimators based on the log-periodogram
of the data [12], [14]. Others use variation methods as in [2], [5] and [11], or are based
on wavelet techniques [8].

Here the problem is different because we use a mollified version of the original
process. Nevertheless, our method can be related with the variation methods. It is

∗The research of the second author was suported in part by the project “Modelaje Estocástico
Aplicado” of the Agenda Petróleo of FONACIT Venezuela.
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important to mention that the recent works of Coeurjolly [5] and Feuerverger et al.
[7], constitute our main sources of inspiration.

Let us introduce the problem. Let {bH(t), t ∈ R} be the fractional Brownian
motion with parameter 0 < H < 1. We study the second order increments of bH(·)
and we shall establish in section 3.1.1 an almost-sure convergence in law result stated
below in Corollary 3.1:
For all x ∈ R

λ

{
0 6 u 6 1 :

bH(u+ 2ε)− 2bH(u+ ε) + bH(u)

εHv2H

√
4− 22H

6 x

}
a.s.−→ Pr{N∗ 6 x},

where v2
2H = var[bH(1)], λ is the Lebesgue measure and N∗ is a standard Gaussian

random variable.
This result also implies that for smooth functions f with at most polynomial

growth, we have :∫ 1

0

f

(
bH(u+ 2ε)− 2bH(u+ ε) + bH(u)

εHv2H

√
4− 22H

)
du

a.s.−→ E[f(N∗)]. (1)

Defining ϕ = 1[−1,0] ∗ 1[−1,0] and bεH(u) = ϕε ∗ bH(u), where ϕε(·) = 1
ε
ϕ( ·

ε
), we have

ε2b̈εH(u) = bH(u+ 2ε)− 2bH(u+ ε) + bH(u). Hence (1) can be written∫ 1

0

f

(
ε(2−H)b̈εH(u)

v2H

√
4− 22H

)
du

a.s.−→ E[f(N∗)].

By considering other regularizations: bεH(u) = ϕε ∗ bH(u), ϕ being a C2 positive
kernel with L1 norm equal to one, we can write a result similar to (1) in the form:∫ 1

0

f (Zε(u)) du
a.s.−→ E[f(N∗)], (2)

where Zε(u) =
ε(2−H)b̈εH(u)

σ2H

, with σ2
2H = var[ε(2−H)b̈εH(u)].

By observing bεH(u) at several scales of the parameter ε, i.e. hi = εci, ci > 0,
i = 1, . . . , l, we want to estimate the H parameter. To construct the estimator, we
consider fβ(x) = |x|β. Then using (2), we get:

log(Mβ(ε)) = (H − 2) β log(ε) + β log(σ2H) + log(E[|N∗|β]) + oa.s.(1),

where Mβ(ε) =
1∫
0

|b̈εH(u)|β du. The following regression model can be written, for

each scale hi:
Yi = aXi + b+ ξi, i = 1, . . . , l

where a = (H − 2) β and for i = 1, . . . , l, Yi = log(Mβ(hi)), Xi = log(hi) and
b = β log(σ2H) + log(E[|N∗|β]).

Hence, the least squares estimator Ĥβ of H is defined as

β (Ĥβ − 2) =
l∑

i=1

zi log(Mβ(hi)),
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where,

zi =
yi∑l
i=1 y

2
i

, yi = log(ci) −
1

l

l∑
i=1

log(ci).

We shall prove that estimator Ĥβ is strongly consistent, asymptotically unbiased
and asymptotically Gaussian. For the later, we need to study the convergence rate in
(2) for a function f ∈ L2(φ(x) dx) where φ stands for the standard Gaussian measure.
We can formulate the problem in the following way:

Let g be a function in L2(φ(x) dx) and g(x) =
∑∞

n=1 ĝnHn(x) its Hermite expan-
sion. We have ‖g‖2

2,φ =
∑∞

n=1 ĝ
2
nn! < +∞ and ĝ0 = 0. We prove in Theorem 3.2 that

the functional defined for c > 0 by

Sg(εc) =
1√
εc

∫ 1

0

g(Zεc(u)) du,

converges in distribution towards a cylindrical centered Gaussian process X(c).
The CLT result for Ĥβ, follows by considering the asymptotic behavior of the func-

tional associated with gβ(x) = |x|β/E[|N∗|β]−1, and from the fact that |(Ĥβ −H)/
√
ε−

1
β

∑l
i=1 zi

√
ciSgβ(εci)| = op(1).

This theorem also allows us to consider another least squares estimator of H,
weakly consistent and unbiased, defined by

Ĥlog − 2 =
l∑

i=1

ziMlog(hi), where Mlog(ε) =

1∫
0

log(|b̈εH(u)|) du.

In this case the associated function will be glog(x) = log(|x|)− E[log(|N∗|)].
It is important to mention that working with the second order increments allows

us to obtain an asymptotic Gaussian result, for all the possible values of parameter
H i.e. (0, 1). In previous articles, we considered only the first order increments. This
leads to two different results according to whether H belongs to (0, 3/4) or to (3/4, 1).
In the first case, the limit is Gaussian and in the second one, it belongs to the second
Itô-Wiener Chaos. This dichotomy makes the asymptotic behavior more involved.

The paper is organized as follows. In Section 2, we state some notation and the
hypothesis under which we work. Section 3 is devoted to establishing the main results.
Section 4 contains the proofs.

2 Hypothesis and notation

Let {bH(t), t ∈ R} be a fractional Brownian motion with parameter 0 < H < 1
(see for instance [13]), i.e. bH(·) is a centered Gaussian process with the covariance
function:

E[bH(t)bH(s)] =
1

2
v2

2H

[
|t|2H + |s|2H − |t− s|2H

]
with v2

2H = [Γ(2H + 1) sin(πH)]−1. We define, for a C2 density ϕ with compact
support included in [−1, 1], for each t > 0 and ε > 0 the regularized processes:

bεH(t) =
1

ε

∫ ∞
−∞

ϕ

(
t− x
ε

)
bH(x) dx and Zε(t) =

ε(2−H)b̈εH(t)

σ2H

,
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with σ2
2H := var[ε(2−H)b̈εH(t)] =

1

2π

∫ +∞

−∞
|x|(3−2H)|ϕ̂(−x)|2 dx.

We can also consider the function ϕ = 1[−1,0]∗1[−1,0]. Even if it does not belong to the
class defined above it is important because the second derivative of the corresponding
smoothed process bεH(t) gives place to the second order increments for fBm. This
assertion is easy to see by using the following representation:

bεH(t) =

∫ −1

−2

(u+ 2) bH(t− εu) du−
∫ 0

−1

u bH(t− εu) du.

Moreover, all the results that we shall obtain below could be shown, in a similar form,
for this particularly important regularization.

We shall use the Hermite polynomials, which can be defined by exp(tx− t2/2) =∑∞
n=0Hn(x)tn/n!. They form an orthogonal system for the standard Gaussian mea-

sure φ(x) dx and, if h ∈ L2(φ(x) dx), h(x) =
∑∞

n=0 ĥnHn(x) and ||h||22,φ =
∑∞

n=0 ĥ
2
nn!.

Mehler’s formula (see [4]) gives a simple form to compute the covariance between two
L2 functions of Gaussian random variables: if k ∈ L2(φ(x) dx), k(x) =

∑∞
n=0 k̂nHn(x)

and if (X, Y ) is a standard Gaussian random vector with correlation ρ then

E[h(X)k(Y )] =
∞∑
n=0

ĥnk̂nn!ρn. (3)

Throughout the paper, C shall stand for a generic constant, whose value may
change during a proof, and log for the Naperian logarithm.
N∗ will denote a standard Gaussian random variable, and the symbol ⇒ will mean
weak convergence of measures.

3 Results

In this section we shall establish the main results of this work. For this we need to
introduce some definitions.

Let g be a function in L2(φ(x) dx) such that g(x) =
∑∞

n=1 ĝnHn(x), with ||g||22,φ =∑∞
n=1 ĝ

2
nn! < +∞.

We define, for x ∈ R,

ρH(x) = E[Zε(εx+ u)Zε(u)] =
−v2

2H

2σ2
2H

∫ ∞
−∞

ϕ̈ ∗ ˜̈ϕ(y)|x− y|2H dy

=
1

2πσ2
2H

∫ ∞
−∞
|y|(3−2H)eixy|ϕ̂(−y)|2 dy,

and ˜̈ϕ(y) = ϕ̈(−y). The fact that ρH does not depend on the variable u follows from
ϕ ∈ C2 and the stationary increments of bH .

We shall write

σ2
g =

∞∑
n=1

ĝ2
nn!

∫ +∞

−∞
ρnH(x) dx.



Estimating the Hurst parameter 5

More generally, for x ∈ R and b, c > 0, we define

ρH(x, b, c) = E[Zεb(εx+ u)Zεc(u)]

= (
−v2

2H

2σ2
2H

)(
b

c
)(H+1)

∫ ∞
−∞

∫ ∞
−∞

ϕ̈(z)ϕ̈

(
b

c
(z − y)

)
|x
b
− y|2H dz dy

=
(bc)(2−H)

2πσ2
2H

∫ ∞
−∞
|y|(3−2H)eixyϕ̂(−by)ϕ̂(cy) dy = ρH(−x, c, b),

and

ρg(b, c) =
1√
bc

∞∑
n=1

ĝ2
nn!

∫ +∞

−∞
ρnH(x, b, c) dx.

Note that ρH(x, c, c) = ρH(x
c
) and then ρg(c, c) = σ2

g .
For all m ∈ N∗, for all c1 > 0, c2 > 0, . . . , cm > 0 and for all d1, d2,. . . , dm ∈ R, we
will denote

σ2
g,m(c,d) =

m∑
i=1

m∑
j=1

di dj ρg(ci, cj).

For ε > 0, define

Sg(ε) = ε−
1
2

1∫
0

g(Zε(u)) du.

3.1 Convergence for (Zε(u))u∈[0,1] and (Sg(εc))c>0

3.1.1 Almost sure convergence

Theorem 3.1 For all 0 < H < 1 and k ∈ N∗,
1∫

0

[Zε(u)]k du
a.s.−→
ε→0

E[N∗]k.

Corollary 3.1 Almost surely, for all 0 < H < 1,

Zε(·) ⇒
ε→0

N∗.

The above convergence is in law, the random variable Zε(·) is considered as a variable
on ([0, 1], λ) where λ is the Lebesgue measure.

Remark : For the first order increments, a similar theorem was proved by Azäıs &
Wschebor in [1].

3.1.2 Convergence in law

Theorem 3.2 For all 0 < H < 1,

Sg(ε·) ⇒
ε→0

X(·),

where X(·) is a cylindrical centered Gaussian process with covariance ρg(b, c) =
E[X(b)X(c)], b, c > 0.
The above convergence is in the sense of finite-dimensional distributions.
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Remark 1 : If c > 0 is fixed, Sg(εc) ⇒
ε→0

σgN
∗. This particular result was shown in

Corollary 3.2 (i) in C. Berzin and J.R. León [3].
In section 4.2.1 we shall prove the following lemma

Lemma 3.1 For all m ∈ N∗, for all c1 > 0, · · ·, cm > 0 and d1, · · ·, dm ∈ R,

σ2
g,m(c,d) = lim

ε→0
E[

m∑
i=1

di Sg(εci)]
2 > 0.

Remark 2: The above lemma allows us to conclude that ρg(b, c) is a covariance
function, since it is a symmetrical function in b and c.

3.1.3 Estimation of the Hurst parameter

Let β > 0 and

Mβ(ε) =

1∫
0

|b̈εH(u)|β du. (4)

Thanks to Theorem 3.1 and Corollary 3.1,

1∫
0

|Zε(u)|β du =
ε(2−H)β

σβ2H
Mβ(ε)

a.s.−→
ε→0

E[|N∗|β].

Then,

(2−H) β log(ε) − β log(σ2H) + log(Mβ(ε))
a.s.−→
ε→0

log(E[|N∗|β]).

Thus

log(Mβ(ε)) = (H − 2) β log(ε)
+ β log(σ2H) + log(E[|N∗|β]) + oa.s.(1). (5)

Let hi = εci, ci > 0, i = 1, . . . , l. The model can be written as:

Yi = aXi + b+ ξi, i = 1, . . . , l

where a = (H − 2) β and for i = 1, . . . , l, Yi = log(Mβ(hi)), Xi = log(hi) and
b = β log(σ2H) + log(E[|N∗|β]).
Hence, the least squares estimator Ĥβ of H is given by

β (Ĥβ − 2) =
l∑

i=1

zi log(Mβ(hi)), (6)

where for i = 1, . . . , l, zi =
yi∑l
i=1 y

2
i

and yi = log(ci) −
1

l

l∑
i=1

log(ci).

Note the following property

l∑
i=1

yi = 0 and
l∑

i=1

zi yi = 1. (7)

We have the following corollary of Theorem 3.2.
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Corollary 3.2 1) Ĥβ is an asymptotically unbiased strongly consistent estimator
of H.

2) Furthermore,
1√
ε

(Ĥβ −H) ⇒
ε→0
N (0, σ2

gβ ,l
(c,
√
c (z/β)),

where

gβ(x) =
|x|β

E[|N∗|β]
− 1 =

∞∑
n=1

ĝ2n,βH2n(x), (8)

with

ĝ2n,β =
n∑
p=0

(−1)(n−p)

(2p)!(n− p)!2(n−2p)

Γ(p+ (β+1
2

))

Γ(β+1
2

)

=
1

(2n)!

n−1∏
i=0

(β − 2i).

(9)

Remark 1: As in [5], the variance σ2
gβ ,l

(c,
√
c (z/β)) is minimal for β = 2. This fact

will be shown in section 4.3.1 after the proof of Corollary 3.2.

Remark 2 : Note that for β = 1, M1(ε) =
1∫
0

|b̈εH(u)| du =
+∞∫
−∞

N
ḃεH
[0,1](x) dx, where

N
ḃεH
[0,1](x) denotes the number of times the process ḃεH(·) crosses level x before time 1.

This remark allows to establish a link between our estimator and that defined in [7],
but in this work the authors use the crossings of bεH(·) instead of those of ḃεH(·).

Now, let us define

Mlog(ε) =

1∫
0

log(|b̈εH(u)|) du. (10)

Lemma 3.1 following Theorem 3.2, also entails that

1∫
0

log(|Zε(u)|) du
P−→
ε→0

E[log(|N∗|)],

and also in L2(Ω).
We proceed as before and the least squares estimator Ĥlog of H is given by

Ĥlog − 2 =
l∑

i=1

ziMlog(hi). (11)

Theorem 3.2 gives us the following corollary.

Corollary 3.3 1) Ĥlog is an unbiased weakly consistent estimator of H.

2) Furthermore,
1√
ε

(Ĥlog −H) ⇒
ε→0
N (0, σ2

glog,l
(c,
√
c z))
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where

glog(x) = log(|x|)− E[log(|N∗|)] =
∞∑
n=1

ĝ2n,logH2n(x), (12)

with

ĝ2n,log =
(−1)(n−1)

2n(2n)!!
. (13)

We can link the two estimators Ĥβ and Ĥlog. For this, let β(ε) a sequence of positive

numbers going to zero when ε goes to zero and let Ĥβ(ε) be the corresponding estimator
say

Ĥβ(ε) − 2 =
l∑

i=1

zi
log(Mβ(hi)(hi))

β(hi)

where Mβ(ε)(ε) =

1∫
0

|b̈εH(u)|β(ε) du.

(14)

We have the following corollary.

Corollary 3.4 If β(ε) = o(
√
ε) then Ĥβ(ε) is an asymptotically unbiased weakly con-

sistent estimator of H and the asymptotic behavior of 1√
ε
(Ĥβ(ε)−H) is the same one

as that of 1√
ε
(Ĥlog −H).

4 Proofs

4.1 Almost sure convergence for (Zε(u))u∈[0,1]

Proof of Theorem 3.1. For all k ∈ N∗,

E[

1∫
0

[Zε(u)]k du] = E[N∗]k.

Furthermore,

var[

1∫
0

[Zε(u)]k du] = E[

1∫
0

(
[Zε(u)]k − E[N∗]k

)
du]2.

Let g(k)(x) = xk − E[N∗]k =
∑∞

n=1 ĝn,(k)Hn(x). Mehler’s formula (3) entails that

var[

1∫
0

[Zε(u)]k du] =
∞∑
n=1

ĝ2
n,(k) n!

1∫
0

1∫
0

ρnH

(u− v
ε

)
du dv

=
∞∑
n=1

ĝ2
n,(k) n!

1∫
−1

(1− |u|)ρnH
(u
ε

)
du.
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If we let u = εx, we get

var[

1∫
0

[Zε(u)]k du] = ε

∞∑
n=1

ĝ2
n,(k) n!

1
ε∫

− 1
ε

(1− ε|x|)ρnH(x) dx.

Since |ρH(x)| 6 1, |ρnH(x)| 6 |ρH(x)| for n > 1, we have

var[

1∫
0

[Zε(u)]k du] 6 ε
( ∞∑
n=1

ĝ2
n,(k) n!

) 1
ε∫

− 1
ε

|ρH(x)| dx

6 ε||g(k)||22,φ

1
ε∫

− 1
ε

|ρH(x)| dx.

A Taylor expansion of order four of the function (1 − x)2H and integration by parts
show that ρH(x) is equivalent to −v2

2H/σ
2
2H |x|(2H−4)2H(2H − 1)(H − 1)(2H − 3)

for large values of |x|. Thus |ρH(x)| is bounded from above by C |x|(2H−4). As
||g(k)||22,φ < +∞, we get

var[

1∫
0

[Zε(u)]k du] 6 C ε.

Now let εν = ν−a, a > 1. Using the Borel-Cantelli Lemma, one has

1∫
0

[Zεν (u)]k du
a.s.−→
ν→∞

E[N∗]k. (15)

For εν+1 6 ε 6 εν let us consider the modulus of the difference∣∣∣∣∣∣
1∫

0

[Zεν (u)]k du−
1∫

0

[Zε(u)]k du

∣∣∣∣∣∣ .
One has ∣∣∣∣∣∣

1∫
0

[Zεν (u)]k du−
1∫

0

[Zε(u)]k du

∣∣∣∣∣∣ 6 J1 + J2,

where

J1 =
[
1−

( ε
εν

)(2−H)k] ∣∣∣∣∣∣
1∫

0

[Zεν (u)]k du

∣∣∣∣∣∣ ,
and

J2 =

∣∣∣∣∣∣
( ε
εν

)(2−H)k
1∫

0

[Zεν (u)]k du−
1∫

0

[Zε(u)]k du

∣∣∣∣∣∣ .
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We study J1 and J2 separately. Using (15), one has

sup
εν+16ε6εν

J1 6
[
1−

(εν+1

εν

)(2−H)k] ∣∣∣∣∣∣
1∫

0

[Zεν (u)]k du

∣∣∣∣∣∣ a.s.−→
ν→∞

0.

Moreover, for J2 we have

J2 6
( 1

σ2H

)k
ε(2−H)k

1∫
0

∣∣∣[b̈ενH (u)]k − [b̈εH(u)]k
∣∣∣ du.

Now

[
b̈εH(u)

]k
−
[
b̈ενH (u)

]k
=
(
b̈εH(u)− b̈ενH (u)

)(k−1∑
j=0

[b̈εH(u)]j[b̈ενH (u)](k−1−j)
)

.

Using that the trajectories of bH(·) are (H − δ)-Hölder continuous, for any δ > 0 i.e.

|bH(u+ ε)− bH(u)| 6 C(ω)ε(H−δ),

we get

|b̈εH(u)| = | 1
ε2

∫ ∞
−∞

ϕ̈(v)(bH(u− εv)− bH(u))dv| 6 Cε(H−2−δ),

and by similar computations∣∣∣b̈εH(u)− b̈ενH (u)
∣∣∣ 6 C ε(H−δ)

ν ε−2
∣∣∣1− εν+1

εν

∣∣∣(H−δ).
Thus ∣∣∣[b̈εH(u)]k − [b̈ενH (u)]k

∣∣∣ 6 C ε(H−δ)
ν ε−2

∣∣∣1− εν+1

εν

∣∣∣(H−δ) ε(H−2−δ)(k−1),

and then

sup
εν+16ε6εν

J2 6 C
( 1

σ2H

)k
ε−δkν+1

∣∣∣1− εν
εν+1

∣∣∣(H−δ) a.s.−→
ν→∞

0

as soon as δ < H
(ak+1)

.
Thus we have proved that

sup
εν+16ε6εν

∣∣∣∣∣∣
1∫

0

[Zεν (u)]k du−
1∫

0

[Zε(u)]k du

∣∣∣∣∣∣ ,
tends almost surely to zero when ν goes to infinity and Theorem 3.1 follows. Corollary
3.1 follows readily from Theorem 3.1 by the method of moments. 2
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4.2 Convergence in law for (Sg(εc))c>0

4.2.1 Asymptotic variance of
∑m

i=1 diSg(εci)

Proof of Lemma 3.1. Fix m ∈ N∗, c1 > 0, . . . , cm > 0 and d1, . . . , dm ∈ R

E[
m∑
i=1

di Sg(εci)]
2 =

m∑
i=1

m∑
j=1

di dj E[Sg(εci)Sg(εcj)].

For fixed b > 0 and c > 0 and by Mehler’s formula (3), we get as in Section 4.1

E[Sg(εb)Sg(εc)] =
1

ε
√
bc

∞∑
n=1

ĝ2
nn!

1∫
0

1∫
0

[
ρH

(
u− v
ε

, b, c

)]n
du dv

=
1√
bc

∞∑
n=1

ĝ2
nn!

1
ε∫

− 1
ε

(1− ε|x|)[ρH(x, b, c)]n dx.

Since ρH(x, b, c) is a correlation we have |ρH(x, b, c)|n 6 |ρH(x, b, c)|. Moreover, as for
ρH(x) in section 4.1 it can be seen that ρH(x, b, c) is equivalent to−v2

2H/σ
2
2H |x|(2H−4)(bc)(2−H) 2H(2H−

1)(H − 1)(2H − 3) for |x| large enough. Thus |ρH(x, b, c)| is bounded from above by
C |x|(2H−4), for |x| large enough. The dominated convergence theorem entails that

E[Sg(εb)Sg(εc)] −→
ε→0

ρg(b, c) thus E[
m∑
i=1

di Sg(εci)]
2 −→
ε→0

σ2
g,m(c,d),

this yields Remark 2 of Theorem 3.2. 2

4.2.2 Convergence in law

Proof of Theorem 3.2. Fix m ∈ N∗, c1 > 0, c2 > 0, . . . , cm > 0 and d1, d2,. . . ,
dm ∈ R and

Sg(εc) :=
m∑
i=1

diSg(εci).

We want to prove that

Sg(εc) ⇒
ε→0
N (0;σ2

g,m(c,d)).

Let

SgM (εc) =
m∑
i=1

diSgM (εci) with gM(x) =
M∑
n=1

ĝnHn(x).

First, let us prove the following lemma.

Lemma 4.1

SgM (εc) ⇒
ε→0
N (0;σ2

gM ,m
(c,d)).
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Proof of Lemma 4.1. Let fixed p ∈ N∗, we want to study the asymptotic behavior
of E[SgM (εc)]p. For p = 1, by Mehler’s formula (see (3)), E[SgM (εc)] = 0. Now, for
p ∈ N∗ − {1},

E[SgM (εc)]p =
1

εp/2

m∑
j1,...,jp=1

dj1√
cj1
· · ·

djp√
cjp

M∑
l1,...,lp=1

ĝl1 · · · ĝlp

×
∫ 1

0

∫ 1

0

· · ·
∫ 1

0

E[Hl1(Zεcj1 (s1)) · · ·Hlp(Zεcjp (sp))] ds,

where ds = ds1 . . . dsp.
To get the asymptotic behavior of the later expression we shall use the diagram

formula. Therefore, we must introduce some definitions given in [4]. Besides that
our problem is in continuous time and non-ergodic (the time scale does not tend to
infinity), we can say that our theorem is a variant of the main result in that work.
Nevertheless, we have decided to include the proof for completeness and to make the
reading more easy .

An undirected graph G with l1+l2+. . .+lp vertices is a diagram of order (l1, . . . , lp)
if:

(i) The set of vertices V of the graph G has the form: V =
⋃p
j=1 Lj where

Lj = {(j, l) : 1 6 l 6 lj} for j = 1, . . . , p.
(ii) Each vertex is of degree 1.
(iii) Edges may pass only between different levels.
We denote Γ = Γ(l1, . . . , lp) the set of diagrams having these properties, G(V )

denotes the set of edges of G; the edges w are oriented, beginning in d1(w) and
finishing in d2(w).

The diagram formula [4] allows to write:

E[Hl1(Zεcj1 (s1)) · · ·Hlp(Zεcjp (sp))]

=
∑
G∈Γ

∏
w∈G(V )

∏
d1(w)<d2(w)

ρH

(sd1(w) − sd2(w)

ε
, cjd1(w)

, cjd2(w)

)
where G is an undirected graph with l1 + · · ·+ lp vertices and p levels.

A diagram is said “regular” ([4], p.432) if its levels can be matched in such a way
that no edge passes between levels in different pairs, otherwise, it is said “irregular”.

We shall classify the diagrams of Γ as in [10], p. 1166, calling R the set of the
regular graphs and Rc the rest.

We start by considering R.
Consider a regular diagram G∗ and let i be the permutation such that

(i(1), i(2)), . . . , (i(p− 1), i(p))

defines the diagram with p = 2q. The contribution of this diagram is

Im,p(ε)(G
∗) :=

m∑
j1,...,jp=1

( p∏
i=1

dji√
cji

)
×

q∏
k=1

[
ĝ2
e(k)

1

ε

∫
[0,1]2

[
ρH

(u− v
ε

, cji(2k−1)
, cji(2k)

)]e(k)

du dv

]
,
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where e(k) is the number of edges linking i(2k − 1) to i(2k).
As in Section 4.2, we get

Im,p(ε)(G
∗) =

m∑
j1,...,jp=1

( p∏
i=1

dji√
cji

)
×

q∏
k=1

[
ĝ2
e(k)

∫ 1
ε

− 1
ε

(1− ε|x|)[ρH(x, cji(2k−1)
, cji(2k))]

e(k) dx

]
.

Since ρH(x, b, c) is bounded from above by C |x|2H−4, for large enough |x| , ||gM ||22,φ <
+∞ and |ρH(x, b, c)| 6 1

Im,p(ε)(G
∗) −→

ε→0
Im,p(G

∗) :=
m∑

j1,...,jp=1

( p∏
i=1

dji√
cji

)
×

q∏
k=1

[
ĝ2
e(k)

∫ ∞
−∞

[ρH(x, cji(2k−1)
, cji(2k))]

e(k) dx

]
.

The right hand term can be written
Im,p(G

∗) =

q∏
k=1

ĝ2
e(k)

m∑
ji(2k)=1

m∑
ji(2k−1)=1

dji(2k)
√
cji(2k)

dji(2k−1)

√
cji(2k−1)

∫ ∞
−∞

[ρH(x, cji(2k−1)
, cji(2k))]

e(k) dx

 .
Since we show in Lemma 4.2 that the contribution of the irregular diagrams tends to
zero, we obtain that

lim
ε→0

[SgM(εc)]p =
∑

′Im,p(G
∗),

where the summation in
∑′ goes over the regular diagrams with p levels. By com-

puting the numbers of such diagrams, as in Breuer & Major ([4], p. 434), we get

E[SgM (εc)]p −→
ε→0

(p)!!σpgM ,m(c,d).

This achieves the proof of Lemma 4.1. 2

The following lemma studies the contribution of the irregular graphs.

Lemma 4.2 For fixed j1, . . . , jp we have

L(ε) :=

∫
[0,1]p

∏
w∈G(V )

∣∣∣ρH(sd1(w) − sd2(w)

ε
, cjd1(w)

, cjd2(w)

)∣∣∣ds = o(εp/2).

Proof of Lemma 4.2.

L(ε) =

∫
[0,1]p

p∏
i=1

 ∏
w∈G(V )

∏
d1(w)=i

∣∣∣ρH(si − sd2(w)

ε
, cji , cjd2(w)

)∣∣∣
 dsi.
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Let KG(i) be the number of edges such that d1(w) = i,

L(ε)≤
∫

[0,1]p

p∏
i=1

 1

KG(i)

∑
w∈G(V )

∑
d1(w)=i

∣∣∣ρH(si − sd2(w)

ε
, cji , cjd2(w)

)∣∣∣KG(i)

 dsi.

Let A = {(cj1 , cj2), j1 = 1, . . . ,m, j2 = 1, . . . ,m}.
Using the same techniques as in the proposition of [4] p. 435,

L(ε) ≤
p∏
i=1

[
sup

(c,d)∈A
sup
v∈[0,1]

∫ 1

0

∣∣∣ρH(si − v
ε

, c, d
)∣∣∣KG(i)

dsi

]

≤
p∏
i=1

[
sup

(c,d)∈A

∫ 1

−1

∣∣∣ρH(u
ε
, c, d

)∣∣∣KG(i)

du

]
.

Let i be fixed in {1, . . . , p} and define g(i) = KG(i)
li

, with c and d held fixed in A. We
have two cases to consider:
i) KG(i) ≥ 1 ∫ 1

−1

∣∣∣ρH(u
ε
, c, d

)∣∣∣KG(i)

du = ε

∫ 1
ε

− 1
ε

∣∣∣ρH(x, c, d)
∣∣∣KG(i)

dx

≤ ε

∫ ∞
−∞

∣∣∣ρH(x, c, d)
∣∣∣ dx

≤ C ε = C ε1−g(i)εg(i) ≤ C εg(i),

ii) KG(i) = 0 ∫ 1

−1

∣∣∣ρH(u
ε
, c, d

)∣∣∣KG(i)

du = 2 = 2 ε0 = 2 εg(i).

Thus
L(ε) ≤ C ε

∑p
i=1 g(i).

As in [4] p. 436, either
∑p

i=1 g(i) > p/2 (and in this case L(ε) = o(εp/2)) or there
exists 1 ≤ i0 ≤ p such that 0 < KG(i0) < li0 , i.e. 0 < g(i0) < 1, then

L(ε) ≤ C ε
∑p
i=1 g(i)ε(1−g(i0)),

and since
∑p

i=1 g(i)− p/2 ≥ 0, Lemma 4.2 follows. 2

Hence, we have proved that

SgM (εc) ⇒
ε→0
N (0;σ2

gM ,m
(c,d)).

Furthermore,
∑∞

n=M ĝ2
n n! −→

M→∞
0, so we get

lim
M→∞

sup
ε>0

E[SgM (εc)− Sg(εc)]2 = 0.

Now, since
N (0;σ2

gM ,m
(c,d)) ⇒

M→∞
N (0;σ2

g,m(c,d)),

applying Lemma 1.1 of [6], Theorem 3.2 is proved. 2
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4.3 Estimation of H

4.3.1 Ĥβ estimator

Proof of Corollary 3.2.

1) By using (6), (4) and (5) we get

β (Ĥβ − 2) =
l∑

i=1

zi

[
(H − 2) β log(εci) + β log(σ2H)

+ log(E[|N∗|β]) + oa.s.,i(1)
]
,

and property (7) gives

β (Ĥβ − 2) = (H − 2) β + oa.s.(1).

We proved that Ĥβ is a strongly consistent estimator of H. Let us see now that

Ĥβ is an asymptotically unbiased estimator of H.
By (6)

β (E[Ĥβ]− 2) =
l∑

i=1

ziE[log(Mβ(εci))],

where Mβ(ε) is defined in (4). Since∫ 1

0

|Zε(u)|β du =
ε(2−H)β

σβ2H
Mβ(ε), (16)

by property (7), one has

β (E[Ĥβ]− 2) =
l∑

i=1

ziE[log
(∫ 1

0

|Zεci(u)|β du
)

]

+ (H − 2)β. (17)

Hence, it is enough to prove that

E[log
(∫ 1

0

|Zε(u)|β du
)

] −→
ε→0

log
(

E[|N∗|]β
)

. (18)

For this, let us notice that since log is a concave function and log(x) 6 x when
x > 0, we have∫ 1

0

log(|Zε(u)|β) du 6 log
(∫ 1

0

|Zε(u)|β du
)
6
∫ 1

0

|Zε(u)|β du.

Thus, if we denote

Xε :=

∫ 1

0

|Zε(u)|β du+ β
∣∣∣∫ 1

0

log(|Zε(u)|) du
∣∣∣ ,
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we have shown that ∣∣∣log
(∫ 1

0

|Zε(u)|β du
)∣∣∣ 6 Xε. (19)

Now, since |N∗|β and log(|N∗|) are in L1(Ω), the same result is true for Xε, say

Xε ∈ L1(Ω). (20)

Furthermore by using Lemma 3.1 following Theorem 3.2, it is easy to see that

Xε
L1−→
ε→0

E[|N∗|β] + β
∣∣∣E[log(|N∗|)]

∣∣∣. (21)

Finally, by using Theorem 3.1, we get:

log
(∫ 1

0

|Zε(u)|β du
)

a.s.−→
ε→0

log (E[|N∗|]β) . (22)

Hence, (19), (20), (21) and (22) yield (18).

2) Formula (16) entails that

E[Mβ(ε)] = σβ2H ε
(H−2)β E[|N∗|β].

As in [7], let us define

Aβ(ε) =
Mβ(ε)− E[Mβ(ε)]

E[Mβ(ε)]
.

With this definition and using a Taylor expansion for the logarithm function
one has

log(Mβ(ε)) = log(E[Mβ(ε)]) + log(1 + Aβ(ε))

= (H − 2) β log(ε) + β log(σ2H)

+ log(E[|N∗|β]) + Aβ(ε)

+ A2
β(ε) [−1

2
+ ε1(Aβ(ε))].

(23)

Let us see that

A2
β(ε)

[
−1

2
+ ε1(Aβ(ε))

]
= op(

√
ε). (24)

By the definition of gβ (see (8)), one has

Aβ(ε) =
√
εSgβ(ε),

and by Lemma 3.1 following Theorem 3.2

E[
1√
ε
A2
β(ε)] =

√
εE[S2

gβ
(ε)] = O(

√
ε),
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so
1√
ε
A2
β(ε) = op(1) and then (24) is proved.

By using (23) and (24) we obtain

log(Mβ(ε)) = (H − 2) β log(ε) + β log(σ2H)

+ log(E[|N∗|β]) +
√
ε Sgβ(ε) + op(

√
ε).

Thus, by using (6) and property (7), we have

β (Ĥβ − 2) = (H − 2) β +
l∑

i=1

zi
√
εciSgβ(εci) + op(

√
ε).

Thus

(Ĥβ −H)√
ε

=
1

β

l∑
i=1

zi
√
ciSgβ(εci) + op(1).

Theorem 3.2 gives the required result.

Now, to conclude the proof of Corollary 3.2, we have to compute the coefficients in

the Hermite expansion of function gβ(x) = |x|β
E[|N∗|β ]

− 1.
To simplify the notation, first let us compute the coefficients in the Hermite expansion
of hβ(x) = |x|β − E[|N∗|β].

Since hβ is even, we have: hβ(x) =
∑∞

n=1 ĥ2n,βH2n(x), with for n > 1, ĥ2n,β =
2

(2n)!

∫ +∞

0

H2n(x)xβφ(x) dx.

By the definition of the Hermite polynomials and since for a > 0

Ψ(a) :=

∫ +∞

0

xaφ(x) dx = π−1/22(a−2)/2Γ((a+ 1)/2), (25)

we get

ĥ2n,β = π−1/2

n∑
p=0

(−1)(n−p)

2(n−p)(n− p)!(2p)!
2(p+β/2)Γ(p+ (β + 1)/2).

To obtain the first equality in (9), it suffices to see that ĝ2n,β =
ĥ2n,β

2Ψ(β)
and (25) gives

the required result. Moreover, Coeurjoly in [5], has shown that ĝ2n,β =
1

(2n)!

n−1∏
i=0

(β −

2i). 2

Proof of Remark 1 in Corollary 3.2. Let us note that ĝ2,β =
β

2
. Then for b, c > 0

ρgβ(b, c) =
β2

4
ρg2(b, c) + ρg′β(b, c)

where g′β(x) =
∑∞

n=2 ĝ2n,βH2n(x) which belongs to L2(φ(x) dx).
Then

σ2
gβ ,l

(c,
√
c (z/β)) = σ2

g2,l
(c,
√
c (z/2)) + σ2

g′β ,l
(c,
√
c (z/β))

> σ2
g2,l

(c,
√
c (z/2))
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since the last term in the above equality is positive by Lemma 3.1 following Theorem
3.2. 2

4.3.2 Ĥlog estimator

Proof of Corollary 3.3.

1) Theorem 3.2 allows us to prove that

1∫
0

log(|Zε(u)|) du
P−→
ε→0

E[log(|N∗|)]. (26)

Indeed, from the definition of the function glog (see (12)), one has

1∫
0

log(|Zε(u)|) du = E[log(|N∗|)] +
√
εSglog(ε), (27)

and by Lemma 3.1 following Theorem 3.2,

E[
√
εSglog(ε)]

2 = O(ε).

Thus (26) follows and from the definition of Mlog(ε) (see (10)), one obtains

Mlog(ε) = (H − 2) log(ε) + log(σ2H) + E[log |N∗|] + op(1). (28)

Now, by (11), (28) and using property (7), we get

Ĥlog − 2 =
l∑

i=1

ziMlog(εci) = (H − 2) + op(1).

We have proved that Ĥlog is a weakly consistent estimator of H. Let us show

now that Ĥlog is unbiased.
Since ∫ 1

0

log(|Zε(u)|) du = (2−H) log(ε) − log(σ2H) +Mlog(ε), (29)

one has

E[Mlog(ε)] = E[log(|N∗|)] + (H − 2) log(ε) + log(σ2H), (30)

and by (11) and property (7), we get

E[Ĥlog]− 2 =
l∑

i=1

zi E[Mlog(εci)] = H − 2, (31)

and Ĥlog is an unbiased estimator of H.
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2) Now, (29), (30), (27) and (31) entail that

Ĥlog − 2 =
l∑

i=1

zi (Mlog(εci)− E[Mlog(εci)]) +
l∑

i=1

zi E[Mlog(εci)]

=
l∑

i=1

zi
√
εciSglog(εci) + (H − 2).

Thus

(Ĥlog −H)√
ε

=
l∑

i=1

zi
√
ciSglog(εci).

Theorem 3.2 gives the required result.
Now, to conclude the proof of Corollary 3.3, we have to compute the coefficients
in the Hermite expansion of function glog(x) = log(|x|) − E[log(|N∗|)]. As before,
glog(x) =

∑∞
n=1 ĝ2n,logH2n(x) with

ĝ2n,log =
2

(2n)!

∫ +∞

0

H2n(x) log(x)φ(x)dx =
2

(2n)!

∫ +∞

0

H2n−1(x)
1

x
φ(x)dx.

For the last integral we used that Hm(x)φ(x) = (−1)m dm

dxm
(φ(x)), and integration by

parts. Now the definition of the Hermite polynomials and (25) yield

ĝ2n,log =
π−1/2

(2n)

n−1∑
p=0

(−1)(n−1−p)

2(n−1−2p)(n− 1− p)!(2p+ 1)!
Γ(p+ 1/2).

Consequently, by formula for Γ(p+ 1/2), one has

ĝ2n,log =
1

2nn!

n−1∑
p=0

(−1)(n−1−p)Cp
n−1

( 1

2p+ 1

)
=

(−1)n−1

2nn!

∫ 1

0

(1− x2)n−1dx =
(−1)(n−1)

2n(2n)!!
,

which gives the required result. 2

4.3.3 Ĥβ(ε) estimator

Proof of Corollary 3.4. Let

S̃(ε) =
1

β(ε)
Sgβ(ε)(ε),

where

gβ(ε)(x) =
|x|β(ε)

E[|N∗|β(ε)]
− 1 =

∞∑
n=1

ĝ2n,β(ε)H2n(x).

As in [5], we have the following lemma
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Lemma 4.3

S̃(ε)− Sglog(ε)
L2−→
ε→0

0.

Proof of Lemma 4.3. Lemma 3.1 following Theorem 3.2 gives the asymptotic behavior
of E[Sglog(ε)]

2, set

E[Sglog(ε)]
2−→
ε→0

σ2
glog

. (32)

Now, (9) in Corollary 3.2 gives the expression of the Hermite’s coefficients, ĝ2n,β(ε),
of gβ(ε), let

ĝ2n,β(ε) =
1

(2n)!

n−1∏
i=0

(
β(ε)− 2i

)
and as in the proof of Lemma 3.1 following Theorem 3.2, Mehler’s formula (3) allows
us to compute E[S̃(ε)]2, say

E[S̃(ε)]2 =
∞∑
n=1

( ĝ2n,β(ε)

β(ε)

)2

(2n)!

1/ε∫
−1/ε

(1− ε|x|)ρ2n
H (x) dx.

The expression of the Hermite coefficients, ĝ2n,log, of glog is given in (13) in Corollary
3.3 and we observe that

ĝ2n,β(ε)

β(ε)
−→
ε→0

1

(2n)!

n−1∏
i=1

(−2i) = ĝ2n,log.

Furthermore for small enough ε∣∣∣ ĝ2n,β(ε)

β(ε)

∣∣∣ =
1

(2n)!

n−1∏
i=1

(2i− β(ε)) 6
1

(2n)!

n−1∏
i=1

(2i) = |ĝ2n,log|.

Since ||glog||22,φ < +∞, we get

E[S̃(ε)]2−→
ε→0

σ2
glog

. (33)

To achieve the proof of Lemma 4.3, we compute E[S̃(ε)Sglog(ε)] by Mehler’s formula

and we proceed as for E[S̃(ε)]2 to obtain

E[S̃(ε)Sglog(ε)]−→ε→0
σ2
glog

, (34)

(32), (33) and (34) give the required result. 2

Let us show now that from the definition of Mβ(ε)(ε) given in (14), one has

log(Mβ(ε)(ε))

β(ε)
= (H − 2) log(ε) + log(σ2H)

+ E[log(|N∗|)] +
√
ε S̃(ε) + op(

√
ε). (35)

Indeed, as in the proof of Corollary 3.2, we get

log(Mβ(ε)(ε))

β(ε)
= (H − 2) log(ε) + log(σ2H)
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+
log
(

E[|N∗|β(ε)]
)

β(ε)
+
√
ε S̃(ε) + op(

√
ε).

Since

log
(

E[|N∗|β(ε)]
)

β(ε)
− E[log(|N∗|)] = O(β(ε)), (36)

and β(ε) = o(
√
ε), (35) holds.

Thus we follow the same lines as in the proof of Corollary 3.2 to obtain

(Ĥβ(ε) −H)√
ε

=
l∑

i=1

zi
√
ciS̃(εci) + op(1),

where Ĥβ(ε) is defined in (14). Lemma 4.3 and Corollary 3.3 allow us to conclude the

asymptotic normality of Ĥβ(ε).

Let us show now that Ĥβ(ε) is an asymptotically unbiased estimator of H. As in the
proof of Corollary 3.2 (see (17) and (18)), it is enough to prove that

1

β(ε)
E[log

(∫ 1

0

|Zε(u)|β(ε) du
)

] −→
ε→0

E[log(|N∗|)]. (37)

To show this above convergence, we use the fact that log is a concave function and
then

β(ε)E[log(|N∗|)] = E[

∫ 1

0

log(|Zε(u)|β(ε)) du]

6 E[log
(∫ 1

0

|Zε(u)|β(ε) du
)

]

6 log
(

E[

∫ 1

0

|Zε(u)|β(ε) du]
)

= log
(

E[|N∗|β(ε)]
)

.

If we divide both sides, in the above inequality, by β(ε) and using (36), we get (37).
2

Final remark: We have considered the estimation of the Hurst parameter for frac-
tional Brownian motion. The same procedure can be implemented, with little changes,
when the observed process is a Gaussian process with stationary increments. In this
case the incremental variance must be: E(Xt+h − Xt)

2 = hHL(h) for L(·) a slowly
varying function in zero. Here the estimation refers to the H parameter.
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