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Abstract. Low-frequency, African Easterlies Waves (AEW)
are examined as disturbances embedded in the mid-
tropospheric easterly jet of the African low troposphere. The
solution to the nonlinear vorticity equation relevant to the
description of waves is sought in the form of triplet waves.
The latest suggest a unified method to determine their ki-
netics characteristic and to explain the mechanism of energy
exchange between their different modes. The period of en-
ergy interaction between different modes of the global wave
is equal to 3.5 days when the wave packet is moving with a
group velocity dependent on the mean basic flow. The effects
of nonlinearity are also identified, and it is noted that the hor-
izontal shears of mean flow, as well as the temporal variation
of the amplitude wave functions, are the controlling factors.

Keywords. Meteorology and atmospheric dynamics
(Synoptic-scale meteorology; Tropical meteorology; Waves
and tides)

1 Introduction

GATE and other field experiments have produced a wealth
of results leading to a fairly clear image of the mean verti-
cal structure of the tropical atmosphere over Africa. In the
1970’s, two jet streams were identified by Burpee (1972)
from the analysis of the vertical structure of the mean zonal
wind. The first one, the African Easterly Jet (AEJ), is lo-
cated around 3 km height (600 to 700 hPa) in the lower tro-
posphere. The second one, the Tropical Easterly Jet (TEJ),
is found at an altitude of 18 km. Kwon (1989) has pre-
sented the vertical profile of the zonal component of the
wind, derived from a semi-empirical expression calibrated
using West African meteorological data (Fig. 1a). Although
the vertical positions of the jets are in agreement with early
analyses, their latitudinal positions are not apparent. Simi-
lar profiles, based on experimental data, were presented by
Burpee (1972) (Fig. 1b). This profile clearly shows that the
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axis of AEJ is around 15◦ N and 700 hPa position (meridian
and vertical) of order jet.

It is well established that the tropical atmosphere is a re-
gion of large-scale perturbations that develop and propagate
eastward. Much attention has been focused on these pertur-
bations because of their role in maintaining the general cir-
culation of the atmosphere and in modulating precipitation.
Theoretical and experimental evidence have established their
characteristics and the dominant role of barotropic instabil-
ity at their genesis. In the African low troposphere, some of
these disturbances are associated with the mid-tropospheric
jet known as the easterly wave (Burpee, 1972). The char-
acteristics of easterly waves, located around 600–700 hPa in
the African low troposphere, have widely been studied in the
past (Rennick, 1976; Mass, 1979; Kwon, 1989; Thorncroft
et al., 1994a,b).

By considering a linear primitive equations (PE) model
and a quasi-geostrophic (QG) model, these authors have de-
termined their kinematic characteristics and the dominant
energy source in the region. Using a PE model, Ren-
nick (1976) showed that near the jet core, the wavelength
is about 3000 km, the phase velocity 16 m.s−1, and the pe-
riod has the value 2.2 days for a maximum zonal wind on
the order of 16 m.s−1. Similarly, Mass (1979) obtained val-
ues of 2500 km, 7.5 m.s−1, 3.8 days and 13 m.s−1, respec-
tively. On the QG model side, the numerical analysis made
by Kwon (1989) showed that in the barotropic instability
zone, where the zonal wind at 625 hPa is of the order of
14 m.s−1, the respective characteristics for easterly waves are
3000 km, 10 m.s−1and 3.5 days. The linear and nonlinear in-
stability problem of the African Easterly Jet (AEJ) has been
investigated by Thorncroft et al. (1994, 1995), using the PE
model on a sphere. For a basic flow with maximum wind
of about 15 m.s−1 at 600 hPa, they showed that for a wave-
length of about 3500 km, a phase velocity of 6.8 deg/day is
obtained, implying a period of about 4.8 days.

Wegiel and Herbster (2000) have proposed one possible
mechanism responsible for the origin of the African Easterly
Wave (AEW). A model simulation was performed document-
ing the orogenesis of meso-scale systems in Ethiopia. They
demonstrated that the dynamical structure and maintenance
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Fig. 1. Mean zonal wind profiles over West Africa during the sum-
mer period: adapted from(a) Kwon (1989) and(b) Burpee (1972).
Units are m.s−1. Figure 1(b) indicates that the AEJ is centred over
15◦ N at around 700 hPa.

of these synoptic-scale easterly perturbations can be simu-
lated with a great deal of accuracy. They also showed that
the Ethiopian Highlands act as the source region for AEWs.

However, these authors did not fully take into account
group velocity, which, in our opinion, is an essential parame-
ter in the understanding of AEW. Group velocity can be non
zero, even when the phase velocity is zero, e.g. in the case
of stationary Rossby waves (Hoskin and Ambrizzi, 1993).
Furthermore, the study of the dynamics of perturbations as-
sociated with the easterly jet in the lower troposphere is, in
many aspects, similar to that of Rossby waves. Indeed, one
uses the nonlinear vorticity equation in a horizontal plane.
However, most published work does not account for some of
the fundamental properties related to the nonlinearity, and in
particular, energy transfer between waves.

Numerous experimental observations have pointed to the
possibility of interactions between atmospheric waves in the
tropical zone (Dobryshman, 1982), as well as in the extra-
tropical regions (McIntyre and Palmer, 1983). Theoreti-
cal treatment of this type of interacting waves was done
for small-scale waves in the equatorial zone by Dobrysh-
man (1982) and for planetary waves in the stratosphere by
McIntyre and Palmer (1983). They considered a weakly in-
teracting wave triplet at resonance. Then, using the trian-
gular relation between the wave numbers of the triplet, they
suggested an analytical amplitude function appropriate for
the description of the waves under consideration. However,

the explanation of the energy exchange mechanism between
waves was partial and unsatisfactory.

In the present study, the hypothesis of weak interaction at
resonance between the waves of the triplet is maintained. We
use a method developed by Longuet-Higgins and Hill (1970),
to solve analytically the solution to the nonlinear vorticity
equation, subject to the conservation of the total energy of
the system. We are able to show how these three waves
account, under weak interaction, for the energy transfer be-
tween waves, leading to energy transport in the phase space
of wave numbers (Kadomtsev, 1979). We also indicate a
technique to determine the characteristics of group velocity,
i.e. the velocity of energy transfer by the basic waves around
the jet. This work is done by considering energy transfer be-
tween waves in the horizontal plane, especially at the 700 hPa
level, where AEJ is located. The barotropic theory was also
used by Ferreira and Schubert (1997) to study the climato-
logic aspect of West Africa region through the Intertropical
Convergence Zone (ITCZ).

Section 2 is a presentation of the model used in this study.
Analytic expressions of the amplitude functions of the waves
in interaction are obtained in Sect. 3. Section 4 is devoted to
results and discussions.

2 The model

2.1 Model formulation

Since the vertical extension of AEJ is not important, AEW
can be regarded, in the first approximation, as a horizontal
motion at jet level. To analyse the resultant perturbations, we
consider a two-dimensional model for an incompressible and
inviscid fluid in theβ-plane; horizontal coordinates (x,y) are
chosen such that the x axis is oriented eastward and y north-
ward. The model is governed by the following equations:(
∂

∂t
+ u

∂

∂x
+ v

∂

∂y

)
u− f v = −

∂φ

∂x
(1.1)

(
∂

∂t
+ u

∂

∂x
+ v

∂

∂y

)
v + f u = −

∂φ

∂y
(1.2)

∂u

∂x
+
∂v

∂y
= 0, (1.3)

whereu and v are the zonal and meridional wind compo-
nents,f the Coriolis parameter,φ the geopotential andt the
time. The current method of solving system (1) through the
decomposition of the dependant variables in terms of mean
basic states and of small perturbations is employed. We
therefore write u=U(y)+u’ and v=v’, where the prime terms
refer to perturbations and the capital U refers to the basic
flow.

The following expression for the horizontal sheared zonal
component of the wind, proposed by Rennick (1976), is used
in our analysis:

U(y)=−U0 sin2(πy/2y0), (2)
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where U0=20 m.s−1; y0 corresponds to the latitude of the
jet axis, the origin of latitude (y=0) is located at the equa-
tor. U(y) is symmetric about the axis of the jet (y=y0), hav-
ing a maximum on it and decreasing away from this axis, to
zero on the equator (y=0) and at a latitude of 30◦ N (y=2y0)

(Fig. 5).
Since the flow is quite non divergent, we introduce a

stream function,ψ , so that

u′
= −

∂ψ

∂y
and v′ =

∂ψ

∂x
.

Substituting in the expression for the curl of the veloc-
ity vector, whose components (u,v) appear in Eqs. (1.1) and
(1.2), we obtain an equation for the vorticity related to the
perturbation, in the form(
∂

∂t
+U

∂

∂x

)
∇

2ψ+J
(
ψ,∇2ψ

)
+

(
β−

d2U

dy2

)
∂ψ

∂x
=0, (3)

where

J (A,B) =
∂A

∂x

∂B

∂y
−
∂A

∂y

∂B

∂x

is the Jacobian operator, ∇
2 the Laplacian,

(∇2
=∂2/∂x2

+∂2/∂y2), and β the meridional gradient
of the Coriolis parameter, (β=∂f/∂y).

2.2 Energy conservation equation

Solutions to Eq. (3) must satisfy the principle of conservation
of total energy, which, on the horizontal plane, reduces to the
conservation of kinetic energy. Letε be the total energy per
unit mass of fluid. Multiplying Eq. (3) by ψ , one obtains,
after some algebra, the following local equation for energy:

ε =
1

2

∂

∂t
(∇ψ.)2 (4)

3 Solution to the model equation

A general solution to Eq. (3) is sought in the form:

ψ(x, y, t) =

3∑
k=1

ψk(t) exp−i(mkx + nky − σkt), (5)

wheremk andnk are zonal and meridional wave numbers,
respectively;σk is the growth rate andψk (t), the amplitude
time function of the kth component of the wave. Substituting
Eq. (5) into Eq. (3), leads to the following equation:

−(m2
k + n2

k)
∂ψk
∂t

− i(m2
k + n2

k)(σk −mkU)ψk

+mkψk
3∑
j=1

[nj (m
2
j + n2

j )ψj ]

−[mk(m
2
k + n2

k)ψk]
3∑
j=1

njψj

−imk

(
β −

d2U

dy2

)
ψk = 0

with k≡1, 2, 3.
By identifying terms, the following relations are derived:

(i) conditions for resonance,

m1 +m2 +m3 = 0
n1 + n2 + n3 = 0
σ1 + σ2 + σ3 = 0

(6)

(ii) the dispersion equation,

σk = mkU −

(
β −

d2U

dy2

)
mk

m2
k + n2

k

(7)

(iii) and the nonlinear equation for amplitude function,ψk(t),

(m2
k + n2

k)
∂ψk

∂t
= mkψk

3∑
j=1

[nj (m
2
j + n2

j )ψj ]

− [mk(m
2
k + n2

k)ψk]

3∑
j=1

njψj (8)

k≡1, 2, 3.
Setting,

ρ2
k = m2

k + n2
kandηk = mk+1nk−1 −mk−1nk+1,

with the convention (m, n)0=(m,n)3 and (m,n)4=(m,n)1, and
substituting in Eq. (8), leads to the following uncoupled
system of equations (see Dobryshman, 1982; McIntyre and
Palmer, 1983; and Pedlosky, 1998):

ρ2
1
dψ1
dt

= η1(ρ
2
3 − ρ2

2)ψ2ψ3

ρ2
2
dψ2
dt

= η2(ρ
2
1 − ρ2

3)ψ1ψ3

ρ2
3
dψ3
dt

= η3(ρ
2
2 − ρ2

1)ψ2ψ1.

(9)

On the other hand, whenψ given by Eq. (5) is substituted
into the energy Eq. (4), one obtains

ε = ρ2
k

[
σkψ

2
k + ψk

∂ψk

∂t

]
,

which, upon using the set of Eq. (9), becomes:

ε = ρ2
1σ1ψ

2
1 + ρ2

2σ2ψ
2
2 + ρ2

3σ3ψ
2
3 + η1(ρ

2
3 − ρ2

2)ψ1ψ2ψ3

+η2(ρ
2
1 − ρ2

3)ψ1ψ2ψ3 + η3(ρ
2
2 − ρ2

1)ψ1ψ2ψ3.

It is readily verified, in view of relation Eq. (6), that

η2−η1=0; η2−η3=0 andη3−η1=0.

Thus,

η1=η2=η3=η.

The expression for total energy is now reduced to

ε = ρ2
1σ1ψ

2
1 + ρ2

2σ2ψ
2
2 + ρ2

3σ3ψ
2
3 . (10)

Furthermore, the system of Eq. (9) can be rewritten as:

dψ1

dt
= ψ2ψ3;

dψ2

dt
= −ψ1ψ3 and

dψ3

dt
= ψ2ψ1; (11)
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with ψk(t)=ψk(t) p
−1
k , k≡1, 2, 3; and pk is given by

p1 =
ρ2ρ3

η

√
(ρ2

2−ρ2
1)(ρ

2
3−ρ2

1)
,

p2 =
ρ1ρ3

η

√
(ρ2

3−ρ2
2)(ρ

2
2−ρ2

1)

and

p3 =
ρ2ρ1

η

√
(ρ2

3−ρ2
1)(ρ

2
3−ρ2

2)

after reordering the indices so thatρ1<ρ2< ρ3.
The first two equations of Eq. (11) are combined to give

ψ1
dψ1

dt
+ ψ2

dψ2

dt
= 0.

By direct integration, one obtains

ψ
2
1 + ψ

2
2 = N2

1 = constant. (12)

A similar combination of the second and third equations of
Eq. (11) gives

ψ
2
3 + ψ

2
2 = N2

2 = constant. (13)

Using the last two relations,ψ1 andψ3 are eliminated from
the second equation of Eq. (11), expression ofψ2 is obtained
from the following equation:

dψ2

dt
=

√(
N2

1 − ψ
2
2

) (
N2

2 − ψ
2
2

)
.

The solution for ψ2, subject to the initial condition
ψ2(t0=0)=0, is an elliptic Jacobian function of the form (M.
Abromowitz and Segun, 1964)

ψ2(t) = N2sn(t/α) (14.1)

with α=Arcsin(N2/N1).
ψ1(t) andψ3(t) are obtained from Eqs. (12) and (13), re-

spectively, as:

ψ1(t) = N1dn(t/α), (14.2)

ψ3(t) = N2cn(t/α). (14.3)

These amplitude functions are periodic and their period de-
pends on the parameterα. It is calculated from the following
relation

K =

∫ π/2

0

dτ√
1 − (N2/N1)

2 sin2 τ

,

whereK is one quarter of the period of the Jacobian elliptic
function and depends only onN2/N1. K is plotted in Fig. 2.
Its value increases slowly for values ofN2/N1 less than 0.9
and grows rapidly to∞ asN2/N1 goes to unity. It follows
that the interaction time between triplets is of the order of
several days.

Fig. 2. Dependence of energy interaction time, K, on the ratio
N2/N1.

Fig. 3. Time evolution of the amplitudeψk(t) of the kth wave for
N2/N1=0.7 for a period of 7.5 days. The amplitudeψ1 (solid line)
has the same period as the AEW, whereas the amplitudesψ2 (dash)
andψ3(dot) have twice this period.

4 Discussions

4.1 Interaction between waves

It is important to note that all parameters in Eq. (6) are
non zero. Otherwise, the wave triplet would be reduced to
a doublet. We would then haveρ2

=m2
1+n

2
1=m

2
2+n

2
2 and

ψk= constant for k≡1, 2, and no interactions between waves,
since the interactions are controlled by the interdependence
of the amplitude function of the waves. Moreover, these
would be purely linear waves.

An additional condition for wave interaction is that no two
parametersψk(k=1, 2, 3) be equal, e.g. ifρ1=ρ2, then from
Eq. (9), ψ3 (constant) would not interact withψ1 orψ2.

In the wave triplet case, the amplitude functionψk(t),
(k=1, 2, 3), is plotted in Fig. 3 for a time span of 7.5 days,
with N2/N1 set at 0.7. This period should not be mistaken
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Table 1. Possible combinations of the signs of the triplet (σ1, σ2,
σ3) and their effect on energy conservation.

σ1 σ2 σ3 ε

+ + + N
+ + − N
+ − + Y
+ − − N
− + + N
− + − Y
− − + N
− − − N

for that of the global wavesψ , which has mean values of
2 to 3.4 days, in the case of AEW. Instead, it is the period
of the amplitude functions representing the time necessary
for complete energy exchange between waves. These results
are similar in many aspects to those obtained by Dobrysh-
man (1982), Pedlosky (1998) and Vanneste and Vial (1995)
in their studies of small-scale waves to non constant back-
ground flows.

Let us now examine more conveniently the energy interac-
tions. From Eq. (10), total energy is given by

ε = ε1 + ε2 + ε3,

with εk being the kth wave energy normalised byρ2
kp

2
k

(Kadomtsev, 1979), so that

εk = σkψ
2
k, k = 1,2,3.

Table 1 shows the proper choice of the sign ofσk for energy
to be conserved. A letter Y in the last column indicates the
two acceptable combinations.σ1 andσ3 must have the same
sign andσ2 the opposite sign. The letter N indicates the case
where the energy is not conserved.

Taking into account these conditions and using Eq. (6), the
total energy is rewritten as:

ε = σ1N
2
1 + σ3N

2
2 .

We note thatε depends onσ1, σ3,N1 andN2 and not on time
t.

The duration of the interaction between waves is given by
half of the period of the elliptic function (2K), sinceεk is

proportional toψ
2
k.

The energyεk of each wave as a function of time for
N2/N1=0.7 is shown in Fig. 4a forσ1=1, σ2=−1.5 and
σ3=0.5. These functions have a period of approximately
2 K=3.7 days. It is noted thatε1 and ε3 are in phase and
are both out of phase withε2, ε1 andε3 lose energy in the
first half of the cycle, whileε2 is gaining, and the reverse is
true in the second half. Thus, in a three wave process, energy
is constantly being exchanged between waves in such a way
that the total energy is conserved. It is important to note that
this period is equal to those of AEW.

Fig. 4. Energy of the waves as a function of time for(a) N2/N1=0.7
and(b) N1=N2=1. ε1 (in solid), ε2 (in dash),ε3 (in dot) andε (in
dash dot). Total energy,ε, is constant over the time.

This energy exchange process is more interesting in the
limiting case when N1=N2=1, then the amplitude functions
are

ψ1(t) = Sech(t);ψ2(t) = tanh(t) andψ3(t) = Sech(t).

Figure 4b represents the energyεk in this case, everything
else being as in Fig. 4a. The waves with energyε1 andε3
decay continuously to zero. Their energy is gained by the
third, which ends up with all the energy of the system.

4.2 Phase velocity

The basic wave phase velocity derived from the dispersion
Eq. (7) is expressed as:

C = U −
β −

(
d2U/dy2

)
ρ2

. (15)

The dependence of this phase velocity on the mean zonal
wind U(y) indicates that tropical waves propagate essentially
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Fig. 5. Meridional dependence of the phase velocity, C, and mean
zonal wind, U. Negative values indicate that the waves propagate
westward.

Fig. 6. Meridional dependence of the group velocity (Cg) and its
zonal (ug) and meridional (vg) components in the presence of trop-
ical instability.

westward at this level. The latitude dependence of the veloc-
ity illustrates the nonlinear effects. Furthermore, the velocity
C is also a function of zonal and meridional wave numbers,
decreasing as the latter increases. This result is in agreement
with Holton (1979), who showed that the advection of plane-
tary vorticity, which tends to dampen fluctuations, dominates
the advection of relative vorticity as the wavelength of the
perturbation increases. Figure 5 illustrates the profile of C(y)
for a tropical instability, with zonal and meridional wave-
length values of 6000 km and 3000 km, respectively, andβ

(the meridional gradient of the Coriolis parameter) taken as
2.2×10−11 m−2 s−1 at 15◦ N. The profile is symmetric with
respect to the jet axis, with the instability maximum on it.
Thus, Rossby waves are slower than the mean circulation.
The meridional mean value of the phase velocity is of the
order of−14 m.s−1and the resultant wavelength is set equal
to λ=2π

ρ
(2700 km). These results compare quite well with

those obtained around the AEJ.

4.3 Group velocity

The propagation of AEWs results from the superposition of
three fundamental waves whose wave numbers, growth rates
and amplitude are tied together by Eqs. (6), (7) and (14).
Hence, we have a wave packet moving with a group veloc-
ity corresponding to the propagation of system energy in the
horizontal plane.

The zonal component, ug, and meridional component, vg,
of group velocity,Cg, are obtained from Eq. (7) through the
following expressions:

ug = U −
β −

(
d2U/dy2

)
ρ2

+ 2

(
β −

d2U

dy2

)
m2

ρ4
. (16.1)

and

vg = 2

(
β −

d2U

dy2

)
m.n

ρ4
(16.2)

Following Hoskin et al. (1993), one can define a unitary vec-
tor, ρ, normal to the wavefront, which has a positive compo-
nent eastward and makes an angleθ relative to this direction
and has zonal and meridional vectorsm andn. Cg is then
rewritten as:

−→
C g = ug

−→m

m
+ vg

−→n

n

or

−→
C g = (C,O)+ 2

(
β −

d2U

dy2

)
cosθ

ρ2
−→ρ , (17)

where C is the perturbation phase velocity as described by
Eq. (15).

In the case of stationary waves, we haveσ=0, and C=0,
since C=σ /m. Using Eq. (15), one can write:

ρ2
= ρ2

s =
β −

(
d2U/dy2

)
U

. (18)

Thus, the group velocity vector takes the following form in
the case of stationary waves:
−→
C g = Cg

−→ρ

with

Cg = 2

(
β −

d2U

dy2

)
cosθ

ρ2
s

= 2U cosθ. (19)

The frontal zone of stationary waves moves with a group ve-
locity equal to 2Ucosθ . This velocity is double the zonal
wind U when the perturbation is moving in the zonal direc-
tion, and is zero when the perturbation is moving northward.

But, as Fig. 5 clearly shows, the value of the phase velocity
around the lower African tropospheric jet is in the interval
−10.5 to−17.5 m.s−1, indicating that there are no stationary
waves in this case. However, the technique presented here
is applicable to the special case of westerly waves or to the
attenuated easterly waves (Hoskin and Ambrizzi, 1993).
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Figure 6 shows the values of the group velocity (Cg) and
their zonal and meridional components as functions of lati-
tude. The negative value indicates that the energy of the per-
turbation is moving south-westward. The magnitude of the
group velocity vector is, as U(y) and C(y), bell shaped and
centred around the jet axis. The energy essentially moves
westward in the zonal direction, where Cg takes its maxi-
mum value (−18 m.s−1) around the jet core, and southward
in the region between 11 to 19◦ N.

5 Conclusion

We have studied the structure of AEW in the lower tropo-
sphere of the tropical zone, for the specific case of weak in-
teractions at resonance. The weak interaction approximation
appears to be an interesting approach to the study of trop-
ical instabilities. The results of the approximation, which
is “midway” between nonlinear and linear treatments, are
in agreement with Dobryshman (1982) and Vanneste and
Vial (1995), especially concerning the phase velocity and its
meridional variations. It is also shown that the energy of the
waves moves essentially westward with a group velocity of
around 18.6 m.s−1 in the jet core, where the basic state moves
essentially westward, at 20 m.s−1. Hence, for a strong east-
erly mean zonal wind, we see that the AEW cannot be sta-
tionary. However, one can obtain nonlinear stationary waves
by defining a new frame of reference in which the waves are
fixed. These simplifications lead, in some cases, to solitary
waves (Rottman et al., 1993). The effects of the nonlinearity,
controlled by the wave amplitudesψk(t), provides a possi-
ble mechanism for energy transfer between waves, as well
as allow for the calculation of the interaction period which is
equal to those of AEW.

How can these nonlinear theories of wave trapping be un-
derstood, which carry over to the case of nonlinear solitary
waves? And what is the impact on the AEW? Atmospheric
solitary waves are horizontally propagating nonlinear waves
that can travel over large distances with minimal change in
form as the result of balance between nonlinearity and lin-
ear dispersion. Then, an estimate for the wave amplitude is
usually used for comparing the weakly nonlinear theory for
steadily propagating solitary waves with atmospheric obser-
vations (Christine, 1992; Rottman and Einaudi, 1993).

We have reviewed attempts to use the simplest forms of
weak interaction to predict the character to the AEW. In par-
ticular, the theory requires an understanding of what mecha-
nism is trapping the waves. Since this is difficult to determine
in practice, the observed waves are often strongly nonlinear
(Thorncroft and Hoskins, 1995) and there is clearly a need to
develop theories which can take this into account.
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