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Let {b H (t), t ∈ R} be a fractional Brownian motion with parameter 0 < H < 1. We are interested in the estimation of this parameter. To achieve this goal, we consider certain functionals of the second order increments of b H (•), using variation technics. Based on an almost-sure convergence theorem for general functionals, we single out particular functionals that allows to construct certain regression models for the parameter H. We show that this regression based estimator for H is asymptotically unbiased, consistent and that it satisfies a Central Limit Theorem (CLT).

Introduction

In this work, our main interest is to provide estimators of the Hurst parameter H (0 < H < 1) for a fractional Brownian motion b H (•). Instead of the original process we assume we observe a smoothed by convolution process, defined as b ε H (u) = ϕ ε * b H (u). Here ε → 0 is the smoothing parameter and ϕ ε is a positive convolution kernel. Our method consists in obtaining some least squares estimators in certain regression models. The asymptotic behavior of such estimators will be equivalent to those of certain non-linear functionals of the Gaussian process b ε H (•), whose asymptotic behavior can be obtained by using the method of moments, via the Diagram formula.

The estimation of the Hurst parameter, or of the other parameters associated to long rang dependence, has been recently a matter of intense research. For this different approaches have been developed. Some of them consider spectral methods: as the Whittle estimator [START_REF] Fox | Large-sample properties of parameter estimates for strongly dependent Gaussian stationary time series[END_REF], [START_REF] Velazco | Whittle pseudo-maximun likelihood estimation of nonstationary time series[END_REF], and also estimators based on the log-periodogram of the data [START_REF] Ludeña | Parametric estimation for Gaussian long-range dependent processes based on the log-periodogram[END_REF], [START_REF] Moulines | Broad band log-periodogram regression of time series with long range dependence[END_REF]. Others use variation methods as in [START_REF] Benassi | Identification of Filtered White Noises[END_REF], [START_REF] Coeurjolly | Estimating the parameters of a fractional Brownian motion by discrete variations of its sample paths[END_REF] and [START_REF] Istas | Quadratic variations and estimation of the local Hölder index of a gaussian process[END_REF], or are based on wavelet techniques [START_REF] Flandrin | Wavelet analysis and synthesis of fractional Brownian motion[END_REF].

Here the problem is different because we use a mollified version of the original process. Nevertheless, our method can be related with the variation methods. It is important to mention that the recent works of Coeurjolly [START_REF] Coeurjolly | Estimating the parameters of a fractional Brownian motion by discrete variations of its sample paths[END_REF] and Feuerverger et al. [START_REF] Feuerverger | Estimation of fractal index and fractal dimension of a Gaussian process by counting the number of level crossings[END_REF], constitute our main sources of inspiration.

Let us introduce the problem. Let {b H (t), t ∈ R} be the fractional Brownian motion with parameter 0 < H < 1. We study the second order increments of b H (•) and we shall establish in section 3.1.1 an almost-sure convergence in law result stated below in Corollary 3.1: For all x ∈ R λ 0 u 1 :

b

H (u + 2ε) -2b H (u + ε) + b H (u) ε H v 2H √ 4 -2 2H x a.s.
-→ Pr{N * x}, where v 2 2H = var[b H [START_REF] Azaïs | Almost sure oscillation of certain random processes[END_REF]], λ is the Lebesgue measure and N * is a standard Gaussian random variable.

This result also implies that for smooth functions f with at most polynomial growth, we have :

1 0 f b H (u + 2ε) -2b H (u + ε) + b H (u) ε H v 2H √ 4 -2 2H du a.s. -→ E[f (N * )]. (1) 
Defining

ϕ = 1 [-1,0] * 1 [-1,0] and b ε H (u) = ϕ ε * b H (u), where ϕ ε (•) = 1 ε ϕ( • ε ), we have ε 2 bε H (u) = b H (u + 2ε) -2b H (u + ε) + b H (u)
. Hence (1) can be written

1 0 f ε (2-H) bε H (u) v 2H √ 4 -2 2H du a.s. -→ E[f (N * )].
By considering other regularizations:

b ε H (u) = ϕ ε * b H (u)
, ϕ being a C 2 positive kernel with L 1 norm equal to one, we can write a result similar to (1) in the form:

1 0 f (Z ε (u)) du a.s. -→ E[f (N * )], (2) 
where

Z ε (u) = ε (2-H) bε H (u) σ 2H , with σ 2 2H = var[ε (2-H) bε H (u)]
. By observing b ε H (u) at several scales of the parameter ε, i.e. h i = εc i , c i > 0, i = 1, . . . , l, we want to estimate the H parameter. To construct the estimator, we consider f β (x) = |x| β . Then using (2), we get:

log(M β (ε)) = (H -2) β log(ε) + β log(σ 2H ) + log(E[|N * | β ]) + o a.s. (1), where M β (ε) = 1 0 | bε H (u)| β du.
The following regression model can be written, for each scale h i :

Y i = aX i + b + ξ i , i = 1, . . . , l
where a = (H -2) β and for i = 1, . . . , l,

Y i = log(M β (h i )), X i = log(h i ) and b = β log(σ 2H ) + log(E[|N * | β ]).
Hence, the least squares estimator Ĥβ of H is defined as

β ( Ĥβ -2) = l i=1 z i log(M β (h i )),
where,

z i = y i l i=1 y 2 i , y i = log(c i ) - 1 l l i=1 log(c i ).
We shall prove that estimator Ĥβ is strongly consistent, asymptotically unbiased and asymptotically Gaussian. For the later, we need to study the convergence rate in (2) for a function f ∈ L 2 (φ(x) dx) where φ stands for the standard Gaussian measure. We can formulate the problem in the following way:

Let g be a function in L 2 (φ(x) dx) and g(x) = ∞ n=1 ĝn H n (x) its Hermite expansion. We have g 2 2,φ = ∞ n=1 ĝ2 n n! < +∞ and ĝ0 = 0. We prove in Theorem 3.2 that the functional defined for c > 0 by

S g (εc) = 1 √ εc 1 0 g(Z εc (u)) du,
converges in distribution towards a cylindrical centered Gaussian process X(c).

The CLT result for Ĥβ , follows by considering the asymptotic behavior of the functional associated with

g β (x) = |x| β /E[|N * | β ]-1, and from the fact that |( Ĥβ -H)/ √ ε- 1 β l i=1 z i √ c i S g β (εc i )| = o p (1)
. This theorem also allows us to consider another least squares estimator of H, weakly consistent and unbiased, defined by

Ĥlog -2 = l i=1 z i M log (h i ), where M log (ε) = 1 0 log(| bε H (u)|) du.
In this case the associated function will be

g log (x) = log(|x|) -E[log(|N * |)].
It is important to mention that working with the second order increments allows us to obtain an asymptotic Gaussian result, for all the possible values of parameter H i.e. (0, 1). In previous articles, we considered only the first order increments. This leads to two different results according to whether H belongs to (0, 3/4) or to (3/4, 1). In the first case, the limit is Gaussian and in the second one, it belongs to the second Itô-Wiener Chaos. This dichotomy makes the asymptotic behavior more involved.

The paper is organized as follows. In Section 2, we state some notation and the hypothesis under which we work. Section 3 is devoted to establishing the main results. Section 4 contains the proofs.

Hypothesis and notation

Let {b H (t), t ∈ R} be a fractional Brownian motion with parameter 0 < H < 1 (see for instance [START_REF] Mandelbrot | Fractional Brownian motions, fractional noises and applications[END_REF]), i.e. b H (•) is a centered Gaussian process with the covariance function:

E[b H (t)b H (s)] = 1 2 v 2 2H |t| 2H + |s| 2H -|t -s| 2H with v 2 2H = [Γ(2H + 1) sin(πH)] -1 .
We define, for a C 2 density ϕ with compact support included in [-1, 1], for each t 0 and ε > 0 the regularized processes:

b ε H (t) = 1 ε ∞ -∞ ϕ t -x ε b H (x) dx and Z ε (t) = ε (2-H) bε H (t) σ 2H , with σ 2 2H := var[ε (2-H) bε H (t)] = 1 2π +∞ -∞ |x| (3-2H) | φ(-x)| 2 dx.
We can also consider the function ϕ

= 1 [-1,0] * 1 [-1,0]
. Even if it does not belong to the class defined above it is important because the second derivative of the corresponding smoothed process b ε H (t) gives place to the second order increments for fBm. This assertion is easy to see by using the following representation:

b ε H (t) = -1 -2 (u + 2) b H (t -εu) du - 0 -1 u b H (t -εu) du.
Moreover, all the results that we shall obtain below could be shown, in a similar form, for this particularly important regularization.

We shall use the Hermite polynomials, which can be defined by exp(tx

-t 2 /2) = ∞ n=0 H n (x)t n /n!.
They form an orthogonal system for the standard Gaussian measure φ(x) dx and, if h

∈ L 2 (φ(x) dx), h(x) = ∞ n=0 ĥn H n (x) and ||h|| 2 2,φ = ∞ n=0 ĥ2
n n!. Mehler's formula (see [START_REF] Breuer | Central limit theorems for non-linear functionals of Gaussian fields[END_REF]) gives a simple form to compute the covariance between two L 2 functions of Gaussian random variables:

if k ∈ L 2 (φ(x) dx), k(x) = ∞ n=0 kn H n (x) and if (X, Y ) is a standard Gaussian random vector with correlation ρ then E[h(X)k(Y )] = ∞ n=0 ĥn kn n!ρ n . (3) 
Throughout the paper, C shall stand for a generic constant, whose value may change during a proof, and log for the Naperian logarithm. N * will denote a standard Gaussian random variable, and the symbol ⇒ will mean weak convergence of measures.

Results

In this section we shall establish the main results of this work. For this we need to introduce some definitions.

Let g be a function in

L 2 (φ(x) dx) such that g(x) = ∞ n=1 ĝn H n (x), with ||g|| 2 2,φ = ∞ n=1 ĝ2 n n! < +∞. We define, for x ∈ R, ρ H (x) = E[Z ε (εx + u)Z ε (u)] = -v 2 2H 2σ 2 2H ∞ -∞ φ * φ(y)|x -y| 2H dy = 1 2πσ 2 2H ∞ -∞ |y| (3-2H) e ixy | ϕ(-y)| 2 dy,
and φ(y) = φ(-y). The fact that ρ H does not depend on the variable u follows from ϕ ∈ C 2 and the stationary increments of b H .

We shall write

σ 2 g = ∞ n=1 ĝ2 n n! +∞ -∞ ρ n H (x) dx.
More generally, for x ∈ R and b, c > 0, we define

ρ H (x, b, c) = E[Z εb (εx + u)Z εc (u)] = ( -v 2 2H 2σ 2 2H )( b c ) (H+1) ∞ -∞ ∞ -∞ φ(z) φ b c (z -y) | x b -y| 2H dz dy = (bc) (2-H) 2πσ 2 2H ∞ -∞ |y| (3-2H) e ixy ϕ(-by) ϕ(cy) dy = ρ H (-x, c, b),
and

ρ g (b, c) = 1 √ bc ∞ n=1 ĝ2 n n! +∞ -∞ ρ n H (x, b, c) dx. Note that ρ H (x, c, c) = ρ H ( x c ) and then ρ g (c, c) = σ 2 g . For all m ∈ N * , for all c 1 > 0, c 2 > 0, . . . , c m > 0 and for all d 1 , d 2 ,. . . , d m ∈ R, we will denote σ 2 g,m (c, d) = m i=1 m j=1 d i d j ρ g (c i , c j ).
For ε > 0, define

S g (ε) = ε -1 2 1 0 g(Z ε (u)) du. 3.1 Convergence for (Z ε (u)) u∈[0,1] and (S g (εc)) c>0 3.1.1 Almost sure convergence Theorem 3.1 For all 0 < H < 1 and k ∈ N * , 1 0 [Z ε (u)] k du a.s. -→ ε→0 E[N * ] k . Corollary 3.1 Almost surely, for all 0 < H < 1, Z ε (•) ⇒ ε→0 N * .
The above convergence is in law, the random variable Z ε (•) is considered as a variable on ([0, 1], λ) where λ is the Lebesgue measure.

Remark : For the first order increments, a similar theorem was proved by Azaïs & Wschebor in [START_REF] Azaïs | Almost sure oscillation of certain random processes[END_REF].

Convergence in law

Theorem 3.2 For all 0 < H < 1,

S g (ε•) ⇒ ε→0 X(•), where X(•) is a cylindrical centered Gaussian process with covariance ρ g (b, c) = E[X(b)X(c)], b, c > 0.
The above convergence is in the sense of finite-dimensional distributions.

Remark 1 : If c > 0 is fixed, S g (εc) ⇒ ε→0 σ g N * .
This particular result was shown in Corollary 3.2 (i) in C. Berzin and J.R. León [START_REF] Berzin | Convergence in fractional models and applications[END_REF]. In section 4.2.1 we shall prove the following lemma

Lemma 3.1 For all m ∈ N * , for all c 1 > 0, • • •, c m > 0 and d 1 , • • •, d m ∈ R, σ 2 g,m (c, d) = lim ε→0 E[ m i=1 d i S g (εc i )] 2 0.
Remark 2: The above lemma allows us to conclude that ρ g (b, c) is a covariance function, since it is a symmetrical function in b and c.

Estimation of the Hurst parameter

Let β > 0 and

M β (ε) = 1 0 | bε H (u)| β du. ( 4 
)
Thanks to Theorem 3.1 and Corollary 3.1,

1 0 |Z ε (u)| β du = ε (2-H)β σ β 2H M β (ε) a.s. -→ ε→0 E[|N * | β ].
Then,

(2 -H) β log(ε) -β log(σ 2H ) + log(M β (ε)) a.s. -→ ε→0 log(E[|N * | β ]). Thus log(M β (ε)) = (H -2) β log(ε) + β log(σ 2H ) + log(E[|N * | β ]) + o a.s. (1). ( 5 
)
Let h i = εc i , c i > 0, i = 1, . . . , l. The model can be written as:

Y i = aX i + b + ξ i , i = 1, . . . , l
where a = (H -2) β and for i = 1, . . . , l,

Y i = log(M β (h i )), X i = log(h i ) and b = β log(σ 2H ) + log(E[|N * | β ]).
Hence, the least squares estimator Ĥβ of H is given by

β ( Ĥβ -2) = l i=1 z i log(M β (h i )), (6) 
where

for i = 1, . . . , l, z i = y i l i=1 y 2 i and y i = log(c i ) - 1 l l i=1 log(c i ).
Note the following property l i=1 y i = 0 and

l i=1 z i y i = 1. (7) 
We have the following corollary of Theorem 3.2.

Corollary 3.2 1)

Ĥβ is an asymptotically unbiased strongly consistent estimator of H.

2) Furthermore, 1 √ ε ( Ĥβ -H) ⇒ ε→0 N (0, σ 2 g β ,l (c, √ c (z/β)),
where

g β (x) = |x| β E[|N * | β ] -1 = ∞ n=1 ĝ2n,β H 2n (x), (8) 
with

ĝ2n,β = n p=0 (-1) (n-p) (2p)!(n -p)!2 (n-2p) Γ(p + ( β+1 2 )) Γ( β+1 2 ) = 1 (2n)! n-1 i=0 (β -2i). ( 9 
)
Remark 1: As in [START_REF] Coeurjolly | Estimating the parameters of a fractional Brownian motion by discrete variations of its sample paths[END_REF], the variance σ 2 g β ,l (c, √ c (z/β)) is minimal for β = 2. This fact will be shown in section 4.3.1 after the proof of Corollary 3.2.

Remark 2 : Note that for β = 1, M 1 (ε) = 1 0 | bε H (u)| du = +∞ -∞ N ḃε H [0,1] (x) dx,
where

N ḃε H [0,1] (x)
denotes the number of times the process ḃε H (•) crosses level x before time 1. This remark allows to establish a link between our estimator and that defined in [START_REF] Feuerverger | Estimation of fractal index and fractal dimension of a Gaussian process by counting the number of level crossings[END_REF], but in this work the authors use the crossings of b ε H (•) instead of those of ḃε H (•). Now, let us define

M log (ε) = 1 0 log(| bε H (u)|) du. ( 10 
)
Lemma 3.1 following Theorem 3.2, also entails that

1 0 log(|Z ε (u)|) du P -→ ε→0 E[log(|N * |)],
and also in L 2 (Ω). We proceed as before and the least squares estimator Ĥlog of H is given by

Ĥlog -2 = l i=1 z i M log (h i ). ( 11 
)
Theorem 3.2 gives us the following corollary.

Corollary 3.3 1)
Ĥlog is an unbiased weakly consistent estimator of H.

2) Furthermore,

1 √ ε ( Ĥlog -H) ⇒ ε→0 N (0, σ 2 g log ,l (c, √ c z))
where

g log (x) = log(|x|) -E[log(|N * |)] = ∞ n=1 ĝ2n,log H 2n (x), (12) 
with

ĝ2n,log = (-1) (n-1) 2n(2n)!! . ( 13 
)
We can link the two estimators Ĥβ and Ĥlog . For this, let β(ε) a sequence of positive numbers going to zero when ε goes to zero and let Ĥβ(ε) be the corresponding estimator say

Ĥβ(ε) -2 = l i=1 z i log(M β(h i ) (h i )) β(h i )
where

M β(ε) (ε) = 1 0 | bε H (u)| β(ε) du. ( 14 
)
We have the following corollary.

Corollary 3.4 If β(ε) = o( √ ε) then Ĥβ(ε)
is an asymptotically unbiased weakly consistent estimator of H and the asymptotic behavior of

1 √ ε ( Ĥβ(ε) -H) is the same one as that of 1 √ ε ( Ĥlog -H). 4 Proofs 4.1 Almost sure convergence for (Z ε (u)) u∈[0,1] Proof of Theorem 3.1. For all k ∈ N * , E[ 1 0 [Z ε (u)] k du] = E[N * ] k . Furthermore, var[ 1 0 [Z ε (u)] k du] = E[ 1 0 [Z ε (u)] k -E[N * ] k du] 2 . Let g (k) (x) = x k -E[N * ] k = ∞ n=1 ĝn,(k) H n (x). Mehler's formula (3) entails that var[ 1 0 [Z ε (u)] k du] = ∞ n=1 ĝ2 n,(k) n! 1 0 1 0 ρ n H u -v ε du dv = ∞ n=1 ĝ2 n,(k) n! 1 -1 (1 -|u|)ρ n H u ε du.
If we let u = εx, we get var[

1 0 [Z ε (u)] k du] = ε ∞ n=1 ĝ2 n,(k) n! 1 ε -1 ε (1 -ε|x|)ρ n H (x) dx. Since |ρ H (x)| 1, |ρ n H (x)| |ρ H (x)| for n 1, we have var[ 1 0 [Z ε (u)] k du] ε ∞ n=1 ĝ2 n,(k) n! 1 ε -1 ε |ρ H (x)| dx ε||g (k) || 2 2,φ 1 ε -1 ε |ρ H (x)| dx.
A Taylor expansion of order four of the function (1 -x) 2H and integration by parts

show that ρ H (x) is equivalent to -v 2 2H /σ 2 2H |x| (2H-4) 2H(2H -1)(H -1)(2H -3) for large values of |x|. Thus |ρ H (x)| is bounded from above by C |x| (2H-4) . As ||g (k) || 2 2,φ < +∞, we get var[ 1 0 [Z ε (u)] k du] C ε. Now let ε ν = ν -a , a > 1.
Using the Borel-Cantelli Lemma, one has

1 0 [Z εν (u)] k du a.s. -→ ν→∞ E[N * ] k . ( 15 
)
For ε ν+1 ε ε ν let us consider the modulus of the difference

1 0 [Z εν (u)] k du - 1 0 [Z ε (u)] k du .
One has

1 0 [Z εν (u)] k du - 1 0 [Z ε (u)] k du J 1 + J 2 ,
where

J 1 = 1 - ε ε ν (2-H)k 1 0 [Z εν (u)] k du ,
and

J 2 = ε ε ν (2-H)k 1 0 [Z εν (u)] k du - 1 0 [Z ε (u)] k du .
We study J 1 and J 2 separately. Using [START_REF] Velazco | Whittle pseudo-maximun likelihood estimation of nonstationary time series[END_REF], one has sup

ε ν+1 ε εν J 1 1 - ε ν+1 ε ν (2-H)k 1 0 [Z εν (u)] k du a.s.
-→ ν→∞ 0.

Moreover, for J 2 we have

J 2 1 σ 2H k ε (2-H)k 1 0 [ bεν H (u)] k -[ bε H (u)] k du. Now bε H (u) k -bεν H (u) k = bε H (u) -bεν H (u) k-1 j=0 [ bε H (u)] j [ bεν H (u)] (k-1-j) .
Using that the trajectories of b H (•) are (H -δ)-Hölder continuous, for any δ > 0 i.e.

|b H (u + ε) -b H (u)| C(ω)ε (H-δ) , we get | bε H (u)| = | 1 ε 2 ∞ -∞ φ(v)(b H (u -εv) -b H (u))dv| Cε (H-2-δ) ,
and by similar computations bε

H (u) -bεν H (u) C ε (H-δ) ν ε -2 1 - ε ν+1 ε ν (H-δ)
.

Thus

[ bε

H (u)] k -[ bεν H (u)] k C ε (H-δ) ν ε -2 1 - ε ν+1 ε ν (H-δ) ε (H-2-δ)(k-1) ,
and then sup

ε ν+1 ε εν J 2 C 1 σ 2H k ε -δk ν+1 1 - ε ν ε ν+1 (H-δ) a.s.
-→ ν→∞ 0 as soon as δ < H (ak+1) . Thus we have proved that sup

ε ν+1 ε εν 1 0 [Z εν (u)] k du - 1 0 [Z ε (u)] k du ,
tends almost surely to zero when ν goes to infinity and Theorem 3.1 follows. Corollary 3.1 follows readily from Theorem 3.1 by the method of moments.

Convergence in law for (S g (εc)) c>0

Asymptotic variance of

m i=1 d i S g (εc i ) Proof of Lemma 3.1. Fix m ∈ N * , c 1 > 0, . . . , c m > 0 and d 1 , . . . , d m ∈ R E[ m i=1 d i S g (εc i )] 2 = m i=1 m j=1 d i d j E[S g (εc i )S g (εc j )].
For fixed b > 0 and c > 0 and by Mehler's formula (3), we get as in Section 4.1 4) , for |x| large enough. The dominated convergence theorem entails that

E[S g (εb)S g (εc)] = 1 ε √ bc ∞ n=1 ĝ2 n n! 1 0 1 0 ρ H u -v ε , b, c n du dv = 1 √ bc ∞ n=1 ĝ2 n n! 1 ε -1 ε (1 -ε|x|)[ρ H (x, b, c)] n dx. Since ρ H (x, b, c) is a correlation we have |ρ H (x, b, c)| n |ρ H (x, b, c)|. Moreover, as for ρ H (x) in section 4.1 it can be seen that ρ H (x, b, c) is equivalent to -v 2 2H /σ 2 2H |x| (2H-4) (bc) (2-H) 2H(2H- 1)(H -1)(2H -3) for |x| large enough. Thus |ρ H (x, b, c)| is bounded from above by C |x| (2H-
E[S g (εb)S g (εc)] -→ ε→0 ρ g (b, c) thus E[ m i=1 d i S g (εc i )] 2 -→ ε→0 σ 2 g,m (c, d),
this yields Remark 2 of Theorem 3.2. We want to prove that S g (εc)

⇒ ε→0 N (0; σ 2 g,m (c, d)).
Let

S g M (εc) = m i=1 d i S g M (εc i ) with g M (x) = M n=1 ĝn H n (x).
First, let us prove the following lemma.

Lemma 4.1 S g M (εc) ⇒ ε→0 N (0; σ 2 g M ,m (c, d)).
Proof of Lemma 4.1. Let fixed p ∈ N * , we want to study the asymptotic behavior of E[S g M (εc)] p . For p = 1, by Mehler's formula (see [START_REF] Berzin | Convergence in fractional models and applications[END_REF]), E[S g M (εc)] = 0. Now, for p ∈ N * -{1},

E[S g M (εc)] p = 1 ε p/2 m j 1 ,...,jp=1 d j 1 √ c j 1 • • • d jp √ c jp M l 1 ,...,lp=1 ĝl 1 • • • ĝlp × 1 0 1 0 • • • 1 0 E[H l 1 (Z εc j 1 (s 1 )) • • • H lp (Z εc jp (s p ))] ds,
where ds = ds 1 . . . ds p .

To get the asymptotic behavior of the later expression we shall use the diagram formula. Therefore, we must introduce some definitions given in [START_REF] Breuer | Central limit theorems for non-linear functionals of Gaussian fields[END_REF]. Besides that our problem is in continuous time and non-ergodic (the time scale does not tend to infinity), we can say that our theorem is a variant of the main result in that work. Nevertheless, we have decided to include the proof for completeness and to make the reading more easy .

An undirected graph G with l 1 +l 2 +. . .+l p vertices is a diagram of order (l 1 , . . . , l p ) if:

(i) The set of vertices V of the graph G has the form: V = p j=1 L j where L j = {(j, l) : 1 l l j } for j = 1, . . . , p.

(ii) Each vertex is of degree 1.

(iii) Edges may pass only between different levels.

We denote Γ = Γ(l 1 , . . . , l p ) the set of diagrams having these properties, G(V ) denotes the set of edges of G; the edges w are oriented, beginning in d 1 (w) and finishing in d 2 (w).

The diagram formula [START_REF] Breuer | Central limit theorems for non-linear functionals of Gaussian fields[END_REF] allows to write:

E[H l 1 (Z εc j 1 (s 1 )) • • • H lp (Z εc jp (s p ))] = G∈Γ w∈G(V ) d 1 (w)<d 2 (w) ρ H s d 1 (w) -s d 2 (w) ε , c j d 1 (w) , c j d 2 (w)
where G is an undirected graph with l 1 + • • • + l p vertices and p levels. A diagram is said "regular" ( [START_REF] Breuer | Central limit theorems for non-linear functionals of Gaussian fields[END_REF], p.432) if its levels can be matched in such a way that no edge passes between levels in different pairs, otherwise, it is said "irregular".

We shall classify the diagrams of Γ as in [START_REF] Ho | Limiting distributions of nonlinear vector functions of stationary Gaussian processes[END_REF], p. 1166, calling R the set of the regular graphs and R c the rest.

We start by considering R. Consider a regular diagram G * and let i be the permutation such that (i(1), i(2)), . . . , (i(p -1), i(p))

defines the diagram with p = 2q. The contribution of this diagram is

I m,p (ε)(G * ) := m j 1 ,...,jp=1 p i=1 d j i √ c j i × q k=1 ĝ2 e(k) 1 ε [0,1] 2 ρ H u -v ε , c j i(2k-1) , c j i(2k) e(k)
du dv , where e(k) is the number of edges linking i(2k -1) to i(2k).

As in Section 4.2, we get

I m,p (ε)(G * ) = m j 1 ,...,jp=1 p i=1 d j i √ c j i × q k=1 ĝ2 e(k) 1 ε -1 ε (1 -ε|x|)[ρ H (x, c j i(2k-1) , c j i(2k) )] e(k) dx . Since ρ H (x, b, c) is bounded from above by C |x| 2H-4 , for large enough |x| , ||g M || 2 2,φ < +∞ and |ρ H (x, b, c)| 1 I m,p (ε)(G * ) -→ ε→0 I m,p (G * ) := m j 1 ,...,jp=1 p i=1 d j i √ c j i × q k=1 ĝ2 e(k) ∞ -∞ [ρ H (x, c j i(2k-1) , c j i(2k) )] e(k) dx .
The right hand term can be written

I m,p (G * ) = q k=1   ĝ2 e(k) m j i(2k) =1 m j i(2k-1)=1 d j i(2k) √ c j i(2k) d j i(2k-1) √ c j i(2k-1) ∞ -∞ [ρ H (x, c j i(2k-1) , c j i(2k) )] e(k) dx   .
Since we show in Lemma 4.2 that the contribution of the irregular diagrams tends to zero, we obtain that lim

ε→0 [S gM (εc)] p = I m,p (G * ),
where the summation in goes over the regular diagrams with p levels. By computing the numbers of such diagrams, as in Breuer & Major ([4], p. 434), we get

E[S g M (εc)] p -→ ε→0 (p)!! σ p g M ,m (c, d).
This achieves the proof of Lemma 4.1. 2 The following lemma studies the contribution of the irregular graphs. Lemma 4.2 For fixed j 1 , . . . , j p we have

L(ε) := [0,1] p w∈G(V ) ρ H s d 1 (w) -s d 2 (w) ε , c j d 1 (w) , c j d 2 (w) ds = o(ε p/2 ).
Proof of Lemma 4.2.

L(ε) = [0,1] p p i=1   w∈G(V ) d 1 (w)=i ρ H s i -s d 2 (w) ε , c j i , c j d 2 (w)   ds i . Let K G (i) be the number of edges such that d 1 (w) = i, L(ε)≤ [0,1] p p i=1   1 K G (i) w∈G(V ) d 1 (w)=i ρ H s i -s d 2 (w) ε , c j i , c j d 2 (w) K G (i)   ds i .
Let A = {(c j 1 , c j 2 ), j 1 = 1, . . . , m, j 2 = 1, . . . , m}.

Using the same techniques as in the proposition of [START_REF] Breuer | Central limit theorems for non-linear functionals of Gaussian fields[END_REF] p. 435,

L(ε) ≤ p i=1 sup (c,d)∈A sup v∈[0,1] 1 0 ρ H s i -v ε , c, d K G (i) ds i ≤ p i=1 sup (c,d)∈A 1 -1 ρ H u ε , c, d K G (i)
du .

Let i be fixed in {1, . . . , p} and define g(i) = K G (i) l i , with c and d held fixed in A. We have two cases to consider:

i) K G (i) ≥ 1 1 -1 ρ H u ε , c, d K G (i) du = ε 1 ε -1 ε ρ H (x, c, d) K G (i) dx ≤ ε ∞ -∞ ρ H (x, c, d) dx ≤ C ε = C ε 1-g(i) ε g(i) ≤ C ε g(i) , ii) K G (i) = 0 1 -1 ρ H u ε , c, d K G (i) du = 2 = 2 ε 0 = 2 ε g(i) . Thus L(ε) ≤ C ε p i=1 g(i)
. As in [START_REF] Breuer | Central limit theorems for non-linear functionals of Gaussian fields[END_REF] p. 436, either p i=1 g(i) > p/2 (and in this case L(ε) = o(ε p/2 )) or there exists 1 ≤ i 0 ≤ p such that 0 < K G (i 0 ) < l i 0 , i.e. 0 < g(i 0 ) < 1, then

L(ε) ≤ C ε p i=1 g(i) ε (1-g(i 0 )) ,
and since p i=1 g(i) -p/2 ≥ 0, Lemma 4.2 follows. 2

Hence, we have proved that 1) By using ( 6), ( 4) and ( 5) we get

S g M (εc) ⇒ ε→0 N (0; σ 2 g M ,m (c, d)).
β ( Ĥβ -2) = l i=1 z i (H -2) β log(εc i ) + β log(σ 2H ) + log(E[|N * | β ]) + o a.s.,i (1) 
, and property [START_REF] Feuerverger | Estimation of fractal index and fractal dimension of a Gaussian process by counting the number of level crossings[END_REF] gives

β ( Ĥβ -2) = (H -2) β + o a.s. (1).
We proved that Ĥβ is a strongly consistent estimator of H. Let us see now that Ĥβ is an asymptotically unbiased estimator of H. By ( 6)

β (E[ Ĥβ ] -2) = l i=1 z i E[log(M β (εc i ))],
where M β (ε) is defined in (4). Since

1 0 |Z ε (u)| β du = ε (2-H)β σ β 2H M β (ε), (16) 
by property [START_REF] Feuerverger | Estimation of fractal index and fractal dimension of a Gaussian process by counting the number of level crossings[END_REF], one has

β (E[ Ĥβ ] -2) = l i=1 z i E[log 1 0 |Z εc i (u)| β du ] + (H -2)β. (17) 
Hence, it is enough to prove that E[log

1 0 |Z ε (u)| β du ] -→ ε→0 log E[|N * |] β . ( 18 
)
For this, let us notice that since log is a concave function and log(x) x when x 0, we have

1 0 log(|Z ε (u)| β ) du log 1 0 |Z ε (u)| β du 1 0 |Z ε (u)| β du.
Thus, if we denote

X ε := 1 0 |Z ε (u)| β du + β 1 0 log(|Z ε (u)|) du ,
we have shown that log

1 0 |Z ε (u)| β du X ε . (19) 
Now, since |N * | β and log(|N * |) are in L 1 (Ω), the same result is true for X ε , say

X ε ∈ L 1 (Ω). ( 20 
)
Furthermore by using Lemma 3.1 following Theorem 3.2, it is easy to see that

X ε L 1 -→ ε→0 E[|N * | β ] + β E[log(|N * |)] . (21) 
Finally, by using Theorem 3.1, we get:

log 1 0 |Z ε (u)| β du a.s. -→ ε→0 log (E[|N * |] β ) . (22) 
Hence, ( 19), ( 20), ( 21) and ( 22) yield (18).

2) Formula ( 16) entails that

E[M β (ε)] = σ β 2H ε (H-2)β E[|N * | β ].
As in [START_REF] Feuerverger | Estimation of fractal index and fractal dimension of a Gaussian process by counting the number of level crossings[END_REF], let us define

A β (ε) = M β (ε) -E[M β (ε)] E[M β (ε)] .
With this definition and using a Taylor expansion for the logarithm function one has log

(M β (ε)) = log(E[M β (ε)]) + log(1 + A β (ε)) = (H -2) β log(ε) + β log(σ 2H ) + log(E[|N * | β ]) + A β (ε) + A 2 β (ε) [-1 2 + ε 1 (A β (ε))]. (23) 
Let us see that

A 2 β (ε) - 1 2 + ε 1 (A β (ε)) = o p ( √ ε). (24) 
By the definition of g β (see [START_REF] Flandrin | Wavelet analysis and synthesis of fractional Brownian motion[END_REF]), one has

A β (ε) = √ εS g β (ε),
and by Lemma 3.1 following Theorem 3.2

E[ 1 √ ε A 2 β (ε)] = √ εE[S 2 g β (ε)] = O( √ ε), so 1 √ ε A 2 β (ε) = o p (1)
and then (24) is proved. By using (23) and ( 24) we obtain log

(M β (ε)) = (H -2) β log(ε) + β log(σ 2H ) + log(E[|N * | β ]) + √ ε S g β (ε) + o p ( √ ε).
Thus, by using (6) and property [START_REF] Feuerverger | Estimation of fractal index and fractal dimension of a Gaussian process by counting the number of level crossings[END_REF], we have 

β ( Ĥβ -2) = (H -2) β + l i=1 z i √ εc i S g β (εc i ) + o p ( √ ε). Thus ( Ĥβ -H) √ ε = 1 β l i=1 z i √ c i S g β (εc i ) + o p (1
(x) = |x| β -E[|N * | β ]. Since h β is even, we have: h β (x) = ∞ n=1 ĥ2n,β H 2n (x), with for n 1, ĥ2n,β = 2 (2n)! +∞ 0 H 2n (x)x β φ(x) dx.
By the definition of the Hermite polynomials and since for a 0 Ψ(a) := +∞ 0 x a φ(x) dx = π -1/2 2 (a-2)/2 Γ((a + 1)/2),

we get

ĥ2n,β = π -1/2 n p=0 (-1) (n-p) 2 (n-p) (n -p)!(2p)! 2 (p+β/2) Γ(p + (β + 1)/2).
To obtain the first equality in [START_REF] Fox | Large-sample properties of parameter estimates for strongly dependent Gaussian stationary time series[END_REF], it suffices to see that ĝ2n,β = ĥ2n,β 2Ψ(β) and (25) gives the required result. Moreover, Coeurjoly in [START_REF] Coeurjolly | Estimating the parameters of a fractional Brownian motion by discrete variations of its sample paths[END_REF], has shown that ĝ2n

,β = 1 (2n)! n-1 i=0 (β - 2i). 2 
Proof of Remark 1 in Corollary 3.2. Let us note that ĝ2,β = β 2 . Then for b, c > 0

ρ g β (b, c) = β 2 4 ρ g 2 (b, c) + ρ g β (b, c) where g β (x) = ∞ n=2 ĝ2n,β H 2n (x) which belongs to L 2 (φ(x) dx). Then σ 2 g β ,l (c, √ c (z/β)) = σ 2 g 2 ,l (c, √ c (z/2)) + σ 2 g β ,l (c, √ c (z/β)) σ 2 g 2 ,l (c, √ c (z/2))
since the last term in the above equality is positive by Lemma 3.1 following Theorem 3.2. 

Indeed, from the definition of the function g log (see [START_REF] Ludeña | Parametric estimation for Gaussian long-range dependent processes based on the log-periodogram[END_REF]), one has We have proved that Ĥlog is a weakly consistent estimator of H. Let us show now that Ĥlog is unbiased. Since 

and by [START_REF] Istas | Quadratic variations and estimation of the local Hölder index of a gaussian process[END_REF] and property [START_REF] Feuerverger | Estimation of fractal index and fractal dimension of a Gaussian process by counting the number of level crossings[END_REF], we get

E[ Ĥlog ] -2 = l i=1 z i E[M log (εc i )] = H -2, ( 31 
)
and Ĥlog is an unbiased estimator of H. If we divide both sides, in the above inequality, by β(ε) and using (36), we get (37). 2

Final remark: We have considered the estimation of the Hurst parameter for fractional Brownian motion. The same procedure can be implemented, with little changes, when the observed process is a Gaussian process with stationary increments. In this case the incremental variance must be: E(X t+h -X t ) 2 = h H L(h) for L(•) a slowly varying function in zero. Here the estimation refers to the H parameter.
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 222 Convergence in law Proof of Theorem 3.2. Fix m ∈ N * , c 1 > 0, c 2 > 0, . . . , c m > 0 and d 1 , d 2 ,. . . , d m ∈ R and S g (εc) := m i=1 d i S g (εc i ).

  g M (εc) -S g (εc)] 2 = 0. Now, since N (0; σ 2 g M ,m (c, d)) ⇒ M →∞ N (0; σ 2 g,m (c, d)), applying Lemma 1.1 of[START_REF] Dynkin | Self-intersection gauge for random walks and for Brownian motion[END_REF], Theorem 3.2 is proved.

2 4

 2 (|N * |)].

1 0

 1 log(|Z ε (u)|) du = E[log(|N * |)] + √ εS g log (ε),(27)and by Lemma 3.1 following Theorem 3.2,E[ √ εS g log (ε)] 2 = O(ε).Thus (26) follows and from the definition of M log (ε) (see[START_REF] Ho | Limiting distributions of nonlinear vector functions of stationary Gaussian processes[END_REF]), one obtainsM log (ε) = (H -2) log(ε) + log(σ 2H ) + E[log |N * |] + o p(1). (28)Now, by (11), (28) and using property[START_REF] Feuerverger | Estimation of fractal index and fractal dimension of a Gaussian process by counting the number of level crossings[END_REF], we get Ĥlog -2 = l i=1 z i M log (εc i ) = (H -2) + o p (1).

1 0

 1 log(|Z ε (u)|) du = (2 -H) log(ε) -log(σ 2H ) + M log (ε),(29)one hasE[M log (ε)] = E[log(|N * |)] + (H -2) log(ε) + log(σ 2H ),

1 0 1 0[log 1 0[ 1 0

 1111 |N * | β(ε) ] β(ε) -E[log(|N * |)] = O(β(ε)),(36)and β(ε) = o( √ ε), (35) holds. Thus we follow the same lines as in the proof of Corollary 3.2 to obtain( Ĥβ(ε) -H) c i S(εc i ) + o p (1),where Ĥβ(ε) is defined in[START_REF] Moulines | Broad band log-periodogram regression of time series with long range dependence[END_REF]. Lemma 4.3 and Corollary 3.3 allow us to conclude the asymptotic normality of Ĥβ(ε) . Let us show now that Ĥβ(ε) is an asymptotically unbiased estimator of H. As in the proof of Corollary 3.2 (see (17) and (18)), it is enough to prove that|Z ε (u)| β(ε) du ] -→ ε→0 E[log(|N * |)].(37)To show this above convergence, we use the fact that log is a concave function and thenβ(ε)E[log(|N * |)] = E[ log(|Z ε (u)| β(ε) ) du] E|Z ε (u)| β(ε) du ] log E|Z ε (u)| β(ε) du] = log E[|N * | β(ε) ] .

  ). Theorem 3.2 gives the required result. Now, to conclude the proof of Corollary 3.2, we have to compute the coefficients in the Hermite expansion of function g β (x) = |x| β E[|N * | β ] -1. To simplify the notation, first let us compute the coefficients in the Hermite expansion of h β

The research of the second author was suported in part by the project "Modelaje Estocástico Aplicado" of the Agenda Petróleo of FONACIT Venezuela.

2) Now, (29), (30), ( 27) and (31) entail that

Theorem 3.2 gives the required result. Now, to conclude the proof of Corollary 3.3, we have to compute the coefficients in the Hermite expansion of function

For the last integral we used that H m (x)φ(x) = (-1) m d m dx m (φ(x)), and integration by parts. Now the definition of the Hermite polynomials and (25) yield

Consequently, by formula for Γ(p + 1/2), one has

which gives the required result. 2

where

As in [START_REF] Coeurjolly | Estimating the parameters of a fractional Brownian motion by discrete variations of its sample paths[END_REF], we have the following lemma

Proof of Lemma 4.3. Lemma 3.1 following Theorem 3.2 gives the asymptotic behavior of E[S g log (ε)] 2 , set

Now, (9) in Corollary 3.2 gives the expression of the Hermite's coefficients, ĝ2n,β(ε) ,

and as in the proof of Lemma 3.1 following Theorem 3.2, Mehler's formula [START_REF] Berzin | Convergence in fractional models and applications[END_REF] 

The expression of the Hermite coefficients, ĝ2n,log , of g log is given in ( 13) in Corollary 3.3 and we observe that ĝ2n,β(ε)

Furthermore for small enough ε ĝ2n,β(ε)

To achieve the proof of Lemma 4.3, we compute E[ S(ε)S g log (ε)] by Mehler's formula and we proceed as for E[ S(ε)] 2 to obtain