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Abstract. This study uses digital ionosonde data from a cusp
latitude station (Cambridge Bay, 77◦ CGM lat.) to study
the convection into the polar cap. Days when the IMF mag-
netic field was relatively steady were used. On many days it
was possible to distinguish an interval near noon MLT when
the ionosonde data had a different character from that at ear-
lier and later times. Based on our data, and other published
measurements, we used the interval 10:00–13:00 MLT as
the cusp interval and calculated the convection into the po-
lar cap in this interval. The integrated convection accounted
for only ∼1/3 of the open polar cap flux. If the convection
through the prenoon/postnoon regions on either side of the
cusp was calculated the remaining 2/3 of the flux could be
accounted for. The characteristics of the prenoon/postnoon
regions were different from the cusp region, and we attribute
this to transient flank merging versus more steady frontside
merging for the cusp.

Keywords. Ionosphere (Plasma convection) – Magneto-
spheric physics (Polar cap phenomenon)

1 Introduction

The polar cap that is the subject of this paper is the region
lying poleward of the auroral oval and may be defined as
the region of ‘open’ magnetic field that is connected to the
solar wind magnetic field. The size of the polar cap varies
with solar wind parameters, most notably the IMFBz com-
ponent, and can become quite small under certain conditions
(Newell et al., 1997). In this study we will be considering just
a more typically sized polar cap when the IMF does not have
extreme values. There are a number of ways of determin-
ing the open polar cap size, the most common being satel-
lite particle detectors to determine the area where there is
only very soft “polar rain” precipitation (Gussenhoven et al.,
1984), and satellite optical images to determine the region
where there is very low optical emission. These determina-
tion of the polar cap open area often show that there is some
particle precipitation poleward of the main auroral oval. The
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“horsecollar” aurora showing a teardrop shaped open area
with auroral activity pinching in the open area near the noon
meridian is one of the best known variations on the normal
oval shaped open polar cap (Hones et al., 1989), and the ear-
lier study by Lassen et al. (1988) also showed a similarly dis-
torted open polar cap region. Other studies have shown that
the polar cap is not usually just a circular shape (Sotirelis et
al., 1998) and there are often regions of precipitation near
the outside edges of the open polar cap (Austin et al., 1993).
The IMF for most of these studies that show regions of pre-
cipitation within the polar cap is generally northward or else
conditions were stated to be magnetically quiet if the IMF
was not given. For the present paper the IMFBz component
was around zero. Therefore the polar cap shape might be
expected to be approximately an oval.

The open magnetic flux in the polar cap is not static but
under normal conditions is convecting in an antisunward di-
rection. Thus the open flux must be constantly replenished
by flux that is converted from closed to open as it passes into
the polar cap on the dayside of the cap. At one time the pre-
vailing concept was that flux opens on the frontside of the
magnetosphere by reconnection to the solar wind, and then
convects into the cap through the cusp/cleft. The popular
adiaroic model of polar cap convection (Siscoe and Huang,
1985) is based on this picture. We shall be examining the
dayside influx of newly opened flux into the polar cap in this
paper. The principal measurements that will be used will be
digital ionosonde convection measurements from Cambridge
Bay (77◦ CGM lat.). This latitude is very suitable for observ-
ing the dayside cusp region (e.g. Fig. 5 of Wing et al., 2001).

2 Measurements

The digital ionosonde used for most of the data that will
be shown was at Cambridge Bay (geog: 69.1◦ N, 105.1◦ W,
77◦ CGM lat.). The ionosonde was a Canadian Advanced
Digital Ionosonde (CADI) (see Grant et al., 1995), and did
convection measurements on frequencies of 3 and 4 MHz
each 30 s, and recorded an ionogram each minute. In partic-
ular this study will focus on the measured ionospheric con-
vection velocities.
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Figure 1 Cambridge Bay data sample, 28 Feb. 1996. The top panel shows the reflections 
on 3.18 MHz frequency, and the bottom two panels shows the east-west and north-south 
convection velocities. 
 

Fig. 1. Cambridge Bay data sample, 28 February 1996. The top
panel shows the reflections on 3.18 MHz frequency, and the bottom
two panels shows the east-west and north-south convection veloci-
ties.
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Figure 2. Midday ionospheric measurements from Cambridge Bay, 18 Dec. 1995. Panels 
are the same as Figure 1. Fig. 2. Midday ionospheric measurements from Cambridge Bay, 18

December 1995. Panels are the same as Fig. 1.

Figure 1 shows a 12-h data sample from Cambridge
Bay that includes the daytime period (local magnetic
time=UT–8 h). This shows the 3 MHz frequency measure-
ments. The top panel shows the virtual height, the middle
panel shows the EW velocity component (in geographic co-
ordinates, positive is east), and the bottom panel shows the
NS velocity component (positive is north). This sample is
representative of much of the Cambridge Bay data. It shows
variable convection velocities and signs of precipitation (ver-
tical streaks descending to the E-region in the top panel)
up to about 18:00 UT. Then there is an interval without E-
region auroral precipitation features from∼18:00–21:00 UT,
and then more variable convection and precipitation after
∼21:00 UT. We will be identifying the “cusp” interval as the
relatively “quiet” interval from∼18:00–21:00 UT. Note that
prior to this and following it there are substantial eastward
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Figure 3. Data from 17 Feb. 1996. The panels show the lowpass filtered velocity 
components. Noon MLT is 20 UT. 
Fig. 3. Data from 17 February 1996. The panels show the lowpass
filtered velocity components. Noon MLT is 20:00 UT.

and westward velocities which are representative of the con-
vection reversal region. During the cusp interval the EW ve-
locities are small, and, surprisingly, the NS velocities are also
small. The small poleward (north) velocities during the cusp
interval are quite typical in our observations: we rarely see a
particularly high speed flow into the polar cap in the cusp in-
terval, although for very strongly southward IMF our results
(see below) will show that cusp flows could approach 1 km/s
speeds.

Sometimes the cusp interval shows as a more dramatic fea-
ture. Such a dramatic example is shown in Fig. 2. Here
a cusp interval can be clearly seen, bordered by precipita-
tion that forms a continuous “auroral E”-layer (the streaky
E-layer echoes) on either side of the F-region cusp echoes.
Although on this day the northward convection in the cusp
interval can be seen to be larger than in the precipitation re-
gions, the convection measurements using the E-region re-
flections at times before and after the cusp interval may be
underestimations of the velocity. The measurements during
the cusp interval use the F-region reflections and should be
valid.

Figure 3 shows the velocities for another day in a different
format. To more clearly show the overall convection pattern
we have lowpass filtered (with a highfrequency cut-off
of 20 min) the EW and NS velocities to remove the short
period velocity variations that can be seen in Figs. 1 and
2. It can be seen from the lower panel that there is no
distinctive cusp interval in the NS velocities. However, the
EW velocities shown in the top panel have a distinguishable
change during the∼18:00–21:00 UT interval from large
westward velocities before and after the noon interval to
relatively small EW velocities around noon. During the
cusp interval the EW velocities change progressively from
eastward to westward. This behaviour was seen on many
days and indicates that there is a convergence to the flow
entering the polar cap through the cusp.
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Our data often shows some differences between the cusp
interval and earlier/later times. Firstly the cusp does not
usually have precipitation features shown in Figs. 1 and 2
for times later and earlier than the cusp interval. Secondly,
the cusp flow is usually more steady than during non-cusp
times as can be seen for the data sample shown in Fig. 3.
However, on many days there is no clearly distinctive cusp
feature. From a study of many days of data, there usually
appears to be an interval from∼18:00–21:00 UT (10:00–
13:00 MLT) which shows the slightly altered properties of
convection and precipitation that we identify as the “cusp”
interval. This is close to the same time interval that has been
identified (Aparicio et al., 1991; Newell and Meng, 1992) as
the cusp interval from satellite particle measurements. In the
discussion we will return to the question of whether the cusp
interval is just an approximately 3-h interval around noon, or
whether this is just a statistical result. However, in the next
part of our analysis we will be assuming that the cusp is just
the 3-h interval 18:00–21:00 UT.

Another radio way of studying the cusp is by using the Su-
perDARN radars (Baker et al., 1995). We looked at Saska-
toon SuperDARN data for the ionospheric region over Cam-
bridge Bay. Unfortunately for the days which we chose to
study in detail for this study there were no suitable Super-
DARN results. Other days did show a region of echoes over
Cambridge Bay whose velocities agreed with the CADI ob-
servations, and which had wide spectral widths that are a sig-
nature of the cusp.

The question that is of interest is whether most of the po-
lar cap open field lines convect into the polar cap through
the cusp. We can determine the amount of flux that passes
through the 3-h cusp interval into the polar cap by just in-
tegrating the poleward (northward) convection over this 3 h.
This is essentially the same as calculating the potential across
the cusp, so our integrated convection results will be ex-
pressed as potentials. In order to have meaningful results,
since we know that the polar cap convection responds to
changes in the IMFBy andBz, we selected days when the
IMF was essentially constant throughout the entire∼12-h
daytime interval. We looked for days when the IMFBy and
Bz were steady within±2 nT. Unfortunately these criteria
meant that there was only a small data set (18 days). The
calculated potentials for this data set are presented in Fig. 4
as a function of IMFBz.

Figure 4 shows the integrated potential for 3×3 h intervals:
prenoon, noon, and postnoon as functions of IMFBz. The
noon interval is the cusp interval as mentioned above. The
potentials in all three intervals respond in a similar way to
Bz. The noon potential becomes negative (sunward convec-
tion) for Bz about +3 nT. This value agrees well with theBz

value when we begin to observe sunward convection in the
polar cap (Jayachandran and MacDougall, 2001). It can also
be seen that the potential in the prenoon interval is smaller
than in either of the other two intervals. This shows the well
known weakness of the dawn “convection cell” relative to
the dusk convection cell (in the corotating coordinate sys-
tem: see Newell et al. (2004, Paragraph 20). The noon and
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Figure 4. Potentials calculated for three time intervals as a function of IMF Bz. The 
equations of the fitted lines are shown. 

Fig. 4. Potentials calculated for three time intervals as a function of
IMF Bz. The equations of the fitted lines are shown

postnoon intervals have about the same potentials.

It is of interest to compare these potentials with the cross
polar cap potential that has been calculated in a number of
studies (MacDougall and Jayachandran, 2001 and references
therein). The estimated cross cap potential in that study,
which used digital ionosonde measurements from polar cap
stations, was8(kV)=44–10Bz. This is very obviously a
much larger potential than is shown for the noon interval in
Fig. 4. However, if one assumes that the cross cap potential is
the sum of the 3 potentials shown in Fig. 4, then one obtains:
8(kV)=25.6–6.2Bz from the integrated potentials, and this is
comparable with the measured cross cap potentials. Some se-
lective adjustment of the limits of the prenoon and postnoon
intervals can give an even closer agreement, but even without
such corrections it is obvious that the combined potentials of
all three intervals are required to match the measured cross
cap potential. Adding the 3 potentials shown on Fig. 4, and
taking typicalBz as –3 nT, we find that only about 1/3 the
polar cap potential is associated with convection through the
noon cusp. This fractional result is similar to the numbers
in a recent paper by Newell et al. (2004). We note that (see
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Figure 5. Ratio of prenoon to postnoon potential as a function of IMF By.  
 

Fig. 5. Ratio of prenoon to postnoon potential as a function of IMF
By .

values given on Fig. 4 plots) as the IMFBz becomes more
negative the fraction of the total potential in the noon sector
become larger.

This result is somewhat surprising in that the only obvious
influx to the polar cap of open field line flux is through the
noon cusp. However, the comparison of the potentials indi-
cates that flux must have also entered the polar cap through
the pre and post noon intervals. We will return to this prob-
lem in the discussion.

The remaining question in this section is whether there is
an IMF By effect on the polar cap influx? Scatter plots of
potentials as a function ofBy showed little obvious relation-
ship, and yet the prevalence ofBy effects in the literature
relating to the geometry of the influx to the polar cap made
us look more closely to see if we could find aBy effect.

In Fig. 5 the ratio of prenoon to postnoon potential is
shown as a function of IMFBy . Although there is much
scatter in the data points, this figure shows the expected re-
sult that the morning (prenoon) cell is stronger relative to the
afternoon (postnoon) cell for more negative IMFBy .

Comparison can be made here with the results of Newell
et al. (2004) who found that their prenoon potential was
larger than their postnoon potential for all IMF conditions.
There is a difference in their definition of prenoon (time
<12:00 MLT) and postnoon (time>12:00 MLT) from what

we are using here (prenoon is time 07:00–10:00 MLT, post-
noon is time 13:00–16:00 MLT). This difference in defining
prenoon/postnoon only partly accounts for the difference be-
tween the two sets of measurements. We attribute the remain-
ing difference to the fact that IMF conditions for our data set
are restricted to small values of IMFBz andBy in order to
satisfy our data selection criteria.

3 Discussion

There appear to be several obvious solutions to the problem
that the cusp convection only accounts for about 1/3 of the
cross polar cap potential. Three of these are:

1. The cusp is actually much wider than 3 hours, at least
intermittently.

2. The open region of the polar cap has a width compatible
with the size of the cusp.

3. Most, ∼2/3, of the polar cap flux enters through the
prenoon/postnoon cusp latitude regions.

We next discuss each of these three possibilities.

3.1 Is the cusp much wider than 3 hours?

The best way of locating the cusp is to use satellite parti-
cle measurements. The study of cusp location by Apari-
cio et al. (1991) using Viking satellite particle measurements
shows it to be closely the 3 hour interval 10:00–13:00 MLT,
although there is about a 1/2 h timeshift depending on the
sign of the IMFBy component. Information about the cusp
width was also provided by Newell and Meng (1988), and
Newell et al. (2004) using DMSP satellite data. In the Newell
and Meng (1988) paper they presented statistics showing the
probability of observing the cusp as a function of MLT. The
curve is rather “Gaussian” so that it does not give an obvious
width. However, if the cusp width is considered to be the full-
width at half-maximum of the probability curve then the cusp
width would be about 3 h. Therefore satellite particle data
seems to support our usage of the 18:00–21:00 UT (10:00–
13:00 MLT) as the cusp interval, and certainly does not sup-
port taking the whole 9-h interval from 07:00–16:00 MLT as
the cusp interval. Further confirmation of the width used is
from the studies of cusp width by Crooker et al. (1991), and
Crooker and Toffoletto (1995). They found the maximum
cusp width to be∼3.5 h for high cross polar cap potential, so
for the more moderate conditions in this study a 3-h width
seems appropriate.

There are other ways of determining the cusp interval. Op-
tical auroral observations initially detected the cusp gap as an
interval at midday when auroral arcs disappeared and only
red line auroral activity is seen. This was called the “midday
auroral gap”. It was initially detected from ground optical
observations, but can easily be seen in satellite images. Meng
(1981) did a detailed study of the gap using both images and
particle data from the DMSP satellites. Although he gives no
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Table 1. Comparison of potentials from cusp and polar cap measurements.

Date (a)
DMSP open cap
width, km

(b)
Eureka antisunward
speed, m/s

(c)
Cross cap poten-
tial from DMSP and
Eureka, kV

(d)
Noon gap potential,
kV

(e)
Total dayside po-
tential, kV

30 Jan. 1996 1970 250 25 13.3 37.2
17 Feb. 1996 1970 300 30 13.0 24.3
19 Feb. 1996 1160 (457) 27 20.1 47.1
23 Jun. 1996 1200 300 18 5.0 15.9

statistical data about the width of the gap, he concludes that
it is about 2–3 h wide. Based on our measurements and these
other studies we conclude that the usual cusp width is only
∼3 h.

3.2 Is the width of open polar cap flux compatible with the
cusp width?

One possibility is that the open flux in the polar cap only
enters through the cusp and that the amount of open flux in
the cap is compatible with this influx. There are many stud-
ies of size and shape of the open polar cap. The study by
Sotirelis et al. (1998) shows, in their Fig. 8, the measured
amount of open polar flux versus the IMFBz. For Bz near
0 nT, which pertains to most of our measurements shown in
Fig. 4, they give the open flux as∼400 MWb. Assuming,
for simplicity, a circular open polar cap region and typical
B of ∼5.5×10−5 T, their amount of open flux implies that
the diameter of the cap would be∼3000 km. Since the 3-
h cusp width is∼1200 km then the cusp flux could match
to the polar cap flux if the polar cap antisunward convection
speed was∼1200/3000=0.4 of the cusp poleward speed. Es-
sentially this implies that the flow through the cusp spreads
out across the entire polar cap and therefore would flow an-
tisunward at a much reduced speed relative to the speed in
the cusp. We had convection measurements from our polar
cap stations Eureka and Resolute Bay for most of the days
that we selected. Typically, the average polar cap antisun-
ward convection speeds were somewhat larger than the cusp
speeds rather than smaller. Therefore the polar cap dimen-
sions from published measurements do not support that the
dimension of the open polar cap region is sufficiently small
to match to the open flux entering through the cusp. As a fur-
ther examination of whether the small cusp potential could
be compatible with the cross cap potential on open field lines
we examined DMSP particle measurements for several of our
samples. The open, polar rain region of the polar cap can
be quite easily identified on most satellite passes. Using a
number of satellite passes throughout the day we estimated
the polar cap dawn-dusk widths and these are shown in col-
umn (a) of Table 1. The Eureka, and/or Resolute Bay average
measured antisunward convection speeds for hours around
19:00 UT are given in column (b). For one case there was

no measured speed so we used an estimated speed calculated
from the formula in Table 2 of MacDougall and Jayachan-
dran (2001) using the IMFBz value (speed value shown in
braces). Combining the speed and width we calculated the
cross cap potentials shown in column (c). These potentials
can then be compared with our measured noon gap poten-
tials shown in column (d), and the sum of the prenoon, noon,
and postnoon potentials shown in column (e). It should be
noted that to determine the dayside potentials in column (e)
we had to integrate measured velocities over∼9 h. These are
therefore not an instantaneous measurement, although only
days with relatively steady IMF were used.

The table shows that the noon gap potentials (d) alone are
notably smaller than the cross cap potentials (c), whereas
the total dayside potentials (e) are of comparable magnitude.
This again shows that the second possible explanation of the
inconsistency in the amount of convecting open polar cap
flux and the flux through the noon cusp gap using the postu-
lation of a narrow polar cap does not agree with observations.

3.3 Does most of the polar cap flux enter the polar cap in
the prenoon/postnoon intervals?

This seems to be the most likely scenario. Studying the
DMSP particle data there is often a relatively sharp change
from auroral activity to polar rain as the satellites pass into
the polar cap in the prenoon/postnoon sectors. There is no
obvious particle signature at the prenoon/postnoon polar cap
boundary that is similar to the cusp signature seen at midday.
Thus it seems that the flux that is passing into the polar cap in
these sectors becomes open (reconnected) without showing a
characteristic cusp particle signature.

Newell et al. (2004) show maps of DMSP satellite particle
mapping to various magnetospheric regions. For these same
prenoon/postnoon sectors they show Low Latitude Boundary
Layer (LLBL) at about cusp latitudes. Then more poleward
in these sectors they show Mantle (which extends across the
entire dayside and is just the low energy ion “tail” precipita-
tion seen on the open polar cap field lines), and finally polar
rain in the central polar cap. The Mantle region is obviously
open, but they are ambivalent as to whether the LLBL region
is open or closed. This is obviously the region where we are
seeing the E-region precipitation shown in Figs. 1 and 2.
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Figure 6. Merging geometry for frontside and flank. Field lines (dashed) from the polar 
cap are shown going (right) to the frontside merging point, and (left) to the flank merging 
point. The vertical lines are IMF –ve Bz. Merging time is T0 for both types of merging, 
and T1 mark the magnetic field kinks shortly after merging. The magnetopause is shown 
as a lightly shaded surface.    
 
   
 
 

Fig. 6. Merging geometry for frontside and flank. Field lines
(dashed) from the polar cap are shown going (right) to the frontside
merging point, and (left) to the flank merging point. The vertical
lines are IMF –veBz. Merging time is T0 for both types of merg-
ing, and T1 mark the magnetic field kinks shortly after merging.
The magnetopause is shown as a lightly shaded surface.

There are a variety of transient auroral features in the
prenoon and postnoon polar cap boundary regions. One type
of transient feature observed in these regions are Poleward
Moving Auroral Forms (PMAF). The properties of these
PMAF were shown in studies by Shiokawa et al. (1996) and
Sandholt et al. (2004). We can detect these PMAF in our
CADI observations. The PMAF disappear after moving into
the polar cap a few hundred kilometers, and can occasion-
ally be detected by the CADI ionosonde at Resolute Bay
(86◦ mag. Lat.) but are never seen by the CADI further
poleward at Eureka. The study by Sandholt et al. (2004),
looked carefully at the PMAF occurrence patterns and con-
cluded that the PMAF were on reconnected open field lines.

A second type of transient reconnection auroral feature is
called a Pulsed Ionospheric Flow (PIF). Two studies of one of
these are McWilliams et al., (2001a, b). The event that they
studied started with transient reconnection just after the noon
interval, and the reconnection region then moved rapidly tail-
ward down the magnetopause flank. Associated with this PIF
event are auroral and convection features near the afternoon
polar cap boundary. Another similar event was described by
Nishitani et al. (1999). A somewhat similar event studied by
Milan et al. (2000) was not classified as a PIF but as a PMAF.
There are therefore a variety of transient auroral features that
are seen in the prenoon/postnoon intervals and are associ-
ated with transient reconnection. A detailed review of the
prenoon/postnoon polar cap boundary particle data and mag-
netopause measurements by Cowley (1982) also showed that
this region tends to be complex, and does not clearly show
evidence for continuous reconnection.

The prenoon/postnoon sectors map to the flanks of
the magnetosphere and there are several reasons why
reconnection that is taking place on the flanks of the magne-
tosphere (hereafter referred to as flank reconnection) could

have different characteristics from frontside reconnection.
Firstly frontside reconnection may be steady or transient de-
pending on the Alfv́enic conditions (Rodger et al., 2000). On
the flanks of the magnetosphere the magnetosheath flow is
supersonic and therefore the reconnection conditions are al-
most always super Alfv́enic. Thus flank reconnection should
likely be transient. The less steady convection velocities that
we observe at Cambridge Bay directed into the polar cap at
times before and after the cusp interval may be a signature of
this transient reconnection.

A second difference arises from the shape of just-
reconnected field lines on the flanks as compared to those
on the frontside. While the frontside just-reconnected field
lines are strongly kinked the just-reconnected flank lines will
have much less of a kink. A sketch showing the kink ge-
ometry is shown in Fig. 6. This sketch show frontside and
flank merging, both marked as time T0, and the kinks in the
reconnected field lines shortly after merging at time T1. As
can be seen the field line geometry for flank merging is less
kinked than for frontside merging. This means that there will
be less energization of the plasma on the newly connected
flank field lines. A third difference is that flank reconnection
is to a supersonic downtail flowing magnetosheath plasma so
that most reconnected particles will have considerable mo-
mentum to overcome in order to precipitate in the earthward
direction. This was discussed in Newell et al. (2004, see their
Paragraph 15).

It therefore seems that flank reconnection has different
characteristics from frontside reconnection. It is not clear
whether there is a distinct dividing line between the two types
of reconnection at any given time, or whether frontside re-
connection can transition to flank reconnection.

4 Conclusions

From digital ionosonde measurements we can often iden-
tify the cusp region extending over 3 h from∼10:00–
13:00 MLT. The convection into the polar cap is usually
not high speed and the amount of open flux convecting
through the cusp accounts for only about 1/3 of the polar cap
flux. The majority of flux enters the cap through the∼3 h
wide prenoon/postnoon sectors on either side of the cusp.
We attribute the relatively different characteristics of these
prenoon/postnoon sectors, as compared to the cusp, to tran-
sient flank merging that has somewhat different characteris-
tics as compared to frontside steady merging.
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